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Similarity permeates human cognition. There is evidence 
that  objects are categorized based part ly on similarity to pre- 
vious category members and that  the likelihood of transfer 
is governed by the similarity between the original and cur- 
rent situations. New problems are often solved by analogy 
to prior problems. Similarity is responsible for many human 
errors, such as perceptual  confusions and many recall intru- 
sions; but  at the same time, analogy and similari ty are impor- 
tant  in scientific discovery. Consequently, we are developing a 
cognitive architecture in which similarity computations play 
a central role. This is unlike most architectural approaches, 
which either do not t rea t  analogy and similari ty at all, or rel- 
egate them to a subsidiary role, to be called in sporadically 
when other mechanisms are stuck. We are using Gentner 's  
Structure-Mapping theory [12] as our framework for defining 
similarity computations.  

The rest of this note addresses the list of issues suggested by 
the symposium organizers. 

1 W h y  i n t e g r a t i o n ?  

Par t  of our motivation is the long-range goal of creating a 
computat ional  account of human reasoning and learning in 
physical domains [9]. That  is, we are trying to capture the 
processes and representations that  make it possible for some- 
one to learn about areas such as thermodynamics from obser- 
vation, experimentation,  and instruction. We want to cap- 
ture the entire progression of human mental  models, from the 
accumulation of prototypical  behaviors through the ability 
to perform engineering analyses, as well as the computations 
which move a learner from one model to another. Most of our 
efforts to date have been short forays into specific subprob- 
lems. While much can be learned this way, and such efforts 
will continue, some issues can only be addressed by looking 
at larger pieces of the problem. Here are two specific projects 
to  i l lustrate what we mean: 

Learning from lap-science tezts: Many introductory science 
books focus on impart ing quali tative knowledge about a do- 
main, providing more systematic explanations for phenomena 
that  the reader may have already observed and linking it to 
new phenomena. Such books typically use analogy to convey 
models, and often build up a domain model by multiple, in- 
teracting analogies. Our goal is to construct a program which 
can build up a quali tative model of a domain from such texts 
that  will enable it to answer questions it couldn' t  before. 

Learning engineering therraodpnamics: Thermodynamics is a 
substantially harder domain than those t radi t ional ly used in 
problem-solving studies: The collection of techniques which 
suffice for puzzles and even for a subset of newtonlan mechan- 
ics are woefully inadequate to capture human performance 
in this domain! The goal of this project is to build a system 
which can learn to perform on engineering thermodynamics 
problems as well as a college student after taking an intro- 
ductory course. We presume the system starts  with good 
(albeit part ial)  quali tative models. Learning will proceed by 

processing textbook information and a t tempt ing  to solve new 
problems posed by an instructor.  Our focus here is on mod- 
eling the acqulstion of quanti tat ive knowledge and problem- 
solving skills, which includes the effective integration of such 
knowledge with the system's  intuitions (as represented by 
its quali tative model). For instance, we want the system to 
be able to absorb and integrate information from multiple 
sources, including diagrams. Another  issue we want to study 
is how to design the system to profitably take advice from 
someone who doesn' t  know its detailed internal state.  Quite 
apart  from cognitive modeling, as our knowledge bases grow, 
such techniques will become crucial for augmenting and even 
maintaining them. 

Both experiments involve integrating problem-solvlng, ana- 
logical learning, knowledge representation, spatial  reasoning, 
memory, and (to some degree) natura l  language. 

I . I  B a s i c  c o m p o n e n t s  

To date we have concentrated on developing accounts of the 
basic components required, with forays into part icular  as- 
pects of the problem. These forays include Falkenhainer 's 
PHINEAS [7] program, which explored learning at the Naive 
Physics stage, and G. Skorstad's  SCHISM [24] which is ex- 
ploring how to integrate quali tat ive and quanti tat ive models 
to solve engineering thermodynamics problems. PHINEAS in- 
cluded the following components: 

• SME [6], a simulation of s tructure-mapping.  

• ~PE [8], an envisloner for Quali tat ive Process theory. 

• ATMoSphere, an ATMS-based inference engine with an- 
tecedent rules and an and/or  graph control system. 

• DATMI [4], a measurement interpretat ion system. 

• TPLAN [16], an Allen/Koomen-style  temporal  planner. 

while SCHISM currently uses only QPE and ATMoSphere. 

Much of our research effort has involved building and extend- 
ing these components.  For example, we recently extended 
SME to make it more efficient and more suitable as a com- 
ponent in problem solvers [11]. An impor tant  property of 
those systems intended to be cognitive simulations is what 
we call accountability. That  is, processing choices not ex- 
plicitly constrained by theory must be easily changable, so 
that  the dependence of results on al ternate choices can be 
explored. For instance, SME's input includes two sets of rules 
which construct and evaluate local matches, allowing it to 
be programmed to emulate all the comparisons of structure- 
mapping and other matching theories consistent with its ba- 
sic assumptions [5]. 

Smaller combinations of these systems have been used to 
model part icular  aspects of cognitive processes. For example, 
J. Skorstad's SEQL, which uses SNE as a module, provides a 
toolkit  for exploring exemplar-based versus abstraction-based 
models of concept formation. SEQL has been used to model 
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Figure 1: The Structure-Mapping Architecture 

This diagram illustrates how human analogical processing 
may be organized. Can this organization be extended to 
cover a broad range of cognition? We intend to build a se- 
ries of simulations to explore the characteristics of similarity- 
based architectures 

~Evaluator 
da ta  concerning sequence learning effects in geometric stimuli 
[26]. 

Another example is MAC/FAC [13,14], an initial exploration of 
similarity-based retrieval and inference. Psychological results 
indicate that  human similarity-based retrieval from long-term 
memory is largely driven by surface commonalities; while 
in contrast,  human judgements of similarity and inferential 
soundness are chiefly driven by the degree of s tructural  match 
[15,17,22]. MAC/FAC, for ~many are called, but  few are cho- 
sen", is a two-stage retrieval system that  a t tempts  to cap- 
ture the different roles of similari ty in this phenomena. The 
first stage (MAC) is a computat ionally cheap, but structural ly 
stupid match process. Given a probe, MAC selects a subset 
of memory for further processing using a numerosittt match, 
a coarse, non-structural  means of est imating the quality of a 
structural  match. Thus while some of the matches it returns 
are sound, many of them need not be. The FAC stage applies 
the full s tructure-mapping match computation,  which means 
fully enforcing structural  consistency, producing global in- 
terpretat ions,  and calculating candidate inferences (i.e., the 
surmises which the match suggests). The FAC stage currently 
consists of SME operating in l i teral similarity mode (i.e., sen- 
sitive to both structural  and object-based similarity).  

Figure 1 il lustrates the design of our architecture. In our 
current version, the Retriever and Analogy Engine are sub- 
sumed by MAC/FAC. We plan to experiment with several or- 
ganizations of the Working Memory, the Evaluator,  and the 
Controller. The questions we want to explore include: 

1. What  instantiat ions of these modules suffice to provide 
at least the power of t radi t ional  AI  problem-solvers, but 
are consistent with psychological data? How much of the 
work can be borne by similari ty computations? 

2. How does analogy interact with more tradit ional  
problem-solver organizations? When should a problem- 
solver resort explicitly to analogy, and how can implicit 
learning be integrated with problem-solvlng? 

To explore these questions we plan to build a series of infer- 
ence engines. Each engine will a t t empt  to perform more and 
more of the inferential work by similari ty computations.  For 
example, the first engine will use a pat tern-directed rule sys- 
tem with an underlying t ruth-maintenance system to perform 
most of the reasoning, with SME used to generate surmises 
about solutions based on hints (e.g., =Look at this previously- 
solved prob lem' ) .  Next, the pat tern-dlrected rule system 
could be replaced by MAC/FAC. A SEqL-1ike system could then 
be integrated to provide a model of implicit  learning, ab- 
stracting commonalities from frequently encountered classes 
of situations to model the process of rules natural ly arising 
from cases as expertise increases in a domain. 

Analogical learning from lay-science texts requires tapping 
into a broad understanding of the world. Therefore we will be 
a t tempt ing to build on the CYC knowledge base [19], extend- 
ing its ontology with the constructs of Quali tat ive Process 
theory and interfacing it with SME. 

2 S o u r c e s  o f  i n s p i r a t i o n  

The SOAR project and Van Lehn's SIERRA have been major 
sources of inspiration, along with work in case-based reason- 
ing [18] and instance-based models of human memory (e.g., 
[20]). Collaborations with Doug Media and Jerry DeJong 
have sparked our interests in exploring categorization and 
problem solving, respectively. 

3 C h a r a c t e r i z a t i o n  

Our answers to the dimensional decomposition suggested by 
the organizers are based on the proposed learning projects 
described above. 

3 .1  G e n e r a l i t y  

Many of the specific representational content and techniques 
(e.g., languages for physical processes and mathematics) 
should be applicable to a broad range of scientific and tech- 
nical domains. We hope that  at least a subset of our mech- 
anisms will prove to be valid models for human cognition, 
independent of domain. 

We are planning experiments with other kinds of domains as 
well. It  is worth looking at other problem-solving domains, 
for instance, to bet ter  compare our ideas with other systems. 
One interesting example might be geometry theorem proving 
(c.f. [1]). However, we see an important  line of research 
being the simulation of developmental data.  Developmental 
psychology is currently making great strides in characterizing 
children's mental models. One example is the exploration 
of causal understanding of motion and collisions in infants 
[2]. Another  is the development of theories of weight and 
balance [3,23]. We want to develop psychologically plausible 
computat ional  accounts of these models and their acquisition. 

3 .2  V e r s a t i l i t y  

Learning by experience in the world is an important  aspect 
of human learning in physical domains. However, we have 
no plans for integrating real vision or real robotics. We view 
these areas as extremely difficult research problems in their 
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own right. Our suspicion is that ,  given the current state of 
the art and our goals, integrating in that  direction would be 
unproductive for us, unless it was in collaboration with other 
researchers whose research focus was vision and/or  robotics. 
Our approach instead is to concentrate on the spatial  rea- 
soning problems that  arise in physical reasoning and ignore 
taking action in the physical world t. 

3 .3  Rationality 

It would be a fairly poor cognitive model if its actions were 
always consistent with its knowledge and goals, wouldn't  it? 

3 .4  A b i l i t y  t o  a d d  n e w  k n o w l e d g e  

We are hoping to move from "mind implants" to something 
more akin to instruction, where there is a teacher who has 
only a glimmer of the system's internal state,  based on ob- 
serving it. This ]s one reason for scaling up: In today's  
knowledge-poor simulations, it is al together too easy to make 
very detailed predictions about the internal s tate of the sys- 
tem by a few observations because they simply can ' t  do very 
much. 

3 .5  A b i l i t y  t o  l e a r n  

Presumably. 

3 .6  T a s k a b i l i t y  

One way to view this question is, "Are we trying to develop 
computer individuals, as Nilsson suggested in 1983?" The 
short answer is: not yet. One common theme in the projects 
above that  echos Nilsson's suggestion (and a difference from 
most learning programs) is that  we want to build programs 
whose knowledge bases evolve over a significant span of learn- 
ing experiences - i.e., working through a textbook. We still  
know very l i t t le about building robust systems which can sur- 
vive such extended bouts of operation and learning 2 However, 
for the forseeable future we still  intend to tell our programs 
what to do, at least in broad terms. 

3.7 Scalability 

We certainly hope so. But we expect there will be problems. 

3 .8  R e a c t i v i t y  

In the quiet world of book learning, we suspect most of the 
system's surprises will be conceptual boggles rather than sud- 
den environmental threats. 

3 .9  E f f i c i e n c y  

Implementing detailed simulations of cognitive mechanisms 
on today's  hardware can be very difficult. I t  seems likely, 
for instance, tha t  massive parallelism will be necessary for 
modeling some aspects of human memory phenomena. For 
some experiments we focus on gett ing the model "right" and 
damn the actual  run-times. But for these projects, our chal- 
lenge is to find good approximations to cognitively plausible 

1 We think of metric diagrams and visual routine proces- 
sors as the same thing, viewed from different sides of the 
cognit ion/perception borderland.  

2The CYC project is the only effort we know of which has 
faced at least some aspects of this problem squarely. 

mechanisms that  will allow us to explore issues at the larger 
scale. 

3 . 10  P s y c h o l o g i c a l  v a l i d i t y  

There are a number of questions we want to explore com- 
putat ionally which have seen l i t t le  at tention in previous cog- 
nitive architecture studies. These include issues concerning 
the form and role of different kinds of knowledge about the 
physical world as well as a detailed explication of the role of 
similarity computations in cognition. 

But there are also several classic issues which are unavoid- 
able. One of them is memory organization. AI models of 
memory, which tend to be based on clever indexing schemes, 
seem unlikely to scale to human-size knowledge bases and 
the demands of significant conceptual change during learn- 
ing. Psychological models of memory organization have typ- 
icaUy utilized very simple representations, such as feature 
vectors. Feature vectors can provide t ractable  large-scale 
searches, but  they fail to capture the rich relational infor- 
mation that  people clearly possess and use in reasoning. On 
the other hand, matching structured descriptions tends to be 
computationaUy expensive, making large searches seem un- 
feasible, bfAC/FAC's two-stage computat ion provides the best 
of both worlds: The search carried out by the NAC stage is, 
in effect, based on a fiat, simple representation. While not 
highly accurate [13], its low computat ional  cost makes large- 
scale searches feasible. The full, s t ructured representations it 
retrieves are then used by the FAC stage, thus providing the 
relational matches required to draw inferences. This allows 
the ldAC/FAC model to capture two seemingly incompatible 
intuitions about memory: Access tends to be governed by 
surface properties,  while inference tends to be governed by 
relational matches. We think that  by looking at reasoning 
and learning in a complex domain we may gain new inslghts 
about how memory works. 

4 K n o w l e d g e  s h a r i n g  

One problem with PHINEAS and SCHISM was that  a substantial  
portion of each system's  expertise was frozen in impenetrable 
rule mechanisms. Some impenetrabi l i ty  is probably okay; we 
presume that  the laws of quali tat ive mathematics  are already 
known, for instance, and hence do not have to be learned. 
But we need to make our next generation programs more 
transparent.  We are hoping CYC will help in this. 

5 Control 

We have done very little thinking about this. Suggestions are 
welcomed. 

6 C o m p a r i s o n  w i t h  o t h e r  c o g n i t i v e  

a r c h i t e c t u r e s  

We agree with Newell [21] that  the field should be exploring a 
variety of architectural  approaches. We find much that  is ex- 
citing and admirable in the SOAR, ACT*, and SIERRA projects. 
However, we differ from them in three important ways. 

First, we assume that important general constraints on ar- 
chitectures will come from a better understanding of the rep- 
resentational needs imposed by rich domains and human- 
quality robustness and performance. Most architectural 
studies have focused on simple domains and small knowledge 
bases. We believe many of the distinctions which separate to- 
day's brittle AI systems from the quality of human cognition 
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can only be understood by looking at reasoning and learning 
in complex domains. 

For example, we conjectured that naturalistic representations 
would include a preponderance of appearance and low-order 
information, unlike current AI representations which tend to 
focus on task-relevant information (the specificity conjecture). 
This conjecture allowed us to constrain the space of possible 
algorithms for structural evaluation of analogies [10]. 

Second, like Van Lehn, we consider content-oriented psycho- 
logical evidence to be a crucial source of constraint. Process- 
oriented measures, such as reaction time studies and numer- 
ical measures of human performance can provide valuable 
information once there is an overall framework to ground 
their interpretation. However, we believe content-oriented 
evidence, such as patterns of recall and classification, proto- 
col studies, and assessment of mental models, will be crucial 
to arriving at the correct overall framework. To us, the crit- 
ical tests include the ability to assimilate new information 
about a domain from a lay-science text, and to parlay this 
understanding with additional instruction into the ability to 
solve new problems in the domain. 

Third, we believe that a slmilarity-based architecture will 
ultimately provide a more constrained account of cognitive 
processes than production-rule systems. Production rules 
provide little constraint on the representation of knowledge, 
since there are many equivalent ways to encode a particular 
computation in them. Without such constraints it is diffi- 
cult to make detailed predictions using these theories, since 
a change in representation could yield substantially different 
results. In Structure-Mapping, analogy and similarity com- 
putations are sensitive to the form of the representation. This 
sensitivity means that our representations should be less tai- 
lorable than standard production-rule models - not only must 
they carry out the required inferences, but they also must 
perform reasonably under similarity computations. Whether 
or not this extra constraint leads to additional discriminabil- 
ity is, of course, an empirical question. 
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