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Abstract 
Online news is a rich information resource for learning 
about new, ongoing, and past events. Intelligence analysts, 
news junkies, and ordinary people all track developments in 
ongoing situations as they unfold over time and initiate 
queries to learn more about the past context of the events of 
interest to them.  Brussell/STT (Situation Tracking Testbed) 
is an intelligent information system aimed at supporting this 
activity.  Brussell employs a combination of explicit 
semantic models, information retrieval (IR), and 
information extraction (IE) in order to track a situation. It 
finds relevant news stories, organizes those stories around 
the aspects of the situation to which they pertain, and 
extracts certain basic facts about the situation for explicit 
representation.  Brussell uses scripts as situation models for 
the episodes it tracks.  Script instances are represented in 
CycL and stored in the Cyc knowledge-base.  Models of 
ongoing situations can be reloaded and updated with new 
information as desired. 

Introduction 
 News analysts must sift through massive amounts of 
data, using perspective gained from history and experience 
to pull together from disparate sources the best coherent 
picture of what is happening [Patterson, 1999].  Beyond 
the levels of simply recognizing entities and the relations 
holding among them, analysts must make also predictions 
about situations in the news [Endsley 2001].  Current 
technology provides some support for these tasks, but in a 
limited and piecemeal manner.  
 Our project is aimed at integrating semantic models, 
information retrieval (IR), and information extraction (IE) 
technologies to create systems capable of tracking 
temporally extended situations, aggregating information 
covering different periods of time and from multiple 
sources.  Our goal is to discover interesting and powerful 
functional integrations that permit these technologies to 
exploit each others strengths in order to mitigate their 
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weaknesses.  From the perspective of knowledge-based AI 
technology, the goal of the project is to extend the reach of 
such systems into the world of unstructured data and text.  
Of particular interest is the ability of a knowledge-based 
system to scale as the size of its input grows. From the 
perspective of IR and IE, the goal is to leverage the 
application of inferential techniques in order to achieve 
significant new functionality.  Our goal is not to advance 
the state of the art in information extraction for individual 
stories per se, but rather to use these techniques in a novel 
context. 
 This paper begins by describing the functionality and 
architecture of Brussell/STT.  Brussell uses semantic 
models both to drive retrieval and extraction, and also to 
organize information about the situation for the analyst. 
Brussell's performance on a test set of kidnappings as the 
number of input articles grows is discussed and a more 
sophisticated syntactic analysis to improve its precision is 
presented and evaluated.  Finally, we describe briefly our 
proposed design for the next version of the system. 

Brussell Functionality: An Example 
 An example will help illustrate Brussell’s functionality. 
Consider the case of an analyst tasked with identifying 
factors that predict whether a kidnap victim will escape 
from his kidnappers. Suppose he recalls reading about the 
kidnapping of Thomas Hamill. We will see how Brussell 
simplifies the task of retrieving and organizing the 
information about this situation. 

Entering a Query 
 The analyst begins in the top-left frame of the Brussell 
display window by selecting a type of situation to track, 
and entering identifying information, the script indicator, 
in this case the name of the kidnap victim. 
 Brussell retrieves a pool of articles from its database, 
analyzes each to fill out a new script instance and finally 
updates the display with the instantiated script [Figure 1]. 



Summary of the Situation 
 The first important result for the analyst is the high-level 
summary of the situation.  Did he remember the person’s 
name correctly?  Did the person in fact escape?  How did it 
happen and what other events preceded it? 
 In the top-middle frame Brussell shows that it found a 
kidnapping of the person who did escape. Here, it displays 
the role names and, more importantly, the specific scenes it 
found.  Each role and scene appears as a button that the 
analyst can click to inspect.  The label of scene buttons 
displays the scene name, followed by an “x” (times sign) 
and the number of article references to this scene. 

Inspecting Scenes 
 At this point the analyst wants to go to the beginning of 
the situation and read about it as it transpired. He begins 
with the initial abduction event by clicking on first scene 
button.  The date and location of the abduction appear in 
the top-right frame. In the middle frame are the articles that 
reference the scene, sorted with the most-recent first.  
Clicking on one of these articles loads the article with the 
line or lines that reference the selected scene. 

Inspecting Attributes of Scenes and Roles 
 To be sure he has the date and location the analyst refers 
to the top-right frame.  Here Brussell shows the scene’s 
slot values ranked by frequency.  The date “04/09/2004” is 
the most frequent with 6 votes (indicated by the date 
followed by “x” then the number of votes). The most 

frequently mentioned city location is “Baghdad”. 
 If multiple values, such as those for the date of the scene, 
receive many votes, the analyst may inspect the analyzed 
sentences manually.  Clicking a value loads the middle 
frame with articles that mention that value, highlighting 
relevant. 
 The analyst can also learn more about the kidnap victim 
himself. Clicking on the “kidnap-victim” role button in the 
summary loads the top-right frame with ranked values for 
biographical information about the victim. 
 In sum, articles are categorized by the scenes they refer 
to, and by the scene and role data they provide, thus 
presenting the analyst with an organized means to learn 
about the situation. 

Tracking Situations over Time 
 Suppose the analyst has read articles and gathered 
information about one kidnapping and is ready to move on 
to the next.  He can save the current situation to the 
knowledge base, allowing him to refer back to it later.  
Saving also enables reasoning systems outside of Brussell 
to make use of the situation model it has constructed.  
Clicking a button in the top-left frame saves the script to 
the Cyc knowledge base. 
 Brussell supports tracking ongoing situations in addition 
to situations that have concluded, as we saw here.  Instead 
of creating a new script instance, the analyst can load an 
existing situation and update it with the stories that have 
been published since it was last investigated. 

Background and Related Work 

Recognizing Scripts 
 Scripts formalize common sense 
knowledge of ongoing sequences of 
causally related events, such as going to a 
restaurant.  The events are called scenes, 
and the participants in the events are 
represented by actors that fill role slots in 
the script [Schank 1977].  Scripts were 
among the earliest high-level 
representational structures devised for 
natural language processing.  The systems 
SAM and FRUMP were developed in the 
1970s to utilize scripts for understanding. 
SAM parsed news stories using the 
conceptual dependency formalism, using 
scripts to connect the events explicitly 
described in the story and infer implicit 
content [Cullingford, 1981].  FRUMP 
analyzed sentences to fill in shallow 
"sketchy scripts", situations consisting of 
causally related events [DeJong, 1982]. 
 Brussell utilizes scripts as situation 
models to recognize coherence, connect 
situation descriptions, and perform Figure 1. Brussell Display



inference in the spirit of these systems, but is implemented 
on an entirely different technical substrate utilizing modern 
IR and IE techniques.  Brussell is thus significantly more 
robust than these early systems, and is able to aggregate 
information about a script instance from multiple articles. 

Recognizing Entities and Events in Text 
 Later work in NLP continued to focus on selecting and 
filling in event and entity frames.  The Message-
Understanding Conferences (MUC) from 1987 to 1998 
compared a variety of systems aimed at named-entity 
recognition and event and entity template filling, among 
other tasks.  Like Fastus, SRI's, entrant in MUC, Brussell 
uses a finite-state-based approach for matching patterns 
[Hobbs, 1997]. 
 The Automatic Content Extraction (ACE) competitions 
continued after MUC in testing the detection of references 
to entities with texts, and extracting events involving 
entities and the relations holding among them.  However, 
neither MUC nor ACE tested the recognition of situations 
spanning multiple events, and the extraction of information 
from such situations. 
 More recently, the Proteus system recognizes 
hierarchically structured event descriptions such as an 
overall death toll at the beginning of an article followed by 
descriptions of separate incidents [Huttunen, 2002]. 

Topic-Detection and Tracking (TDT) 
 Beginning in 1996, the TDT competitions tested systems 
in several areas related to organizing news stories about 
topics triggered by seminal events [Allan, 2002].  They 
posed problems including first-story detection, recognizing 
a new topic in a stream of stories, cluster detection, sorting 
incoming news stories by topic and topic tracking, in 
which a system is given some stories about a topic and 
must determine whether incoming stories are also about the 
topic. 
 Systems in the TDT competitions used machine learning 
techniques to characterize topics and assign stories based 
on keywords and named entities.  This content-independent 
approach to organizing news articles enabled the creation 
of robust systems, but suffers from an important limitation.  
Without an explicit model of the situation, they do not 
represent the causal relationships holding among individual 
events and are thus unable to project forward from past 
events.  The closest work to approach this is that of event-
threading in which sub-topics and their temporal ordering 
are identified [Nallapati 2004].  

Interfaces for Tracking Events 
 KEDS, and its successor TABARI, code international 
relations events by recognizing known actors and events 
using simple syntactic patterns [Gerner, 1996].  KEDS 
includes a GUI for viewing and editing events extracted 
from text, but does not organize events by scripts as 
Brussell does. 

Architecture 

Scripts for Structure and Semantic Constraints 
 In addition to organizing information for the user, scripts 
impose important constraints on whether extracted text is 
added to the situation representation. First, the identity of 
the kidnap victim and kidnapper is held to be constant 
through the course of the script. Thus, biographical 
information about the victim appearing in any scene that 
involves him is added to the representation. Second, the 
script constrains what events the system should attempt to 
detect, e.g., how the situation ends – with the release, 
escape or death of the kidnap victim. Voting at the scene 
level determines the most frequently referenced outcome. 

Retrieving and Storing Articles 
 The system retrieves news articles via RSS feeds from 
major news sites including BBC News, New York Times, 
Washington Post, Yahoo! News (which publishes from 
wire services including Associated Press and Reuters).  
The content from these articles is extracted and stored in a 
text indexed MySQL database, providing Brussell with 
access to new articles daily.  Using a database to store 
articles rather than searching for and retrieving articles 
with every script query improves speed but also ensures 
reproducibility of results. Many news sites remove old 
articles or make them available by subscription only. 

Script-Based Query 
 The user initiates a query by providing a script type and 
an identifying name, either the kidnap victim name or the 
city under siege. Upon receiving the script type and name, 
Brussell retrieves a pool of articles by searching for a set of 
keywords consisting of the last name and script-specific 
wildcard terms such as "kidnap* or abduct*".  

Analyzing Sentences in Articles 
 Brussell analyzes articles one sentence at a time.  If a 
sentence has been seen before, as is the case when reading 
a duplicate article, it is skipped. A sentence is analyzed 
only if it contains the user supplied script indicator and 
scene keywords, typically verbs indicating the occurrence 
of a scene.  If the system finds both, it runs a simple finite-
state pattern recognizer to extract both scene and role 
information.  Patterns are expressed in the form: 

kidnap-abduct -> kidnapper “kidnapped” kidnap-victim 
kidnap-victim -> person 
person -> first-name last-name OR occupation 

 At each level, the concrete keywords bound the textual 
region passed to the next level below.  The person 
recognizer looks for slot values within the kidnap-victim 
range, which is bounded by the “kidnapped” keyword.  
Some slots including a scene’s date and location 
information may appear anywhere in the sentence. Once a 
value is found it is added to the appropriate scene or role. 



 Brussell does not currently employ any methods for 
resolving anaphoric references.  Such methods would 
clearly improve performance but our focus so far has been 
aimed more at understanding how to use relatively simple 
mechanisms within this framework. 

Voting 
 Aggressively merging scene and role references 
generates spurious data.  Brussell was designed to scale 
well and perform better as it receives more data.  To 
accomplish this, it uses voting to resolve ambiguity and 
reduce comparative noise.  As references to scenes, scene 
slots, and role-filler slots are found, they are added to the 
script structure with a reference to the article and line in 
which they appear.  These references are also treated as 
votes.  The system ranks values it extracts for slots in the 
obvious way, i.e., largest number of votes first, then 
decreasing. The number of votes of the top value relative 
to the rest is a rough indicator of the system’s certainty. 

Saving Script Instances to Cyc 
 Each script instance is stored within a separate Cyc 
microtheory, the standard technique for representing 
contexts for reasoning.  Slots values are converted to 
assertions, while votes and sources are saved as comments. 

System Evaluation 
 In order to better understand the strengths and 
weaknesses of our approach, and particularly the utility of 
voting, we evaluated the system’s performance in 
analyzing script instances by comparing its scene and role 
information with hand-coded test cases for a list of 
kidnappings and in a number of different configurations.  
Performance was measured using precision and recall for 
each script according to the following formulae: 

 

Testing Methodology 
 In October 2004, the Associated Press published the 
names of 36 foreigners who had been kidnapped in Iraq.  
With this list, we created test cases for 34 named 
individuals. Each test case included whether each scene 
occurred and values for scenes and role slots appearing 
anywhere in any article about the kidnapping.  Testing 
used approximately 250,000 articles retrieved from April 
2004 to February 2006. 
 The system instantiated kidnapping scripts with roles of 
the kidnap victim and kidnapper.  It found scenes for the 

initial abduction, threat announcement, (video-tape) 
appearances, escape, release, kill and/or discovery of the 
victim’s body.  The attributes describing the kidnap victim 
consisted of: first and last name, gender, age, nationality, 
home town, occupation, and employer.  Only the name slot 
value of the kidnapper organization was extracted. 
 The system was run with each kidnap victim's name in 
turn. In comparing the system’s output with the test case, 
we accepted as correct any slot in which it produced the 
correct result either as its top voted value, or one of its top 
values if there were multiple equally-highly voted values. 
 To determine how well the system scales, we also tested 
its performance on randomly selected subsets of the article 
sentences in 10% increments. 

Evaluation Results 
 The mean precision for Brussell in these tests was 73% 
with recall of 59%. The mean F-Measure for Brussell was 
66%. For reference, though the tasks are not exactly 
comparable, the best-performing MUC-7 system achieved 
51% F-Measure in event extraction.  This comparison is 
given, and should be taken, with a large grain of salt since 
the MUC systems were much larger and broader in scope.  
But they do indicate that Brussell’s performance, even with 
relatively simple mechanisms, was reasonable overall.  
And they further suggest that the combination of larger 
models and more semantic constraint, coupled with 
aggregation of information over multiple articles, e.g., via 
voting, does provide performance comparable to more 
sophisticated techniques used without this contextual 
support. Of all of the slots accepted as correct, Brussell 
found a single correct value for 83% while the votes for the 
top value were tied for the remaining 17%. 
 The following table shows Brussell’s performance, 
broken down into categories for scene selection, scene 
slots and role slots all of which, for the rest of this 
discussion we will refer to simply as slots. 
 

Type Precision Recall 
Scene Recognition 81% 82% 

Scene Date 76% 60% 
Scene Location 57% 61% 

Kidnap Victim Slots 81% 68% 
Kidnapper Name 21% 19% 

Table 1. Performance on slots values and scene selection 
 

 Brussell performed well in recognizing which scenes 
occurred and extracting scene dates and locations and 
information about the kidnap-victim.  The low recall for 
kidnapper names may be because the system looks only in 
sentences that also mention the victim’s name, the script 
indicator.  Further, organization names consist of proper 
nouns, general vocabulary, or a mixture of the two, a 
traditional difficulty for simple regular expressions.  It is 
expected that even simple anaphora resolution methods 
will increase recall and more sophisticated named-entity 
recognition will increase precision. 
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 Figure 2 summarizes the system’s performance on 
increasingly large subsets of the original corpus averaged 
over four runs (Y-Error bars denote standard error).  As 
expected, recall increases significantly.  Surprisingly, since 
we expected voting to improve results on this measure with 
more input, there is no significantly increasing trend for 
precision.  We speculated that measuring precision for all 
roles is too coarse-grained.  As the system analyzes more 
articles, it both adds values and votes to “existing,” already 
filled, slots, and finds values for “new,” previously unfilled 
slots – slots which were harder to accurately fill, or for 
which there simply wasn’t enough data yet.  In other words, 
our notion was that the slots that are filled later tended to 
be harder to fill correctly, or showed up sufficiently 
infrequently that voting didn’t help in a corpus of this size.  
As a result, “existing” slots may be becoming increasingly 
correct but be offset by “newly-filled” slots with incorrect 
values. 
 To test whether slot correctness did increase with more 
articles when balanced for this problem, we again divided 
the pool of articles for each kidnapping into subsets of one 
sixteenth, one eighth, one quarter, one half and all of the 
articles, with each larger subset including all of the articles 
of the smaller subsets.  When analyzing a subset, multiple 
values for precision were calculated: one for all of its slot 
values, and one for its values for slots that first appeared in 
each previous subset.  Thus after analyzing one quarter of 
the articles, precision was measured for all slots filled, as 
well as slots first filled when analyzing one sixteenth of the 
articles, and those first filled when analyzing one eighth of 
the articles. 
 The results for a single run can be seen in Figure 3.  
Precision for slots under this model trends upward with 
more articles.  The lesson is in retrospect obvious: Voting 
decreases random error, but not systematic error, and only 
works if there are enough mentions of a slot value. 

Syntactic Preprocessing to Improve Precision 
 Many of the false positives in Brusssell’s text extraction 
are due to grammatical structures too complex for the 
pattern matcher, which assumes simple sentences.  Real 
sentences often contain subordinate clauses, participles, 
conjunctions, etc.  For example, the sentence “A South 
Korean hostage threatened with execution in Iraq has been 
killed, officials in Seoul have confirmed,” will be matched 
by the pattern <kidnapper “threatened” kidnap-victim>, 
and “South Korean hostage” will be (incorrectly) extracted 
as the kidnapper. 
 In order to improve precision, we extended Brussell’s 
simple pattern matcher with a preprocessing module for 
analyzing and simplifying the sentence syntactically.  Prior 
to applying the pattern matcher, the sentence is parsed 
using the CMU Link Parser [Sleator, 1991] and simplified 
according to several heuristics. The preprocessor extracts 
all syntactic elements relevant to the scene, namely the 
subject, object, prepositional phrases pertaining to the verb 
scene keyword. These elements are then restructured to 
form a simplified version of the original sentence 
specifically for the scene.  For the sentence given above, 
the link parser generates the following parse tree: 

(S (S (NP (NP A South Korean hostage) 
          (VP threatened 
              (PP with (NP execution)) 
              (PP in (NP Iraq)))) 
      (VP has VP been (VP killed)))) , 
   (NP (NP officials) (PP in (NP Seoul))) 
   (VP have (VP confirmed .))) 

 The scene keywords in this sentence are “threatened” for 
the threat scene and “killed” for the kill scene.  Within the 
parse tree, “threatened” is a reduced relative clause, so no 
simplified sentence is generated for this keyword. On the 
other hand, for the keyword “killed”, the simplified 
sentence is “A South Korean hostage has been killed”.  It 
should be noted that the preprocessor also removes 
“officials in Seoul have confirmed”, because the text does 
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not belong to the minimal S structure of the kill scene.  The 
sentence can now be correctly analyzed and appropriate 
information extracted, by the pattern matcher. 
 Through this sort of preprocessing, however, some 
important information is lost. For example, relative clauses 
supply information about the referent.  To reduce 
information lost introduced by the preprocessor, we 
supplement the generic preprocessing mechanism with 
some heuristics. 
 One heuristic is to retain relative clauses if they contain 
certain participles in the simplified sentence.  If the 
participle modifies the subject or the object of the 
identified scene, and it will not be confused with pattern 
keywords, the participle will not be eliminated.  An 
example can be found in the sentence “The kidnappers, 
calling themselves the Martyrs Brigade, abducted Micah 
Garen.”  The key phrase “calling themselves” precedes an 
organization’s name.  Thus the participle will be included 
in the simplified sentence.  In this way the name “Martyrs 
Brigade” can be discovered and extracted. 
 Repeating the first test shows syntactic preprocessing 
increases precision of extraction, while decreasing recall, 
as we expected [Table 2]. 
 

Version Precision Recall 
Without Preprocessor 72% 59% 

With Preprocessor 81% 44% 
Table 2. Performance with and without preprocessor 

Future Work 
 Brussell currently searches for script instances only 
when prompted by the user. The next version will analyze 
news stories as they are published, adding to existing script 
instances and creating new scripts. 
 A weakness of the current version of Brussell is its 
inability to generate groups of representations in place of 
individuals. This appears at multiple levels. Kidnappings 
involving a group of people produced noisier data because 
biographical information was conflated. Some kidnappings 
involved repeated scenes, such as multiple video-tape 
appearances with the result that date information was 
conflated. Finally, an important new feature of the next 
version of the system will be to support querying by 
information other than the kidnap victim’s name. For 
instance, querying by the victim’s nationality or the 
kidnapper’s name should be permitted. This is currently 
unsupported because it requires dynamically generating 
new script instances in order to handle the fact that these 
queries will generally match more than one instance. 
 Other design goals for the next version of Brussell 
include recognizing patterns in unrecognized text to pass 
on to the analyst. In some kidnappings, for example, a third 
party spoke out on behalf of the kidnap victim.  These non-
scene references to the kidnapping should be provided to 
the analyst, with the possible result that these events be 
added as scene types to the script type. 
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