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Abstract: In this paper we propose a formal theory of granular partitions 
(ways of dividing up or sorting or mapping reality) and we show how the 
theory can be applied in the geospatial domain. We characterize granular 
partitions at two levels: as systems of cells, and in terms of their projective 
relation to reality. We lay down conditions of well -formedness for granular 
partitions, and we define what it means for partitions to project transparently 
onto reality in such a way as to be structure-preserving. We continue by 
classifying granular partitions along three axes, according to: (a) the degree to 
which a partition represents the mereological structure of the domain it is 
projected onto; (b) the degree of completeness and exhaustiveness with which 
a partition represents reality; and (c) the degree of redundancy in the partition 
structure. This classification is used to characterize three types of granular 
partitions that play an important role in spatial information science: cadastral 
partitions, categorical coverages, and the partitions involved in folk 
categorizations of the geospatial domain. 

1 Introduction  
Imagine that you are (a) a geologist classifying soil samples or (b) a spatial analyst 
classifying the raster pixels of a digital image or (c) a hotel manager making a list of 
the guests in your hotel on a certain night. In each of these cases you are employing 
a certain grid of cells, and you are recognizing certain objects as being located in 
those cells. In case (a) the cells are labeled, for example, ‘clay’ or ‘sand’ and the 
objects you are recognizing as located in these cells are your soil samples. In case 
(b) the cells are labeled with the names of vegetation classes, each class being made 
to correspond to a particular spectrum of frequencies in the pixel array, and the 
objects that are located within those cells are raster cells within the partition which 
is the pixel image. In case (c) the cells correspond to the rooms in your hotel, the 
objects are the individuals or groups who are, according to the hotel register, 
assigned to these rooms on any given night.  

We shall call a grid of cells of the type used in these examples a granular 
partition, and we shall argue that granular partitions are involved in all li sting, 
sorting, cataloguing and mapping activities.  

Granular partitions are ways of structuring reality in order to make it more easily 
graspable by cognitive subjects such as ourselves. Some partitions are flat: they 
amount to nothing more than a mere list (case c). Other partitions are hierarchical: 
they consist of cells and subcells, the latter being contained within the former. Some 



partitions are built i n order to reflect independently existing divisions on the side of 
objects in the world (the subdivision of the animal kingdom into species and 
subspecies, the subdivision of heavenly bodies into galaxies, stars, planets, moons, 
etc.). Other partitions – for example the partitions created by electoral redistricting 
commissions – are themselves such as to create the necessary divisions on the side 
of their objects, and sometimes they create those very objects themselves. Some 
partitions involve the imposition of a layer of quasi-discreteness upon an underlying 
reality which in itself has the structure of a continuum. 

In Smith and Brogaard (2000) the notion of granular partition was introduced as a 
generalization of David Lewis’s (1991) conception of classes as the mereological 
sums of their singletons. Given its set-theoretical roots, our basic formal ontology of 
granular partitions will have two parts: (A) a theory of the relations between cells 
and the partitions in which they are housed, and (B) a theory of the relations 
between cells and objects in reality. The counterpart of (A) in a set-theoretic context 
would be the study of the relations among subsets of a single set; the counterpart of 
(B) would be the study of the relations between sets and their members.  

Division into units, counting and parceling out, listing, sorting, pigeonholing and 
cataloguing are activities performed by human beings in their traff ic with the world. 
Granular partitions are the cognitive devices designed and built by human beings to 
fulfill t hese various purposes. As will be clear from what follows, the notion of 
granular partition that is hereby implied is only distantly related to the more famili ar 
notion of a partition defined in terms of equivalence classes.  

The paper is structured as follows. We start with a discussion of properties of 
granular partitions as systems of cells in the sense of theory (A). We then consider 
granular partitions in their projective relation to reality in the sense of theory (B). 
This provides us with the tools to define what it means to say that a granular 
partition projects onto reality in a transparent and structure-preserving way. We then 
provide a classification of granular partition by characterizing various properties of 
the correspondence between partition and reality, and we go on from there to discuss 
relationships between set theory, mereology, and the theory of granular partitions as 
alternative tools for the purposes of formal ontology. We conclude by considering 
three classes of partitions that have an important role to play in the geographic 
domain. 

2 Granular partitions as system of cells  

2.1 Cells and subcells 

All granular partitions involve cells arranged together in some sort of structure. This 
structure is intrinsic to the partition itself, and obtains independently of whether 
there are objects located in its cells. Cells in granular partitions may be nested one 
inside another in the way in which species are nested within genera in standard 
biological taxonomies. Theory (A) studies properties granular partitions have in 
virtue of the relations between and the operations which can be performed upon the 
cells from out of which they are built . We say that one cell , z1, is a subcell of another 
cell , z2, if the first is contained in the latter (‘Cell ’ is ‘Zelle’ in German). We write z1 
⊆ z2 in order to designate this relationship, and we postulate as an axiom or master 
condition: 



MA1: The subcell relation ⊆ is reflexive, transitive, and antisymmetric.  

Every granular partition A (‘partition’ is ‘Aufteilung’  in German) has a maximal cell 
defined as: 

DMax: Max(z1, A) ≡ Z(z1, A) and ∀z: Z(z, A) → z ⊆ z1  

where ‘Z(z, A)’ means that z is a cell i n the partition A. (In what follows the 
condition Z(z, A) will be omitted in cases where it is clear that we are talking about 
cells within some fixed partition A. In addition, initial universal quantifiers will be 
taken as understood.) We now demand that  

MA2: ∃z: Max(z, A) 

which ensures that every granular partition has a maximal cell i n the sense of DMax. 
From the antisymmetry of the subcell relation it follows that this cell i s unique. This 
root cell , denoted r(A), is such that all the cells in the partition are included in it as 
subcells. 

The nestedness of cells inside a partition yields chains of cells satisfying z1 ⊇ z2 
⊇… ⊇ zn. We shall call the cells at the ends of such chains minimal cells, and 
define: 

DMin: Min(z1, A) ≡ Z(z1, A) and ∀z: Z(z, A) → (z ⊆ z1 → z = z1) 

Another important aspect of granular partitions is then: 

MA3: Each cell i n a partition is connected to the root by a finite chain. 

MA3 leaves open the issue as to whether granular partitions themselves are finite; 
thus it does not rule out the possibilit y that a given cell within a partition might have 
infinitely many immediate subcells. 

2.2 Partition-theoretic sum and product of cells 

Every pair of distinct cells in a partition stand to each other within the partition 
either in the subcell relation or in the relation of disjointness. In other words: 

MA4:  Two cells overlap only if one is a subcell of the other. 

Or in symbols: 

  ∃z: (z = z1 ∩ z2) → z1 ⊆ z2 or z1 ⊃ z2. 

From MA3 and MA4 we can prove by a simple reductio that the chain connecting 
each cell of a partition to the root is unique. 

Following Smith (1991) we can define the partition-theoretic sum and product of 
cells within granular partitions as follows. The partition-theoretic sum z = z1 ∪ z2 of 
two cells in a partition is the ⊆-minimal cell satisfying z1 ⊆ z and z2 ⊆ z. The 
partition-theoretic product, z = z1 ∩ z2, of two cells is defined only if z1 and z2 are 
not mereologically disjoint. If it is defined, then it yields the largest subcell shared in 
common by z1 and z2.  

2.3 Trees 

Philosophers since Aristotle have recognized that the results of our sorting and 
classifying activities can be represented as those sorts of branching structures which 
mathematicians nowadays called trees. Trees are rooted directed graphs without 



cycles (Wilson and Watkins 1990). Every finite partition can be represented very 
simply as a rooted tree in such a way that the cells in the partition correspond to 
vertices in the tree and vertices are connected by an edge if and only if the 
corresponding cells stand to each other in an immediate subcell relation.  

We can represent a partition not only as a tree but also as a simple sort of Venn 
diagram. In a Venn diagram partition cells are represented as topologically simple 
and regular regions of the plane. Our partitions are Venn diagrams within which 
regions do not intersect. In the remainder we will often think of partitions as such 
planar maps – they are Venn diagrams without overlapping – and the minimal cells 
correspond to the smallest regions within such diagrams. 

3 Granular partitions in their projective relation to reality  

3.1 Projection  

Granular partitions are more than just systems of cells. They are built to serve as 
pictures or maps of reality. Granular partitions are systems of cells that project onto 
reality in something like the way in which a bank of f lashlights projects onto reality 
when it carves out cones of light in the darkness. In some cases the cells of a 
partition project but there are no objects for them to project onto. (Consider the 
partition cataloguing Aztec gods.) Here, however, we are interested primarily in 
granular partitions which do not project out into thin air in this way. We write ‘P(z, 
o)’ as an abbreviation for: cell z is projected onto object o. In what follows we shall 
assume that a unique projection is defined for each granular partition. For a more 
general discussion see (Bittner and Smith 2001). 

The theory of granular partitions allows us to employ a very general reading of 
the term ‘object’ . An object in the partition-theoretic sense is everything onto which 
some cell of a partition can project: an individual, a part of an individual, a group or 
class of individuals (for example a biological species), a spatial region, a politi cal 
unit (county, polli ng district, nation), or even (for present purposes) the universe as a 
whole.  

Objects can be either of the bona fide or of the fiat sort (Smith 1995). Bona fide 
objects exist independently of human partitioning activity. They are, simply, 
recognized (highlighted) by partition cells. Fiat objects are objects created by our 
human partitioning activity. Hence it may be that the corresponding partition cells 
not only recognize their fiat objects but that the latter are in fact created through the 
very projection of partition cells onto the corresponding portion of reality. Examples 
are the States of Wyoming and Montana. For an extended discussion of the 
relationships between granular partitions and fiat objects see (Bittner and Smith 
2001). 

3.2 Location 

When projection succeeds then the corresponding granular partition represents the 
corresponding portion of reality transparently and in such a way that mereological 
structure is preserved.  

We write ‘L(o, z)’ as an abbreviation for: object o is located at cell z. When 
projection succeeds, then location is what results. Projection and location thus 
correspond to the two ‘directions of f it’ – from mind to world and from world to 



mind – between an assertion and the corresponding truthmaking portion of reality. 
(Searle 1983, Smith 1999)  

Location presupposes projection: an object is never located in a cell unless 
through the projection relation associated with the relevant partition. Thus 

 MB1 L(o, z) → P(z, o). 

In the case where no errors have been made in the construction and the projection of 
a granular partition, L(o, z) holds if and only if P(z, o). This is because, in such a 
case, if a partition projects a given cell onto a given object, then that object is indeed 
located in the corresponding cell .  

 MB2 P(z, o) → L(o, z). 

Very many granular partitions – from automobile component catalogues to our maps 
of states and nations – have this quality without further ado, and it is such granular 
partitions upon which we shall concentrate in what follows. Such granular partitions 
are transparent to the corresponding portion of reality. In this case projection and 
location are converse relations with respect to the partition in question. Formally we 
write: 

DTr:  Tr(A) ≡ ∀z∀o: PA(z, o) ↔ LA(o, z). 

MB1 and MB2 jointly ensure that objects are actually located at the cells that project 
onto them. Notice however that a transparent partition, according to our definition, 
may still have empty cells. (Think of the Periodic Table, which leaves empty cells 
for chemical elements of types which have yet to be detected.) MB1 and MB2 tell us 
only that, if a cell i n a partition projects upon some object, then that object is indeed 
located in the corresponding cell . They do not tell us what happens in case a cell 
fails to project onto anything at all .  

An object o is recognized by a cell z if and only if z is projected onto o and the 
object o is actually located at z. A partition recognizes a given object if and only if it 
has a cell that recognizes that object (Smith and Brogaard 2001). We shall 
sometimes use the term ‘recognition’ as a synonym for ‘ transparent projection’ in 
what follows.  

4 Functionality constraints 

4.1 Projection is functional: The confused schoolboy 

The notion of transparency is still very weak. Thus it is consistent with ambiguity on 
the side of the cells in relation to the objects they target, that is with the case where 
one cell projects onto two distinct objects. Consider the partition created by a lazy 
schoolboy studying the history of the Civil War in England, which has just one cell 
labeled ‘Cromwell ’ . Thus it does not distinguish between Oliver, the Lord Protector, 
and his son Richard. Or consider the partition utili zed by those who talk of ‘China’ 
as if the Republic of China and the People’s Republic of China were one object. 

To eliminate such ambiguity we lay down a requirement to the effect that each 
partition must be such that its associated projection is a functional relation: 

MB3:  P(z, o1) and P(z, o2) → o1 = o2 

For granular partitions satisfying MB3, cells are projected onto single objects (one 
rather than two).  



4.2 Location is functional: The Morning Star and the Evening Star 

Consider a partition having root cell l abeled ‘heavenly bodies’ and three subcells 
labeled: ‘The Morning Star’ , ‘The Evening Star’ , and ‘Venus’ , respectively. As we 
know, all three subcells project onto the same object. This partition is clearly 
somewhat barren; but it is still perfectly consistent with the conditions we have laid 
out thus far. Its distinct subcells truly, though unknowingly, project onto the same 
object. It is not unusual that we give different names (or coordinates, or class-labels) 
to objects in cases where we do not know that they are actually the same. A good 
partition, though, should clearly be one in which such errors are avoided.  

Granular partitions manifesting the desired degree of correspondence to objects in 
this respect must accordingly be ones in which location, too, is a functional relation: 

MB4:  L(o, z1) and L(o, z2) → z1 = z2  

In granular partitions that satisfy MB4, location is a function, i.e., objects are located 
at single cells (one rather than two). The location function is however partial, since 
partitions are not omniscient. As MB3 rules out co-location (overcrowding), so MB4 
rules out co-projection (redundancy).  

5. Structural mapping 

MB1 and MB2 are, even when taken together with MB3 and MB4, still very weak. 
They thus represent only a first step along the way towards an account of 
correspondence to reality for granular partitions. Such correspondence will i nvolve 
two further dimensions: of structural mapping, and of completeness. In the present 
section we address our attention to the topic of structural mapping.  

5.1 Recognizing mereological structure 

Each granular partition reflects the basic part-whole structure of reality through the 
fact that its cells are themselves such as to stand in the relation of part to whole. This 
means that, given the master conditions expressed within the framework of theory 
(A) above, granular partitions have at least the potential to reflect the mereological 
structure of the relevant domain. And in felicitous cases this potential is realized.  

We say that the cells z1 and z2 reflect the mereological relationship between the 
objects onto which they are projected if and only if the following holds: 

DS1:  RS(z1, z2) ≡ L(o1, z1) and L(o2, z2) and z1 ⊂ z2 → o1 < o2  

If z1 is a proper subcell of z2 then any object recognized by z1 must be a proper part 
of any object recognized by z2. A partition reflects the mereological structure of the 
domain it is projected onto if and only if each pair of cells satisfies DS1: 

 DS2:  RS(A) ≡ ∀z1,z2: (Z(z1, A) and Z(z2, A)) → RS(z1, z2) 

We then impose a new master condition: 

 MB5: All granular partitions are structure reflecting in the sense of DS2. 

Note that even MB5 is still very weak. Its effect is in a sense entirely negative: it 
merely ensures that granular partitions do not misrepresent the mereological 
relationships between their objects. But granular partitions might still be blind to 
(trace over) such relationships. Minimal cells might project onto objects which stand 
to each other in any one of the entire range of possible mereological relations 



(parthood, proper parthood, disjointness, and overlap). Pairs of cells z1 and z2 which 
do not stand to each other in the subcell relation are likewise neutral as to the 
mereological relations between their objects. This means that the corresponding 
partition does not know (or does not care) how o1 and o2 are related, which means 
that we are entitled to infer nothing at all about the mereological relations among the 
corresponding objects. 

Consider, for example, a partition that contains cells that recognize John and his 
arm, i.e., L(John, z1) and L(John’s arm, z2). Cell z1 need not be a proper subcell of 
the cell z2, because granular partitions may trace over mereological relationships 
between the objects they recognize. MB3 is however still strong enough to ensure 
that, if a partition tells us something about the mereological relationships on the side 
of the objects which it recognizes, then what it tells us is true.  

5.2 The domain of a partition 

That upon which a partition is projected, its domain, is a certain mereological sum 
of objects in reality. It is, as it were, the total mass of stuff upon which the partition 
sets to work: thus it is stuff conceived as it is prior to any of the divisions or 
demarcations effected by the partition itself. The domains of granular partitions 
might comprehend not only individual objects and their constituents (atoms, 
molecules, limbs, organs), but also groups or populations of individuals (for 
example biological species and genera, battalions and divisions, archipelagos and 
diasporas) and their constituent parts or members. Granular partitions can be used to 
impose a division into discrete units upon continuous domains, for example through 
temperature or frequency bands. We shall see that maps of land use or soil type are 
another important family of granular partitions in the sense here advanced.  

Formally we define the domain of a partition simply as the object onto which its 
root cell i s projected:  

DD D(A) = p(r(A))  

MB1–5 already ensure (a) that everything that is located at some cell of the partition 
is part of what is located at the corresponding root cell; and (b) that for each 
partition there can be only one such object. We now demand that every partition has 
a non-empty domain: 

MB6 ∃x: x = D(A) 

We then say that a partition represents its domain correctly if and only if MA1–4 
and MB1–6 hold.  

5.3 Granularity 

A granular partition is granular in virtue of the fact that it can recognize an object 
without recognizing all it s parts. The theory of granular partitions can thus provide 
the basis for understanding the selective focus of our maps and classifications and 
above all their abilit y to trace over parts below a certain level. To impose a partition 
on a given domain of reality is to foreground certain objects and features in that 
domain and to trace over others. 

Partition cells always project onto wholes. If a partition recognizes not only 
wholes but also one or more parts of such wholes, then this is because there are 
additional cells in the partition which do this recognizing job. Consider, for 



example, a partition that recognizes human beings, i.e., it has cells that project onto 
John, Mary, and so forth. This partition does not recognize parts of human beings – 
such as John’s arm or the molecules in Mary’s shoulder – unless we add extra cells 
for this purpose. And even if a partition recognizes wholes and their parts, then as 
we saw above it is not necessary that it also reflects the mereological relationships 
between the two.  

The theory of granular partitions inherits from mereology the feature that it is 
consistent with both an axiom to the effect that atoms exist and with the negation of 
this axiom. The theory thus enables us to remain neutral as to the existence of any 
ultimate simples in reality from out of which other objects would be constructed via 
summation. This is due to the fact that granular partitions are by definition top-down 
structures. The duality with trees puts special emphasis on this aspect: we trace 
down from the root until we reach a leaf. A leaf need not necessarily be an atom in 
the sense that it projects upon something in reality which has no further parts. The 
fact that there are leaves simply indicates that our partition does not care about what, 
on the side of reality, lies beneath a certain level of granularity. An object located at 
a minimal cell i s an atom only relative to the partition which we bring to bear. 

6 Varieties of granular partitions 

In this section we discuss some of the more fundamental varieties of those granular 
partitions which satisfy the master conditions (MA1-4 and MB1-6) given above. We 
classify them according to: (1) degree of structural fit; (2) degree of completeness 
and exhaustiveness of projection; and (3) degree of redundancy. 

6.1 Structural constraints 

We required of granular partitions that they reflect the mereological structure of the 
domain they recognize. Remember that such reflection is to be understood in such a 
way that it leaves room for the possibilit y that a partition is merely neutral about 
(traces over) some aspects of the mereological structure of its target domain. Taking 
this into account, we can order granular partitions according to the degree to which 
they do indeed succeed in representing the mereological structure on the side of the 
objects onto which they are projected. At the one extreme we have (1): granular 
partitions that completely reflect the mereological relations holding between the 
objects they recognize. At the other extreme are (2): granular partitions that 
completely trace over the mereological structure of the objects they recognize 
(except to the degree that they recognize them as part of the domain in question). 
Between these two extremes we have granular partitions that reflect some but not all 
of the mereological structure of the objects they recognize.  

Under heading (1) are those granular partitions which satisfy the weak converse 
of MB5, which means that if o1 is part of o2, and if both o1 and o2 are recognized by 
the partition, then the cell at which o1 is located is a subcell of the cell at which o2 is 
located. Formally we can express this as follows: 

CM: L(o1, z1) and L(o2, z2) and o1 < o2 → z1 ⊂ z2 

We call granular partitions satisfying CM mereologically monotonic.  



6.2 Projective completeness  

So far we have allowed granular partitions to contain empty cells, i.e., cells that do 
not project onto any object. We now consider partitions which satisfy the constraint 
that every cell recognizes some object: 

CC: Z(z, A) → ∃o: L(o, z) 

We say that granular partitions that satisfy CC project completely. These partitions 
are of particular interest since in this case projection is a total function. 

6.3 Exhaustiveness 

There may be objects in our target domain that are not located at any cell . The 
resulting granular partitions are not very satisfying: governments want all their 
subjects to be located in some cell of their partition of taxable individuals. They 
want their partition to satisfy an exhaustiveness constraint to the effect that every 
object in the pertinent domain is indeed recognized. But what does it mean to say 
that a partition exhausts its domain? Unfortunately we cannot capture this notion 
formally  by using  

(*) o ≤ D(A) → ∃z: Z(z, A) and L(o, z), 

which asserts that if some object o is part of the domain of the partition A then there 
is a cell z in A that recognizes o. The tax authorities (as of this writing) do not want 
to tax the separate molecules of their subjects.  

To formulate an acceptable alternative to (* ) will be a diff icult matter. In fact we 
believe that it will be necessary to promote several restricted forms of 
exhaustiveness, each one of which will approximate in different ways to the 
(unrealizable) condition of unrestricted exhaustiveness expressed in (* ). To see how 
one such exhaustiveness condition might work in first (schematic) approximation, 
let us introduce a sortal predicate ϕ that singles out the kinds of objects our taxation 
partition is supposed to recognize (for example, human beings rather than parts of 
human beings). We can now demand that the taxation partition recognize all of 
those objects in its domain which satisfy ϕ:  

CEϕ o ≤ D(A) and ϕ(o) → ∃z: Z(z, A) and L(o, z).  

Think of CEϕ as asserting the completeness of one partition relative to another, the 
ϕ-totalizer partition, which consists exclusively of minimal cells in which all and 
only the objects satisfying ϕ are located. We will discuss examples of other such 
conditions in section 8. 

6.4 Redundancy 

Granular partitions are natural cognitive devices and the designers and users of such 
devices build them to serve practical purposes. This means that they will normally 
strive to avoid certain sorts of redundancy. One sort of redundancy – which we 
might call correspondence redundancy – is excluded already by condition CC. This 
consists in the presence of necessarily empty cells (cells whose labels tell us ex ante 
that no objects can be located within them).   

But partitions can manifest also what we might call structural redundancy, and 
this is not quite so trivial. Consider a partition with a cell l abeled vertebrates, which 



occurs as a subcell of the cell l abeled chordates in our standard biological 
classification of the animal kingdom. Almost all chordates are in fact vertebrates. 
Suppose (for the sake of argument) that biologists were to discover that all chordates 
must be vertebrates. Then in order to avoid structural redundancy they would 
collapse into one cell the two cells of chordates and vertebrates which at present 
occupy distinct levels within their zoological partitions. A constraint designed to 
rule out such structural redundancy would be:  

CR:  A cell i n a partition never has exactly one immediate descendant. 

7 Set theory, mereology, and granular partitions 

7.1 Partition theory as an alternative to set theory and mereology  

The theory of granular partitions is intended to serve, first of all , as an alternative to 
set theory both as a tool of formal ontology and as a framework for the 
representation of human common sense. Currently it is the naïve portion of set 
theory that is used in almost all work on common-sense reasoning and in related 
investigations of natural language semantics. Kinds, sorts, species are standardly 
treated as sets of their instances; subkinds as subsets of these sets. Set theory nicely 
does justice to the granularity that is involved in our sorting and classification of 
reality by treating objects as elements of sets, i.e. as single whole units within which 
further parts are not recognized.  

But set theory also has its problems, not the least of which is that it supports no 
distinction between natural granular totaliti es (such as the species cat) and such ad 
hoc totaliti es as for example: { the moon, Napoleon, justice} . Set theory also has 
problems when it comes to dealing with the fact that biological species and similar 
entities may remain the same even when there is a turnover in their instances. For 
sets are identical i f and only if they have the same members. If we model the species 
cat as the set of its instances, then this means that cats form a different species every 
time a new cat is born or dies. If , similarly, we model an organism as the set of its 
cells, then this means that it becomes a different organism whenever cells are gained 
or lost.  

Set theory also has problems when it comes to dealing with relations between 
objects at different granularities. An organism is a totality of cells, but it is also a 
totality of molecules, and it is also a totality of atoms. Yet the corresponding sets are 
distinct, since they have entirely distinct members. 

More recently, attempts have been made to solve some of these problems by 
using mereology as a framework for ontological theorizing. Mereology is better able 
to do justice in realistic fashion to the relations between wholes and their constituent 
parts at distinct levels of generality. All the above-mentioned totaliti es (of cells, 
molecules, atoms) can be recognized, when treated mereologically, as being one and 
the same. Mereology has one further advantage over set theory as a tool for the sort 
of middle-level ontological theorizing which the study of common-sense reasoning 
requires, namely that it does us not require that, in order to quantify over wholes of 
given sorts, one must first of all explicitly specify all the parts.  

On the other hand, however, mereology, too, has its problems. Above all it does 
not have the machinery for coping with the phenomenon of granularity; for if we 
quantify over wholes in a mereological framework, then we thereby quantify over 



all the parts of such wholes, both known and unknown, at all l evels of granularity. 
Mereology can mimic the advantages of set-theory in this respect only if we depart 
from realism and make the idealizing commitment to atomism. (Galton 1999) Set 
theory and mereology are then in practice indistinguishable, since each whole 
becomes isomorphic to a certain set of atoms. 

The theory of granular partitions presented in this paper is the product of an effort 
to build a more realistic, and also a more general and flexible, framework 
embodying some of the strengths of both set theory and mereology while at the 
same time avoiding their respective weaknesses. At the formal level it assumes 
standard extensional mereology (Simons 1987) and adds the primitives and axioms 
of theories (A) and (B). It thereby  avoids the disadvantages of the unrestricted part-
of relation via the intermediate formal machinery of cells, which adds to mereology 
the features of selectivity and granularity.  

7.2 Partition theory and set theory 

Partition theory, as already noted, is a generalization of set theory understood in 
Lewis’s sense. At the formal level there are some obvious similarities between sets 
and granular partitions: (a) the subcell relation and the subset relation are both 
partial orders (MA1); (b) the minimal chain condition (MA2) is the analogue of the 
set-theoretic Begründungsaxiom; (c) the existence of a root cell of which all subcells 
are parts corresponds to the conception of sets as containers; (d) the transparency 
and functionality of projection and location (MB1-4) reflect analogous features of 
the element-of relation.  

At the same time there are a number of important differences between the two 
frameworks. Above all partition theory is designed to do justice to the fact that not 
all members of the powerset of a set are of interest in the sorts of natural contexts in 
which sorting and classifying occur. Partitions are cognitive artifacts. They 
comprehend only those subcell -cell relations which reflect some sort of natural 
inclusion relation – for example between a species and its genus – on the side of 
objects in the world. Some sets then have a structure which precludes them from 
being even considered as partitions in the sense defended here. Consider, for 
example, the set {{ a, b} , { a, c}} . Since we have { a} ⊆ { a, b} and { a} ⊆ { a, c} , any 
corresponding partition would violate MA4, the condition designed to exclude 
double counting.  

8 Granular partitions of geographic space  

Granular partitions are, we repeat, natural cognitive devices. We assume that the 
primary examples of partitions are transparent and structure reflecting (they satisfy 
all of the master conditions MA1–4 and MB1–6 above). If we imagine the system of 
cells of a partition as being ranged over against a system of objects, with all the cells 
of the partition being occupied by objects (under a certain relation of projection), 
then in the best case we have a partition that is mereologically monotone (CM) and 
such as to project completely (CC) and exhaustively (CEϕ) relative to some 
condition ϕ. Such ideal granular partitions are thereby also free of redundancy (CR). 
We find examples of such perfection above all i n the abstract, fiat domains of 
databases and spatial subdivisions.  



In what follows we discuss cadastral maps, which come close to representing 
granular partitions which are perfect in the sense defined. We then move on to 
discuss categorical coverages which fall short of this sort of exact fit between 
partition and the corresponding objects in reality. Finally we discuss the ‘f olk’ 
categorizations of geographic reality.  

8.1 The perfect cadastre  

The perfect cadastre is what exists in the databases of cadastral authorities. It is what 
you see when you examine cadastral maps. You see mathematically exact lines that 
separate land parcels. We are here assuming for the sake of simplicity that the cells 
on the map project onto corresponding parcels in reality (that the map contains no 
errors). We assume also that all and only parcels are recognized by the minimal cells 
of the cadastral partition. Partition cells are represented, for example, by entries in 
the German Grundbuch or in its computational equivalents. There are very strict 
rules for inserting, deleting, or changing cells in this partition, by means of which 
we seek to guarantee that the cadastral partition has the ideal properties set forth 
above. 

Land parcels are fiat objects. They are created (in no small part) through the very 
projection of the cells in the cadastre onto reality itself. This is a geodetic projection 
of a sort which is described by a small number of axioms. It is mathematically well 
defined and can even (within certain limits) be computed. This projection imposes 
fiat boundaries onto reality in the same way that the plotter draws the lines on a 
cadastral map.  

The projection (in our partition-theoretic sense) has the following properties. 
Cadastral partitions are transparent in the sense that cells correctly recognize 
objects, i.e., P(z, o) ↔ L(o, z). Projection and location are functional relations, i.e., 
one cell projects onto one land parcel and one parcel is located at one cell . Cadastral 
partitions are CEϕ-complete, where ϕ selects minimal cells that recognize pieces of 
land that are parcels. (Defining ϕ is a complicated matter of law, and currently there 
exist only informal definitions.) The intuition underlying this thesis is that there are 
no no-mans-lands, which means: no zones within the domain of the cadastral 
partition that are assigned to no cell within the partition itself. Cadastres satisfy also 
CC-completeness, in that they do not contain empty cells, i.e., cadastral entries that 
do not correspond to any piece of land. These properties are (in the cases of interest 
to us here) ensured by law and by extensive training on the part of those who are 
charged with the task of maintaining the cadastre. 

Cadastral partitions may recognize some mereological structure on the side of 
their objects. For example, a cadastral partition may recognize multi -parcel estates 
as well as separate single parcels. If a cadastral partition properly recognizes all the 
pertinent multi -parcel estates then it is mereologically monotone, i.e., CM holds. 
Cadastral partitions have the property that they recognize, too, some of the 
mereotopological structure on the side of their objects, in the sense that two cells are 
adjacent in the cadastre if and only if the corresponding land parcels are neighbors 
on the ground.  



8.2 Categorical coverages 

Area-class maps (W. Bunge 1966) or categorical coverages (Chrisman 1982) belong 
to a type of thematic maps that show the relationship of a property or attribute to a 
specific geographic area. A prototypical example of a categorical coverage is the 
land use map, in which a taxonomy of land use classes is determined (e.g., 
residential, commercial, industrial, transportation) and a specific area (zone) is then 
evaluated along the values of this taxonomy (Volta and Egenhofer 1993). Another 
prototypical example is soil maps, which are based on a classification of the soil 
covering the surface of the earth (into clay, silt , sand, etc.). The zones of a 
categorical coverage are a jointly exhaustive and pair-wise disjoint subdivision of 
the relevant region of space (Beard 1988). 

There are in fact two reciprocally dependent granular partitions involved in 
categorical coverages. On the one hand is the partition of the attribute domain (e.g., 
of land use or of soil types); we can think of the attribute domain with which we 
start as a continuum, which is then partitioned into discrete bands in light of our 
practical purposes, capabiliti es of measurement, and so forth. On the other hand is 
the partition of the surface of the earth into corresponding zones. Both of these 
partitions satisfy all of the master conditions set forth above. The close relationship 
between the two has been discussed for example by Beard (1988) and Frank et al. 
(1997). The same reciprocal relationship is ill ustrated in the way in which every 
categorical map (a partition of space) stands to its legend (a partition of the attribute 
domain represented on the map). 

Consider, first of all , the spatial component of a categorical coverage, which is a 
partition of some portion of the surface of the earth. Using the notions introduced in 
the foregoing we are now able to specify four properties of this partition more 
precisely as follows: 

First, the partition is complete in the sense that there are no empty cells (CC). 
Secondly, the minimal cells of the partition exhaust a certain domain (a part of the 
surface of the earth) in the sense of CEϕ , where ϕ selects topologically simple and 
maximal regions that are of one or other of the soil types recognized by the partition 
of the attribute domain. Consequently the root of the partition recognizes the 
mereological sum of all the regions (zones) recognized by its cells. Thirdly, the 
correspondence between the cells in the partition of the spatial component of a 
categorical coverage and the zones it recognizes is one-one and onto. The fact that 
projection and location are here total, functional and mutually inverse is exploited 
extensively in the formalization and representation of categorical coverges (e.g. 
Frank et al. 1997, Bittner and Stell 1998, Erwig and Schneider 1999). Fourthly, as in 
the case of cadastral maps, spatial partitions recognize the mereotopological 
structure of their domains in the sense that they are not only mereologically 
monotone in the sense of CM but also such that two cells in the spatial partition are 
adjacent if and only if the corresponding parcels are neighbors on the ground. This is 
the case because the geodetic transformations used to map features on the surface of 
the Earth onto planar maps preserve topological relations (assuming perfect 
transformations without error and modulo the feature of limited resolution). This 
implies that the part-of relation is also preserved by the given mappings. Spatial 
partitions can be considered as Venn diagrams and hence they can be transformed 



into a partition structure where the part-of relation becomes the subcell relation 
along the lines described above.  

These properties of their spatial component and the close relationship between 
the spatial and attribute components of categorical coverages mean that the partition 
of the pertinent attribute domain also satisfies the following nice constraints: 

First, it is exhaustive relative to the spatial component. Every minimal cell i n the 
spatial partition (a topologically simple zone of homogeneous coverage) has a 
corresponding minimal cell i n the attribute partition. This immediately follows from 
the definition of the selection predicate ϕ for minimal cells of the spatial component. 
Consequently, the partition of the attribute domain exhausts the domain of all cases 
that actually occur in the region covered by the corresponding spatial partition. For 
example, if our spatial partition projects onto a desert, then the corresponding 
partition of soil types needs to be exhaustive for the different types of sand that 
occur in this area and which we find it important to distinguish, but it does not need 
to contain a cell  labeled ‘clay’ . Secondly, projection and location need both to be 
functional, otherwise the regions carved out on the spatial side would not be jointly 
exhaustive and pairwise disjoint. Both functions may however be partial as long as 
they are exhaustive relative to the pertinent spatial component. The location function 
is partial i f there exist soil types that are not recognized by the attribute partition and 
the projection is partial i f there are empty cells in the attribute partition. 

Partitions of attribute domains are not necessarily limited to partitions consisting 
only of minimal cells (and one root cell ). Consider a partition of the attribute domain 
Land-Use/Land-Coverage. There might be, for example, a non-minimal cell l abeled 
agricultural in this partition, with subcells labeled cultivated cropland, pasture, 
li vestock, and poultry. Hierarchical partitions of attribute domains are often created 
by refinement, i.e., we start with a root cell recognizing the attribute domain as a 
whole and add layers of subcells in such a way that the mereological sum of 
everything that is recognized by the cells of one layer is recognized also by the root 
cell . Consider for example a partition of the attribute domain ‘Rainfall i n inches’ . 
There might be a layer of cells recognizing values falli ng within one or other of the 
three intervals [0, 5], [5, 10], [10, ∞), together with more refined layers recognizing 
values in: [0, 2.5], [2.5, 5], [5, 7.5], and so forth.  

Hierarchical partitions of the attribute domain create potentially hierarchical 
partitions of the spatial domain. Notice that the spatial component of hierarchical 
categorical coverages is not necessarily non-redundant in the sense of CR. In the 
spatial component of a hierarchical categorical coverage ‘Land Usage (Chicago)’ 
there might be one single region that is recognized by both the cells ‘Agricultural’ 
and ‘Cultivated Cropland’ where the second is a subcell of the first. In this case 
location is not a function since the region in question is located within both cells. 
Technically the problem is dealt with by letting only the most specific cell (the one 
farthest away from the root) project onto the region in question.  

It is important to see that the regularity of the given partition structures is due to 
the fact that the objects recognized are fiat objects carved out by the projecting 
partitions themselves. For example, in the categorical coverage for soil types there 
are certainly bona fide differences between sand and solid rock, but the distinction 
between the many soil -types in between are of the fiat sort. They are created by 
imposing a partition onto the attribute domain ‘soil on the surface of Earth’ . (Smith 
and Mark 1999) This partition, on being projected, then creates as its target a spatial 



partition whose cells are separated by spatial fiat boundaries on the ground. The  
latter demarcate ‘categorical zones’ , which are homogeneous at the level of 
granularity determined by the map. The given boundaries sometimes coincide with 
bona fide boundaries in reality, but in most cases they do not do so.  

8.3 A folk categorization of water bodies 

We discussed spatial partitions or attribute partitions that induce spatial partitions. 
That given partitions are characterized by a high degree of structure and order is due 
not only to the fact that they are spatial subdivisions but also to the fact that there are 
well defined rules (of scientific methodology or of law) which govern their 
construction and projection. Granular partitions in general are much less well 
structured.  
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Figure 1: Ontology of Water Bodies and Related Entities, based on Definitions in the 
American Heritage Dictionary (taken from Smith and Mark 1999) 

Smith and Mark 1999 analyzed the partition of water bodies and related entities 
which can be extracted from the definitions contained in the American Heritage 
Dictionary. The graph-theoretic representation of this partition is given in Figure 1. 
If we analyze this graph, then we can see easily that it is not a tree, since it contains 
cycles (e.g., pond, tank, reservoir, pond). We also can see that there are two cells 
labeled ‘ lake’ . The latter clearly indicates that location is not a function relative to 
this partition. 

We hypothesize that there are special features of the definitions we find compiled 
in existing dictionaries in virtue of which their underlying taxonomies appear to 
deviate from the tree structure. Guarino and Welty (2000) have shown, however, 
that such taxonomies can very easily be reconstituted as trees in systematic fashion. 
This gives us some confidence that the ideas presented above may be of service also 
in providing a framework for the construction of more coherent taxonomies for use 
in dictionaries and data standards in the future. 
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