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Abstract 
We present the novel application of a general-purpose 
knowledge-based system, SHAKEN, to the specific task of 
acquiring knowledge for milit ary Course of Action (COA) 
analysis. We show how SHAKEN can capture and reuse 
expert knowledge for COA critiquing, which can then be 
used to produce high-level COA assessments through 
declarative inference and simulation. The system has been 
tested and evaluated by domain experts, and we report on the 
results. The generality of the approach makes it applicable to 
task analysis and knowledge capture in other domains. The 
primary objective of this work is to demonstrate the 
application of the knowledge acquisition technology to the 
task of COA analysis.  Developing a system deployable in an 
operational environment is the subject of future work. 

Introduction 

The goal of the SHAKEN project is to let subject matter 
experts (SMEs), unassisted by AI technologists, assemble 
models of mechanisms and processes from components. 
Questions about these models can be answered both by 
conventional inference methods, such as theorem proving 
and taxonomic inference, and by more task-specific 
methods, such as simulation and analogical reasoning. We 
believe that the assembly of components instantiated to a 
domain is a natural way for SMEs to create knowledge 
base content. 

This paper describes the application of SHAKEN to the 
acquisition and use of knowledge needed for milit ary 
Course of Action (COA) analysis. We begin with a 
technical overview of SHAKEN. We then describe the 
COA application, and give an overview of its solution 
using SHAKEN. For each aspect of the solution, we 
describe the technical challenges faced, and how we 
addressed them. We conclude with an evaluation of our 
approach, and directions for future work. 

Functional Design of SHAKEN 
The SHAKEN system has the following functional units, 
shown in Figure 1: a knowledge base (KB), an interface for 
entering knowledge, a set of tools for verifying and using 

knowledge, and a Web-based interaction manager. The 
KB, also called the component library, or CLIB [3], is a 
collection of components representing (a) general 
knowledge about common physical objects and events, 
states of existence, and core theories, including time, space, 
and causality, and (b) more specialized knowledge about 
particular domains, including micro-biology, chemistry, 
milit ary units, milit ary equipment, and terrain. 

By a component, we mean a coherent set of axioms that 
describe some abstract phenomenon (e.g., the concept of 
invade) and are packaged into a single representational 
unit. Our claim is that a small number of predefined 
components is suff icient to let SMEs assemble models of 
virtually any mechanism or process. These components are 
mostly domain independent, but their assembly and 
specialization can create domain-specific representations. 

The main task of the knowledge entry interface is to let 
SMEs assemble the right KB components, by connecting 
predefined elements of the component library. This is 
performed through a graphical interface, where SMEs 
assemble components by manipulating graphs.  Axioms are 
automatically derived from the graphical representation, so 
the SMEs do not have to be trained in formal logic [8]. 

SHAKEN supports several different methods for using 
knowledge. Declarative inference, performed using the 
Knowledge Machine knowledge representation system 
(KM) [7], is the most common approach for using 
knowledge. Normative simulation is used to exercise the 
process knowledge in the system [17]. It executes each step 
in the process and analyzes interdependencies.  Empirical 
simulation exercises knowledge by running a detailed 
simulation of a process using the Capture the Flag 
simulation engine [1]. An analogical reasoner, based on the 
Structure-Mapping engine [9], computes similarities and 
differences given two concept representations [21].  These 
methods can be invoked by a variety of means included in 
the question-asking interface [6]. The answers to questions 
are returned in an easily understood format, and the user 
can control the level of detail i n an answer.  

The interaction manager is aimed at making the 
knowledge entry experience seem natural. It handles 
limited forms of natural language input, and keeps track of 



the history of a knowledge acquisition session. A 
knowledge analysis module and an analogy module support 
the interaction manager and let SHAKEN take the initiative 
in helping an SME enter knowledge [17]. For example, the 
knowledge analysis module helps users verify and validate 
their process descriptions by analyzing the results from 
normative simulation. The vision for the interaction 
manager is to make the knowledge entry similar to a 
student/teacher interaction, where both the user and the 
system take the initiative at different times [19].   
 

 
 

Figure 1: SHAKEN functional architecture  

The KB server provides faciliti es for eff icient storage 
and access of knowledge, based on KM [7]. It stores both 
domain-independent and domain-specific  knowledge. 

Knowledge verification based on normative simulation 
is used during knowledge entry by SMEs. KB clustering 
and diagnostics are used off -line both to support the 
development of domain-independent knowledge, and to do 
a post-hoc analysis of the knowledge entered by the SME. 

Task: Course of Action Analysis 

A milit ary COA is a plan outline used by a commander to 
communicate to his subordinates one way to accomplish a 
mission. Normally, commanders consider several different 
ways to accomplish a mission, that is, several different 
COAs. They evaluate competing COAs using appropriate 
comparison criteria and decide on one to build into a 
complete action plan for the mission. In this paper, we 
consider COAs for ground milit ary forces conducting 
offensive (attack) operations. The detail captured in the 
COA depends on the echelon. We consider here COAs at 
the level of a milit ary division, a brigade, or a batalli on. 
We consider only the COAs of friendly forces. Possible 
COAs for the enemy forces are not considered. 

A COA specification is formulated in response to a 
specific situation between opposing forces and a mission 
directive. For purposes of description, we organize a COA 

specification into two parts: problem statement and solution 
statement. A COA problem statement consists of the 
following: (1) a situation sketch (on a map), indicating 
terrain features such as roads, rivers, lakes, hill s, forests, 
and current Blue and Red unit placement; (2) a scenario 
narrative, including any details not easily captured on the 
map (e.g., relevant recent history, current dynamics, 
expected future evolution, unit status descriptions); (3) a 
mission specification, indicating specific forces under 
command, required objectives, and constraints (e.g., 
“Capture Objective JAYHAWK by 1400 hours tomorrow 
with the following restrictions in place…”); and (4) the 
commander’s estimate of the situation. 

Faced with such a problem statement, a commander 
must formulate a plan for his forces to accomplish the 
mission. He considers one or more options, or COAs. A 
COA solution consists of: (1) a COA sketch—an overlay 
on the problem statement’s situation sketch, and (2) a COA 
narrative—a structured description stating the mission, 
commander’s intent, desired end state, and the concept of 
operations, including main attack, supporting attack, fire 
support, and reserve. Each task in the COA must indicate 
what units perform what actions for what purposes. 

Given enough time to consider alternatives, the 
commander’s staff evaluates the candidate COAs in a 
subjective critiquing process, usually resulting in a matrix 
comparing the viable ones, and presents the results to the 
commander for a decision on the preferred COA. 
Commonly used COA-critiquing criteria include mission 
accomplishment, reserve availabilit y, speed, simplicity, 
terrain use, risk, and position for follow-up operations. 
With help from domain experts, we created an extensive 
taxonomy of critiquing criteria. The COA critiquing task is 
to evaluate a formally represented COA with respect to key 
critiquing criteria. The purpose of critiquing and comparing 
different COAs is to help the commander decide how best 
to accomplish the assigned mission. 

Given this definition of the COA analysis problem, the 
tasks to be performed were twofold: (1) given textual and 
graphical COA problem statements, formally represent 
selected elements of these in a knowledge base, and (2) 
author (conceive of and formally represent) knowledge to 
support effective COA critiques, which can then be applied 
to any formally represented COA solution statement. 

We now briefly consider the possible deployment of a 
COA critiquing system. The critiquing knowledge will be 
entered in an Army laboratory long before the system is 
actually used in the field. The COA problem and solution 
statements will be entered at the time of actual usage of the 
system. Thus, when the critiquing task is performed in 
response to an actual need, the relevant critiquing 
knowledge will already be available. Given that we were 
developing an initial prototype, the task of entering COA 
problem and solution statements, and the task of authoring 
critiquing knowledge, are interleaved much more than they 
might in a situation when a COA critiquing system has 
been built and deployed. 



Solution: Using SHAKEN to Acquire and 
Apply COA Critiquing Knowledge 

As stated in the previous section, the overall task has two 
main aspects: COA authoring, and COA critiquing. With 
reference to the functional architecture of Figure 1, the 
tasks of authoring the COA and the critiquing knowledge 
are supported by the knowledge entry subsystem.  COA 
authoring relies on battlespace knowledge that is built into 
the knowledge base. The SME enters the critiquing 
knowledge during development, which is stored in the 
knowledge base. The module focused on using knowledge 
supports the critiquing task. The interaction manager and 
the knowledge verification module play a supporting role 
in the overall solution of the problem. 

COA Authoring 
To formally author a COA, we needed to solve two 
problems: (1) provide a vocabulary of terms that can be 
used in COA authoring, and (2) provide a natural user 
interface for commanders. 
 
Vocabulary for COA authoring: To support COA 
authoring, we need to represent military units, terrain, and 
military tasks.  For military tasks, we developed two 
different representations: one suitable for declarative 
inference, and the other suitable for empirical simulation. 
Let us consider these two in more detail. 

To develop representations for knowledge analysis, we 
leveraged the domain-independent representations in the 
component library to provide military-specific terms.  For 
example, consider the military task Canalize.  This is a 
tactical mission task where a military unit restricts enemy 
movement to a narrow zone.  We represented this domain-
specific action by specializing the domain-independent 
action Confine. The Canalize task differs from Confine in 
that its agent and object are military units, and its base is a 
piece of narrow terrain. It is similar to Confine in that its 
base plays the role of a container, and the object is inside 
the base after the action has been performed. 

Empirical simulation requires a model of the domain 
and a model of the processes that occur in that domain. Our 
domain model is built on the University of Massachusetts 
Abstract Force Simulator (AFS) [2]. Military engagements 
are represented using circular agents moving on a coarse 
representation of real terrain. The agents have many 
properties, but most of the ones significant to military 
modeling (training, weapons type, troop strength, 
experience, and so on) are agglomerated into a single 
property: mass. The process model represents actions as 
lists of desired effects on key properties.  Figure 2 shows 
the action model for Defeat, which is broken into two 
phases: one for the friendly forces to reach the enemy and 
one for the engagement. Each phase has corresponding 
goals for the action. The action models for the military 

tasks in the field manual are represented within AFS using 
Tapir, a general purpose, semi-declarative hierarchical 
agent control language that can express goals, sensors and 
actions using a unified syntax [18]. During each simulation 
run, the action models control the military agents; 
dynamically reacting to the changing properties of the 
simulation in order to achieve their goals.  
 

 

Figure 2: Action model for Defeat 

User interface for COA authoring: We needed an 
interface that was as familiar to commanders as possible. 
Commanders work with maps and overlays to show the 
geography, unit locations, and military tasks. The map is 
usually accompanied by a textual description. The 
nuSketch system is explicitly designed to support COA 
authoring, and met this requirement very well [12], [13]. 

NuSketch provides a graphical interface where COA 
terrain, units, avenues of approach, and tasks can be 
described. The user can also specify the commander’s 
intent for the overall COA and individual tasks. An 
example COA sketch is shown in Figure 3. 
 

 
Figure 3: nuSketch COA authoring interface 

 
NuSketch elements have a precise declarative semantics 

that is reflected in the SHAKEN component library 
ontology. Once the COA is specified in nuSketch, it is 
translated to a SHAKEN concept map (CMAP). The 
translator maps terms in the nuSketch ontology to the 



corresponding terms in the SHAKEN component library. In 
some cases, the knowledge is processed to resolve 
ontological mismatches; for instance, the task timing 
information in nuSketch is based on the quantitative start 
and end times, whereas SHAKEN relies on qualitative 
ordering information among tasks; therefore, the translator 
processes the quantitative information to derive the 
necessary qualitative ordering. 

As expected, the experts want the interface to be as easy 
and quick to use as their regular pen-and-paper way of 
doing things. The primary obstacle to achieving this was to 
find a suitable combination of sketching gestures, and a 
layout of windows that would enable rapid authoring of the 
COA. Currently, it takes 1 to 2 hours to author a COA.  
The SMEs would like to be able to do it within 15 minutes.   

Critiquing Knowledge 
Critiquing relies on both domain-independent and 
specialized knowledge.  Domain-independent knowledge is 
leveraged as domain-specific terms are created, by 
specializing domain-independent terms.  We will primarily 
discuss here the domain-specific critiquing knowledge. 

Two kinds of domain-dependent critiquing knowledge 
were needed: (1) necessary and sufficient slot values of 
concepts, and (2) critiquing rules.  We now consider in 
more detail how each was entered. 
 
Necessary properties of concepts: The SHAKEN 
graphical interface is the primary means used to create the 
domain-specific concepts from domain-independent ones. 
For example, for each kind of terrain, we encoded its 
trafficability for each kind of unit. For each unit, we 
encoded the equipment it possesses, and its combat power. 
For each military task, we encoded how much relative 
combat power is generally thought to be sufficient to 
effectively perform this task.  The tasks are encoded using 
a STRIPS-like language used by many AI planners [4]. 

As a concrete example, Figure 4 shows the 
representation of the concept of Rolling-Hills.  This 
concept map indicates that rolling hills offer relatively 
unrestricted movement for armor and infantry units.  See 
[8] for a description of how logical axioms are synthesized 
from graphs such as this. 

 

 

Figure 4: Trafficability definition for Rolling Hills 

Sufficient properties of concepts: For many concepts, it is 
possible to define both necessary and sufficient properties.  
For example, if Blue-Military-Unit represents the class of 
all friendly units, then any military unit whose allegiance is 
Blue is a member of this class.  A domain expert specifies 
the sufficient properties of a concept by annotating the 
graph representing the necessary properties.  

The most common application of sufficient properties 
was to create subclasses of actions representing a specific 
situation, indicating a special case. For example, the 
required relative combat power ratio for the most general 
case of each military action is built into the system. 
However, the actual relative combat power ratio depends 
on the specifics of the situation. For instance, a ratio of 3 is 
normally desired for a general attack, but when an aviation 
unit attacks an armor unit, a combat power ratio of 0.5 is 
adequate. When a commander authors a COA, he may use 
the general attack action vocabulary. But, if the knowledge 
base includes a subclass of the attack action whose 
sufficient properties are that the agent is an aviation unit, 
and the object is an armor unit, its lower relative combat 
power ratio will be used whenever such a situation arises. 
Figure 5 shows the concept map for such a class. See [16] 
for more details on entering special cases of actions.  

 

Figure 5: A special case of the Attack action. The nodes 
grouped in a box indicate sufficient properties.  

 
Critiquing rules: We devised a special kind of rule, called 
a pattern, where the antecedent represents a collection of 
assertions pertaining to the situation being critiqued, and 
the consequent is a critiquing score on some critiquing 
dimension. Figure 6 shows an example pattern that rates a 
COA as good if some forces are kept in the reserve.  The 
portion of the graph linked to the root with the has-pattern 
relation indicates an antecedent, and the portion linked 
using critique-score indicates the consequent of the rule. 
 

Critique scores can be positive or negative, and a single 
pattern can apply to more than one critiquing dimension. 
Critiquing dimensions for COA patterns include such 
concepts as Risk, Casualties, Maneuver Effectiveness, 
Command and Control, Terrain Use, Preparedness for 
Enemy Response, Simplicity, Resource Use, and 
Synchronization. Applying these rules, organized by the 
critiquing dimensions, gives a direct rating of a COA. 



 

Figure 6: A pattern indicating that allocating a reserve 
is good for Blue-Reserve-Availability 

Exercising Critiquing Knowledge 

SHAKEN currently supports three different kinds of 
critiquing: declarative inference, normative simulation, and 
empirical simulation. (SHAKEN’s analogical reasoning 
capabilities can also be used for critiquing [10], but this is 
not covered in the present paper.)  

Critiquing by declarative inference: COA critiquing by 
declarative inference systematically finds and applies all 
applicable COA patterns and assigns them a score. The key 
technical challenge in matching patterns against a COA is 
that matches may not be syntactically exact. Therefore, we 
built a utility that can compute matches modulo a set of 
transformations. For example, we may know from the COA 
that a Blue force is in a city; we may also have a pattern 
saying that if an armor unit is in a city, it is poor for 
security of that unit (unless it is accompanied by infantry 
that can protect tanks in narrow streets and alleys from 
short-range antitank weapons). The pattern matcher will 
match the COA and the pattern, noticing that the Blue force 
has an armor unit that is in the same location. The pattern 
matcher contains a few hundred such transformations.   

 

Figure 7: A report from critiquing by patterns 

Figure 7 shows an example report generated by matching 
patterns, as presented by the SHAKEN interface.  The top 
of the report indicates the critiquing scores. The COA 
being evaluated has a score of Very Good on the dimension 
of deception. The table that follows indicates which nodes 
in the pattern matched which nodes in the COA. For 
example, B2ndTankBde conducts the main attack, and 
B4thTankBde conducts the supporting attack. 

Critiquing by normative simulation: Normative 
simulation critiques a COA by executing each step. It relies 
on the KM situation mechanism, and executes each step 
based on its effects (add/delete lists). It analyzes 
dependencies between conditions and effects, checking that 
the required conditions for each step are met when the step 
is supposed to take place, and that the expected effects of 
the overall process are, in fact, obtained.  It also checks 
how different steps are related to each other, including their 
temporal ordering and causal relationships. The simulation 
reports possible errors and presents them as critiques. For 
instance, for each step in the COA, normative simulation 
computes the net relative combat power available, and 
compares it against the required relative combat power 
ratios already encoded in the system.  

Figure 8 shows an example normative simulation 
report. In this case, one of the preconditions of a military 
action has failed: the given combat power ratio is not high 
enough to perform the given task. The net relative combat 
power of a military unit is computed based on the combat 
power of its subunits. The explanation section of the report 
shows in detail how the combat power was computed by 
combining various pieces of information, including unit 
equipment, default combat power, and remaining unit 
strength, through multiple COA steps. The user can check 
this explanation to see why the condition failed. 

 

Figure 8: COA critiquing by normative simulation 



The combat power numbers are dynamic, and take into 
account how the various units undergo attrition over a 
period of time. The action is flagged if the actual relative 
combat power during an action is less than the required 
relative combat power. Even when the combat power 
exceeds what is required, the commander can use the report 
information to check that all the decisive points have 
overwhelming relative combat power ratios.  

In this instance, an SME added a special case of the 
Attack-by-Fire action to account for this kind of situation 
(i.e., when an aviation battalion attacks an armored unit, a 
combat power ratio of 0.5 is enough). Once this special 
case was added, the precondition was satisfied.  

 
Critiquing by empirical simulation: Empirical and 
normative simulation complement each other in SHAKEN. 
Simulation is used to capture complex dynamics in the 
COA, and to explicitly model uncertainty. For empirical 
simulation, SHAKEN uses the Capture the Flag (CtF) tool 
[1], based on the AFS abstract physics-based model of 
division-level engagements described earlier (see Figure 2). 
Once a nuSketch COA is translated to CtF, Monte Carlo 
simulation is performed, running the COA multiple times 
until statistically significant results are obtained. The data 
from these trials is summarized in HTML reports, showing 
combat power ratios and graphical snapshots of critical 
events (e.g., engagements) during the simulated runs. 

Figure 9 shows the combat power ratio graph produced 
for a particular engagement during a single simulation run. 
The ratio increases as the Blue side gains dominance over 
time, indicating a Blue army victory. A chief strength of 
empirical simulation is unexpectedly simple: SMEs can 
watch their COAs unfold visually, and can immediately see 
flaws and strengths. The results are analyzed to construct a 
qualitative representation of the space of outcomes, 
explicitly identifying critical points. 

 

Figure 9: Output from empirical CtF simulation 

Evaluation 

We evaluated the system with the help of two domain 
experts, both of whom were retired Army officers.  One 
had served at the rank of lieutenant general, and the other 
as an intelligence officer.  The objective of the evaluation 

was twofold: to assess how effectively the knowledge 
acquisition capabilities of SHAKEN would work for 
domain experts with no training in formal knowledge 
representation, and to test the performance of the resulting 
knowledge base on the COA critiquing task. 

The evaluation was conducted over 15 days.  During 
the first 7 days, we provided hands-on training to the two 
subject matter experts, using an example critiquing task. 
The SMEs were then given a new task, in the form of a 
COA problem statement and its solution, expressed in 
textual form, and were asked to address it using the system. 
The SMEs were asked to encode the textual description in 
SHAKEN. They then authored critiquing knowledge, 
independent of the COAs, and used it to critique them.  

Before encoding a COA, the SMEs produced a manual 
critique for it, to serve as a guideline for evaluating the 
ultimate critique to be produced by the system. Authoring 
the critiquing knowledge was an iterative task: the 
knowledge was successively refined based on the system 
critique, and how it differed from the manual critique. 

Over the 15-day period, the SMEs authored three 
different COAs and 60 pieces of critiquing knowledge.  
The critiquing knowledge included patterns and special 
cases of actions.  Below, we present the textual description 
of a few patterns authored by the SMEs during evaluation. 
The critiquing dimensions are shown in bold font: 

 
 If a COA secures a piece of terrain narrower than 50 
meters, it makes good use of terrain. 
 If the supporting attack occurs before the main attack, it 
is good for COA effectiveness, mission accomplishment, 
and synchronization. 
 If an armored unit attacks a mechanized infantry unit 
outside a city, it is good for enemy maneuver engagement. 

 
The antecedent encodes the condition under which the 

pattern applies, and often includes spatial information such 
as terrain or unit location. In some cases, the antecedent 
can include negation, for example, the location of a unit not 
being in a city. Let us now consider two examples of 
special cases of actions, where the bold text represents the 
sufficient property of the special case: 
 When an aviation unit attacks an artillery unit, it is 
sufficient to have a combat power ratio of 0.3. 
 While seizing a bridge, it is sufficient to have a combat 
power ratio of 0.3. 
 

These example patterns and special cases of actions 
show that SMEs with very little training in knowledge 
representation were able to author nontrivial pieces of 
critiquing knowledge. In particular, the first-order logic 
formalization of this knowledge, synthesized automatically 
from the graphs by SHAKEN, includes quantified 
variables, implications, negation, and, in the case of special 
cases of actions, concept definitions (bi-directional 
implications). These formal structures are clearly beyond 
anything that the SMEs could encode directly. In addition, 



through the constraints imposed by the graphical interface 
(e.g., guiding the SME to select concepts from the existing 
ontology, restricting the choices of relations to only 
semantically valid ones), the SMEs formalized their 
knowledge in conformance with SHAKEN’s underlying 
ontology. This ill ustrates the key achievement of this work, 
namely, a significant enhancement of the SME’s abilit y to 
articulate formal knowledge, in a way consistent with, and 
building upon, the preexisting knowledge in the system. 

We tested the empirical simulation on the COAs 
authored by the SMEs. Monte Carlo summaries of mass 
lost and goals achieved over multiple simulations showed 
clear differences between these COAs. In addition, the 
COAs that we felt were most dangerous had the greatest 
amount of variance in their outcome. This highlights one of 
empirical simulation’s greatest strengths: the abilit y to go 
beyond static analysis and focus instead on the dynamics of 
multiple concurrent processes. 

Despite these achievements, we encountered several 
limitations. The most significant problem is to translate 
natural but informal domain concepts (e.g., “suff icient 
force”, “ flank” , “contour” , “overwhelm”) into a 
computable form (e.g., in terms of coordinates and 
distances), a prerequisite for machine reasoning about the 
domain. While SHAKEN provides good support for 
entering formal knowledge once that conceptual translation 
is made, it provides littl e help with the translation in the 
first place. This turned out to be the most notable challenge 
for the SMEs. It is exacerbated in the COA domain, where 
many important concepts are spatial in nature, but 
particularly diff icult to pin down precisely in formal terms. 

Second, although the interface helps SMEs enter 
knowledge in terms of the existing ontology, there is still 
potential for SMEs to make mistakes. For example, they 
sometimes used negation in a way that differed from their 
intent, without realizing that the semantics of what they 
encoded was subtly different (e.g., one SME encoded “an 
attack not on a city is good” , intending to encode “no attack 
on a city is good”). More proactive checking and validation 
of SME inputs would help identify and correct such errors. 

As additional evaluation data, at the end of the 15-day 
period we compared the SHAKEN critiques produced 
using an SME’s formally encoded knowledge with the 
manual critiques written by the same SME. Our goal was to 
check that the SME’s encoded knowledge was to some 
extent “ reasonable” compared with his ideal solution (the 
manual critique), that is, to check that the SME’s rules 
were not simply “ formal nonsense”. The SMEs were asked 
to assign a correctness score on a five-point scale (-2 to +2) 
to the results produced by SHAKEN using their encoded 
knowledge. A score was given to each critiquing dimension 
that the SME considered relevant to the particular COA. 

Of the 16 relevant critiquing dimensions for one of the 
representative COAs, the system critique received a score 
of +2 for 8 of the dimensions; for 3, a score of +1; for 4, a 
score of –1; and for 1, a score of -2. Although many other 
factors influence these scores (e.g., the inherent knowledge 

representation and reasoning capacity of SHAKEN itself), 
the results indicate that the SME was able to enter at least 
some of his knowledge with a reasonable degree of 
accuracy and fidelity. 

The SMEs’ overall assessment was that a COA analysis 
capabilit y such as the one we tested could ultimately be 
very useful in solving operational problems: The software 
can work through tedious details and double-check all 
potential COAs, especially when the commanders are tired, 
under pressure, and under time constraints. 

Although our goal is to break new ground in knowledge 
acquisition technology, rather than to specifically critique 
COAs, it is nevertheless interesting to consider what it 
would take for the COA-critiquing application of 
SHAKEN, using SME-entered knowledge, to reach a 
suff iciently mature level for deployment. The technology 
requires numerous enhancements before it comes close to 
being deployable. For example, a library of a few hundred 
patterns and special cases of action will have to be built 
before the system starts producing non-obvious critiques 
that add value to what a commander can quickly determine 
with a visual inspection of a COA. One way to drive such a 
knowledge base construction is to work with a sizable 
collection of case studies [23] that will provide concrete 
test cases, a well -defined scope for knowledge entry, and 
clear performance criteria. The detail captured in the 
normative simulation can also be improved, giving special 
attention to simulating concurrent events. 

Related Work 
In previous work, we developed an extensive ontology 

of plan evaluation and plan critiquing [5]. In another 
previous study, we evaluated nuSketch as a COA authoring 
tool, and demonstrated that COAs authored using nuSketch 
were comparable in quality to ones authored with more 
traditional methods [22]. 

In the present work, the main innovations are: (a) using 
the plan critiquing ontology in conjunction with normative 
simulation; (b) acquiring critiquing knowledge in the form 
of patterns and necessary and suff icient conditions for 
actions; and (c) showing that the system can exhibit some 
level of COA critiquing competence, through declarative 
inference, normative simulation, and empirical simulation. 

There has been significant work in building interactive 
plan authoring environments [20], but it has not addressed 
the specific problem of COA critiquing. The use of patterns 
for COA critiquing was demonstrated in [11], which let 
experts select subsets of a COA sketch to generate critiques 
that could be subsequently applied via analogy or as rules. 
However, that system only used information explicitly 
represented in the sketch, whereas a broader range of 
knowledge can be used in SHAKEN patterns. 

Future Work 
Work is under way to address many of the limitations 
identified in the previous section. For example, we are 



making extensions to nuSketch to support richer COA 
descriptions. Similarly, we are implementing the normative 
simulation of concurrent events. 

We are also developing a suite of capabilities that will 
let SHAKEN users enter, organize, and retrieve knowledge 
using English. These capabilities make use of the START 
[14] and Omnibase [15] systems. To perform knowledge 
entry, the user enters a sentence or phrase, which is parsed 
into a concept map representation similar to that used 
within SHAKEN. Through an interactive dialog between 
the user and the system, this concept map is refined into a 
SHAKEN concept map, which is added to SHAKEN' s 
knowledge base. Using a similar approach, English 
questions are translated into concept map patterns, which 
are then used to identify matching concepts within 
SHAKEN' s knowledge base. 

Summary 
We presented the application of a general-purpose 
knowledge-based system, SHAKEN, to the specific task of 
military Course of Action (COA) analysis. We showed how 
SHAKEN can capture and reuse expert knowledge for 
COA critiquing, and produce a high-level assessment of a 
COA through declarative inference and simulation. The 
system has been used and evaluated by domain experts. 
The generality of the approach makes it applicable to 
knowledge capture for task analysis in other domains. 
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