Overview

- Learning and simulations
- Research questions
 - Diagnosing learning behaviour
 - Curriculum planning
 - Explanation (incl. visualisation) (*brief*)
- Concluding remarks
- Applications and References (brief)

Explanation!

How to generate explanatory discourse?

- 'Canned text' and templates are inflexible
- 'Translating the code' is unnatural

So, how to generate explanatory discourse **automatically**?

- <u>generic</u>, possible to re-use
- <u>flexible</u>, based on student's needs

Explanation!

Separating the WHAT (content) from the HOW (form)

WHAT: curriculum planning and didactic goals

• Different levels of time:

Over sessions, during one session, one discourse event

• Different levels of content:

Curricula, Topics, Issues, Concepts, Rules, Facts

HOW: graphics, text, VR, animations, etc.

Overview

- Learning and simulations
- Research questions
 - Diagnosing learning behaviour
 - Curriculum planning / Topic sequencing
 - Explanation (incl. visualisation) (brief)
- Concluding remarks
- Applications and References (*brief*)

Curriculum Planning & Didactic Goals

The Problem

...dividing the subject matter into pieces (parts) that can be dealt with by learners ...

Issues

- What parts should be singled out? (According to what criteria ?)
- Where to start ?

(Simple to complex, Conditional, etc.?)

• How to proceed?

(According to what criteria?)

Example: Arithmetic

• What is more difficult? And Why?

$$5 \qquad 5 \qquad 5 \qquad 5 \\ \underline{4} + \qquad \underline{4} - \qquad \underline{4} \times$$

$$55$$
 55
 55
 44 +
 44 -
 44 x

- *E.g.* number of inference steps (borrow is more difficult)• memory load
 - the number as such (9 more difficult than 2)

Didactic Principles: examples from literature

- from simple to complex / from easy to difficult
- from known to unknown
- from general to specific (OR: from specific to general)
- alternative viewpoints
- opportunistic
- structure versus behaviour
- on the basis of dependencies (conditional foreknowledge)

Research question:

What are the dimensions that define the space of 'subject matter sequencing'?

Ideas on model dimensions (a selection)

• Genetic Graph (Goldstein, 1979)

Causal Model Progression
 (White & Frederiksen, 1990)

• Compositional Modeling (Falkenhainer & Forbus, 1991)

• Models for Ecology (Salles & Bredeweg, 1997 & in press)

Genetic Graph (Goldstein, 1979)

Domain knowledge: Logical & probabilistic reasoning (represented as a set of rules)

Definition:

A knowledge representation consisting of individual pieces of knowledge which are connected by learner-oriented links representing the evolutionary nature of knowledge.

Dimensions:

- Refinement
- Analogy
- Generalisation / Specialisation

Causal Model Progression (White & Frederiksen, 1990)

Domain knowledge:

Diagnosing electronic circuits

Definition:

... To start with a simplified (simple) world (model) and to have a coach progressively add new dimensions of complexity that require an increasing mastery of expertise (skills)...

Dimensions:

- Perspective
- Order
- Elaboration

Causal Model Progression (Dimensions & Learning)

• Type (perspective)	Dimensions
e.g.: $V = I \ge R$ <u>versus</u> electrons	
• Order	
zero order (on/off)	
first order (changes)	
second order ('relative' changes)	
• Elaboration	
more intermediate dependencies	
	_

• Within the current model (*e.g.: solve a diagnostic problem*)

• With respect to next model (level)

- unsolvable problems (need for more complex model)

- explanation on differences between models

On learning

Causal Model Progression (Statements on Learning)

'... as a student learns her model becomes **elaborated** - changes in degree - by including further constraints. More radical transitions take place when a new **order** or a new **type** is introduced...'

"...deep understanding does not consist of a single model, but is characterized by the coexistence of a set of complementary models that vary along the dimensions..."

Related work: Sime (ITS'96 / AIED'95)

Using multiple models/ perspectives

(Cognitive Flexibility approach)

Compositional Modeling (Falkenhainer & Forbus, '91)

A more technical concern: getting the simulation right !

Example: Which quantities to use ?

Compositional Modeling (Domain example)

Steam-powered propulsion plant

Query: How does an increase in the furnace fuel/air ratio affect the amount of steam flowing in the superheater?

Compositional Modeling (Model dimensions)

Simplifying assumptions

- Perspective / Ontology (The view taken on the physical system)
- Granularity / Grain-size (How much structural detail to include?)
- Approximation / Abstraction (What behaviours to take into account?)

Operating assumptions

• Boundaries / constants / starting values

(compares to "Experimental frame")

In order to do: • Query analysis

- Object expansion
- Candidate completion
- Candidate evaluation and selection

Models for Ecology (Salles & Bredeweg, 1997 & in press)

Fire management in the Brazilian Cerrado

Models for Ecology (Model fragments 1: views)

59

Models for Ecology (Model fragments 2: processes)

processes concerning single and multiple entities...

Models for Ecology (Ordering by Model Fragment type - 1)

Models for Ecology (Ordering by Model Fragment type - 2)

Curriculum planning (summary)

How to carve up the subject matter into partial simulation models which are 'digestible portions' for a learner ?

Each model should be:

- Technically sufficient
- Match students knowledge state
- Progress from simple to complex

Issue:

Dimensions for model complexity

Overview

- Learning and simulations
- Research questions
 - Diagnosing learning behaviour
 - Curriculum planning
 - Explanation (incl. visualisation) (*brief*)
- Concluding remarks
- Applications and References (brief)

Principles of Explanation

Based on Winkels (1992) and Moore (1996)

- Coherence: explanations should be structured
- Sensitivity: to user's knowledge, goals, task, prior dialogue
- Signaling: give overview, point out relationships
- **Responsiveness**: offer feedback and further explanations
- Flexibility: multiple ways of achieving communicative goal

Explanation: Skeletal Strategy Structures

Implements coaching principles, together with refinement rules

A general strategy consists of six parts:

- Announcement
- Context
- New Information
- Consolidation
- Evaluation
- Closing

Explanation: HOW - Visualization

Basic idea

Representation: 'Analogical' versus 'Propositional'

Advantages of analogical

- explicit representation (*more direct*)
- effective control (*reasoning process*)
- more natural/understandable (*to humans*)

Explanation: HOW - Example

Manard's plot of Napoleon's Russian Campaign, 1813

CHAPTER 4, FIGURE 1. Charles Joseph Minard's famous plot of Napoleon's Russian Campaign. (Reprinted, with permission, from Tufte, 1983.)

67

Explanation: HOW - Example

Fire management in the Brazilian Cerrado

Showing only 'number_of' grass, shrub, and tree, and not the other '40 quantities'...

Explanation: HOW - Example

Visual languages

- Vocabulary of graphical symbols
- Diagrammatic rules
- Expressiveness all facts (and only all facts)
- Effectiveness *easy of expressing / perceiving*
- Emergent properties

Visualization

A very different perspective...?

Concluding remarks

- Simulation models are getting more articulate, but we are not there yet...
- Teaching functions are being addressed,
 - Interpretation of learner behaviour: well understood, but...
 - Curriculum planning: many ideas, no integration yet...
 - Structured explanation / visualisation: open area...

Not addressed in this talk, but interesting:

- WWW: collaborative learning/interacting with simulations
- Learning by <u>building</u> models

Applications and Case studies

• Cycle pad

http://www.qrg.ils.nwu.edu/software/software.htm

• Thinker tools

http://thinkertools.berkeley.edu:7019/index.html

Auto Steve

http://www.isi.edu/isd/VET/steve-demo.html

• SIMQUEST

http://www.simquest.to.utwente.nl/simquest/

Older work...

• ITSIE

(Intelligent Training Systems in Industrial Environments, finished end 1993) http://www.newcastle.research.ec.org/esp-syn/text/2615.html

References (1)

General

Artificial Intelligence and Tutoring Systems, E. Wenger, Morgan Kaufmann, 1987. (Summary of older work: e.g. Scholar, Why, Wusor, Sophie, Steamer).

Qualitative Models in Interactive Learning Environments: An Introduction. B. Bredeweg & R. Winkels, Interactive Learning Environments (special issue), pages, 1-18, vol 5, 1998. (for other articles in this issue see abstracts at: http://www.lri.jur.uva.nl/~winkels/ILE-QR.html)

Recent workshop at ECAI-1998 on MBR and ILE (for contributions see: http://www.swi.psy.uva.nl/usr/bert/ecai-ws.html)

Component-based construction of a science learning space. K. Koedinger, D.D. Suthers, & K.D. Forbus. International Journal of Artificial Intelligence in Education, Nr 10, pages 292-313, 1999.

Explanation

Explorations in Intelligent Tutoring and Help. Winkels, R. IOS press, Amsterdam, The Netherlands, 1992.

Making Computer Tutors More Like Humans. J. Moore, Journal of AI in Education 7(2), pages 181-214, 1996

Interactive simulations

Kenneth D. Forbus, Peter B. Whalley, John O. Everett, Leo Ureel, Mike Brokowski, Julie Baher and Sven E. Kuehne, CyclePad: An articulate virtual laboratory for engineering thermodynamics, Artificial Intelligence, Vol 114, Issue 1-2, pages 297-347, 1999.

References (3)

Diagnosing Learner behaviour

Kees de Koning, Bert Bredeweg, Joost Breuker and Bob Wielinga, Model-based reasoning about learner behaviour, Artificial Intelligence, Vol 117, Issue 2, pages 173-229, 2000

Model dimensions

Compositional modeling: finding the right model for the job. Brian Falkenhainer and Kenneth D. Forbus, Artificial Intelligence, Vol 51, Issue 1-3, pages 95-143, 1991.

Causal Model Progressions as a Foundation for Intelligent Learning. B.Y. White & J.R. Frederiksen, Artificial intelligence, 1990, nr 42, pages 99-157

References (4)

Visualisation

Diagrammatic Representation and Reasoning. Z. Kulpa. Machine Grapics & Vision, pages 77-103, vol 3, num 1/2, 1994.

The sage visualization group (CMU/USA) *http://www.cs.cmu.edu/~sage/sample.html*

Ecology and QR

Building Qualitative Models in Ecology. P. Salles & B. Bredeweg. Proceedings of 11th Int. Workshop on QR, June 1997, Pavia, Italy, Istituto di Analisi Numerica C.N.R, nr 1036, L. Ironi (ed), pages 155-163.