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Scaling Up in Size and Knowledge

� The Good News:

QSIM predicts all possible behaviors consistent with

given qualitative and semi-quantitative knowledge.

� The Bad News:

QSIM output can be large, even infinite.

The problem is real, not spurious, behaviors.

� The Good News:

There are solutions.



Four Solutions to Intractability

� (1) Chatter Abstraction: detect and abstract a region of

unconstrained change to a single qualitative state.

� (2) Model Decomposition: use both state-based and

history-based simulation to ignore irrelevant

relationships.

� (3) Temporal Logic Model-Checking: use a

theorem-prover to query the behavior tree.

� (4) Temporal Constraints: guide the simulator’s

attention to specified portions of the state space.



(1) The Problem of Chatter

Chatter occurs when a variable’s direction of change is

unconstrained, except by continuity.
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Chatter in one variable can propagate to others.



The Chatter Box

Qualitative behaviors are trajectories through state space.

Chatter is a property of a region of the state space.
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Sometimes knowledge of higher-order derivatives can help.

Often not.



Chatter Box Abstraction

� Detect entry into a chatter box.

� Identify chattering variables and boundary values.

� Do focused envisionment to detect exits from chatter box.

� Replace envisionment with a single abstract state.
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But: envisionment is still exponential in number of

chattering variables.



Dynamic Chatter Abstraction

� Detect entry into chatter box.

� Createchatter dependency graph:
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� Evaluate status of classes of chatter-equivalent variables.

� Simulate with abstracted qdirs. (Unique values indicate

exit from chatter box.)

Analysis is complex, but the algorithm is efficient.



(2) Model Decomposition

� The Problem:

– Basic QSIM uses a global state representation.

– Unrelated changes must be temporally ordered.

– Branch on all possible orders.

� The Solution:

– Decompose complex model into weakly-interacting

components. [Simon, 1969]

– Combine component behaviors into model behavior.



QSIM = Temporally-Extended CSP

� Computeall behaviors of each component.

– State-based simulation within components.

– Abstract values for unknown boundary variables.

– Guided simulation for known boundary variable

behavior.

� Each component behavior must belong tosomeglobal

behavior.

– History-based analysis between components.

– Causal dependency among components controls

simulation order: sequential or concurrent.

� Record dependencies among component behaviors.



Example: Controlled Two-Tank Cascade
            

            



Efficiency Gains on N-Tank Systems

Different causal topologies:
            

Cascade

            

Chain

            

Loop

Number Cascade Chain Loop

of Comp’s QSIM DecSIM QSIM DecSIM QSIM DecSIM

2 0.204 0.815 3.075 6.79 0.757 5.587

3 0.621 1.6 10.94 19.903 16.149 8.147

4 2.2 3.12 37.55 25.984 89.418 12.67

5 7.09 5.49 139.3 36.712 493.88 23.28

6 21.92 6.32 676 62.405 2758 48.73

7 71.59 8.39 1633 70 14474 116.1

8 236 11.67 8101 77 nc 442.4

9 806 11.75 nt nt nt nt

10 nc 14.05 nt nt nt nt

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8 9 10

R
un

 T
im

e 
(S

ec
)

Number of Cascades

Standard QSIM
DecSIM

Cascade

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5 6 7 8

R
un

 T
im

e 
(S

ec
)

Number of Components

Standard QSIM
DecSIM

Chain

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5 6 7 8

R
un

 T
im

e 
(S

ec
)

Number of Components

Standard QSIM
DecSIM

Loop



(3) Temporal Logic Model-Checking

� Temporal logic expresses what we want to know about

the behaviors.

� The QSIM behavior tree can be viewed as a model for

statements in a branching-time temporal logic.

� Model-checking determines whether a statement is true

of the behavior tree.

– Sound and complete.

� QSIM behavior tree predicts behaviors of dynamical

systems.

– Guaranteed coverage, but possible spurious behaviors.

(Filtering is sound but incomplete.)

A universal statement can thus be proved by qualitative

simulation.



Temporal Logic and Behavior Trees
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modal temporal logical QSIM

necessarily until and qval

possibly next or status

eventually implies funcall

always not

Simulating KJA PI controller.

Behavior tree rooted at S-0,

with 1 initial states and 17 behaviors.

Some behaviors don’t terminate...

Checking: (EVENTUALLY (STATUS QUIESCENT)).

Validity = (NIL NIL T NIL T T T NIL T T T NIL T T T T T).

...but all that terminate have zero error.

Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT)

(QVAL E (0 STD))))).

Validity = T.

Every fixed point is stable.

Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT)

(STATUS STABLE)))).

Validity = T.



Technical Issues

Matching assumptions between QSIM and Model-Checking.

� A behavior tree isclosedwhen every behavior terminates

with a quiescent state, a region transition, or a cycle.

� The QSIM Guaranteed Coverage theorem applies only to

closed behavior trees.

� For effective model-checking, cycles in the behavior tree

output by QSIM must be unwound one extra time.



The Main Theorem

� Main Theorem:

– If � is a universal state formula in EBTL

andM is a closed tree and (TLM �) returns T,

then�0 is true of every real function

consistent with the QDE.

� Lemma: the QSIM Guaranteed Coverage Theorem

– If QSIM returns a closed tree then

QSIM predicts every real function

consistent with the QDE input.

� Caveats:

– If M is not closed, some real behaviors may not be

predicted (yet).

– If � is not universal, the model of�0 could be a

spurious behavior.



Level Control of the Water Tank
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_x = f(x; u) = q � u � p(x):

x = amount in tank

q = inflow into tank

u = drain area

p(x) = influence of pressure at drain



A Heterogeneous Controller

The operating regions and their appropriateness

measures:
1

0

Low Normal High

l(x) n(x) h(x)

a b c d
x s x

The local control laws:

x 2 Low ) ul(x) = 0

x 2 Normal ) un(x) = k(x� xs) + us
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The global control law:

u(x) = l(x)ul(x) + n(x)un(x) + h(x)uh(x):

The discrete abstraction:
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Qualitative Combination of Behaviors

� Overlapping operating regions for the local laws.
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� Guarantee monotonic behavior in overlap regions.

Low ) q > 0

Normal ) qb < q < qc

High ) q < umax � p(c)

� Abstract the control law to a finite transition diagram.
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Behavior Trees for Local Control Laws
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Validity of Qualitative Properties

Simulating controller U_l.

Behavior tree rooted at S-0, with 3 initial states and 3 behaviors.

Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL )

(QVAL X (NIL INC))))

Validity at S-0 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-0 = T.

Simulating controller U_n.

Behavior tree rooted at S-40, with 16 initial states and 34 behaviors.

Checking UPWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL )

(QVAL X (NIL INC))))

Validity at S-40 = T.

Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) N I

(QVAL X (NIL DEC)) )

Validity at S-40 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-40 = T.

Checking STABILITY: (NECESSARILY (EVENTUALLY (AND (QVAL X ((B C) STD))

(STATUS QUIESCENT)

(STATUS STABLE)))).

Validity at S-40 = T.

Simulating controller U_h.

Behavior tree rooted at S-167, with 3 initial states and 21 behaviors.

Checking DOWNWARD-MOTION: (NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) N I

(QVAL X (NIL DEC)) )

Validity at S-167 = T.

Checking DESTINATION: (NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL)))).

Validity at S-167 = T.



(4) Temporal Constraints: TeQSIM

Temporal logic lets the modeler use knowledge not

expressible in the QDE or SQDE.

� Trajectory constraints describe intended behaviors.

– Time-varying exogenous variables.

– Events and discontinuous changes.

– Semi-quantitative bounds on behaviors.

� Interleave QSIM with the temporal logic model-checker.

Accept only behaviors consistent with TL constraints.

� Focus attention on subset of behavior space.



TeQSIM Examples

� Specify exogenous input.

(event step-up :time (2 3))

(event step-down :time (17 24))

(disc-change (event step-up)

((inflow (normal high)

:range (1500 1800))

(disc-change (event step-down)

((inflow normal)))

� Focus on overflow scenario.

(event open)

(disc-change (event open)

((valve (normal max)

:range (4 nil))))

(before (qvalue level (top nil)) (event o p

(eventually (qvalue level (top nil)))

Derive temporal bounds on (event open) to prevent

overflow.



More Information:

http://www.cs.utexas.edu/users/qr

Qualitative Reasoning

� Daniel J. Clancy and Benjamin J. Kuipers. 1998. Qualitative

simulation as a temporally-extended constraint satisfaction problem.

AAAI-98.

� Daniel J. Clancy and Benjamin Kuipers. 1997. Model

decomposition and simulation: a component based qualitative

simulation algorithm.AAAI-97.

� Daniel J. Clancy and Benjamin Kuipers. 1997. Static and dynamic

abstraction solves the problem of chatter in qualitative simulation.

AAAI-97.

� Giorgio Brajnik and Daniel J. Clancy. 1996. Trajectory constraints

in qualitative simulation.AAAI-96.

� Benjamin Shults and Benjamin Kuipers. 1997. Proving properties of

continuous systems: qualitative simulation and temporal logic.

Artificial Intelligence Journal92: 91–129.

� Benjamin J. Kuipers and Karl J.Åström. 1994. The composition and

validation of heterogeneous control laws.Automatica30(2),

February 1994.


