$SD \cup OBS \cup \{mode_i(C_i) \mid C_i \in COMPS\} \dots$?

- Processes are not faulty:
 - They are present/active or not, we have to look at the preconditions.
- No mode asumptions

We don't blame an **existing** (behavior) constituent:

- There are additional entities or unusual exogeneous conditions.
- No components (COMPS) A different strategy for model revision is needed

There are no "failures of nature":

The phenomena are always in accordance with the laws of physics.

- The conflict is with our intentions / goals!
- Explicit specification of GOALS needed

Towards a New Theory of Model-based Diagnosis

More general

- Cover process-oriented models
- Account for unexpected interactions and objects
- Distinguish between different tasks (more flexible)
- Beyond components

More specific

- Specify vocabulary for ontology, structure and behavior
- Formalization in logic
- ➔ What's in SD?

Include the standard component-oriented approach as a special case

Distinguish Different Tasks

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

SD

- DOMAIN THEORY
 - ONTOLOGY
 - STRUCTURE (object types and object relation types)
 - BEHAVIOR

(quantity associations,

behavior constituent types with instantiation/activity rules)

- BASIC LAWS
- SYSTEM STRUCTURE

(objects, object relations)

QUANTITY SPECIFICATIONS

(variable and parameter values)

$$SD = SD_{rev} \cup SD_{fix}$$

Behavior Constituent Descriptions

Behavior constituent types:

• Process descriptions / component behavior models

Instantiation rules:

(Structural) instantiation conditions: IC_i

Activity rules:

(State dependent) activity conditions: AC_i

Behavior description:

Constraints and influences

 $\begin{array}{l} \text{IC}_{i} \Rightarrow \\ \exists \text{Obj}_{i} \land \text{beh-const}_{i} \end{array}$

 $\begin{array}{l} \text{beh-const}_{i} \wedge \text{AC}_{i} \Rightarrow \\ \text{active}_{i} = \text{T} \end{array}$

active_i=T ⇒ beh-constraints_i ∧ influences_i

An Example from the Water Treatment Domain - Modelling

Modeling the scenario

- Objects for spatial locators, components, substances, ...
- A set of relations complement the object structure

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

An Example from the Water Treatment Domain - Modelling

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Example - Processes: Conditions and Effects

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich **OCC'M** Software

Struss Eco - 9

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Model Generation

Resolving Influences

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Tasks: Situation Assessment

In area *x*, trees of specifier *y* shed their leaves at an unusual rate what's going on?

$\mathsf{OBS} \to \mathsf{SYSTEM} \text{ SITUATION}$

Determine

- relevant constituents and their relationships and parameters
- their current state: values of variables
- that collectively account for the observation

We May Be Wrong - Model Revision

Searching for Revisions

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Situation Assessment: Formalization

What Does not Fit the Observations?

- $MODEL_0 \cup OBS \vdash \bot$
- $MODEL_1 \cup OBS \not\vdash \bot$ or \rightarrow
- $MODEL_1 \vdash OBS$

System Identification

• $MODEL_{rev} = STRUCTURE_{rev} \cup PAR-SPEC_{rev} \cup CWA$

State Identification

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Diagnosis: Formalization

What Causes Violation of Goals?

- $MODEL_1 \cup GOALS \vdash \bot$ \rightarrow
- $MODEL_2 \cup GOALS \not\vdash \bot$ or \rightarrow
- $MODEL_2 \vdash GOALS$

Revisable: What Can Be <u>Influenced</u>?
MODEL_{rev}= STRUCTURE_{rev} ∪ VAR-SPEC_{rev} ∪ CWA

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Tasks: Therapy Generation

Hearing identified possible causes of the mangrove degradation what can be done?

GOALS →REMEDIATE ACTIONS

Determine

- responsible factors that can be influenced
- actions that create appropriate influences

Therapy Generation: Formalization

What Can Reach the Goals?

- $MODEL_1 \cup GOALS \vdash \bot$
- $MODEL_1 \cup ACTIONS \cup GOALS' \not\vdash \bot$ or \rightarrow
- $MODEL_1 \cup ACTIONS \vdash GOALS'$

- Actions as unconditioned processes
- Intermediate goals may be different from ultimate ones
- Goals may be revised

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Reconstructing the Standard (Component-based) Approach

- Object types:
- Object relation types:
- Quantity associations:
- Behavior constituents:
- Structure:
- State:

Component types, terminal types connected (terminal, terminal) part-of (terminal, component) Variables for terminal types, modes for components ok and fault models (and terminal identification) (IC: component-type, AC: mode) connection and part-of structure (terminal) variable values

Even More Ambitious: Model-guided Discovery

 Revise the domain theory (model fragment library)

DOMAIN THEORY \cup STRUCTURE \cup QUANTITIES \cup CWA \vdash MODEL

Model-Based Systems & Qualitative Reasoning Group of the Technical University of Munich

Benefits

- More **general** theory
- Natural and **technical** processes
- Covers **component**-oriented diagnosis
- Systematic approach to structural faults
- Integration of processes and components

Open Issues

- **Dynamics**
- Search heuristics
- Minimality of ultimate causes
- Termination
- Negation vs. irrelevance

Application Area: Ecology

Needs

- support understanding/research/ model building
- data overload: interpretation!
- partial information, knowledge
- robust computer systems
- support decision making (of non-experts)
- bridge between concepts and mathematical models

Relevant Features

- systematic modeling
- compositional modeling
- symbolic, conceptual modeling
- abstraction, low granularity
- reasoning with incomplete information, imprecision
- explicit representation
- problem solving

Applications in Ecology - Current State

- It's basic research!
- Appropriate ontologies?
- Mathematical formalisms?
- e.g. partial differential equ's
- Spatial reasoning
- Abstraction: individuals --> population
- Tiny model libraries
- Limited awareness of ecologists

