
Abstract 

A key issue in artificial intelligence lies in finding 
the amount of input detail needed to do successful 
learning.  Too much detail causes overhead and 
makes learning prone to over-fitting.  Too little de-
tail and it may not be possible to learn anything at 
all.  The issue is particularly relevant when the in-
puts are relational case descriptions, and a very ex-
pressive vocabulary may also lead to inconsistent 
representations.  For example, in the Whodunit 
Problem, the task is to form hypotheses about the 
identity of the perpetrator of an event described us-
ing relational propositions.  The training data con-
sists of arbitrary relational descriptions of many 
other similar cases.  In this paper, we examine the 
possibility of translating the case descriptions into 
an alternative vocabulary which has a reduced 
number of predicates and therefore produces more 
consistent case descriptions.  We compare how the 
reduced vocabulary affects three different learning 
algorithms: exemplar-based analogy, prototype-
based analogy, and association rule learning.  We 
find that it has a positive effect on some algorithms 
and a negative effect on others, which gives us in-
sight into all three algorithms and indicates when 
reduced vocabularies might be appropriate.  

1 Introduction 

One problem that is consistent across nearly every applica-
tion of machine learning is identifying the appropriate 
amount of detail in the input data.  As tempting as it is to 
learn from all of the available data, in a real-world applica-
tion most of it will be irrelevant or redundant.  Including 
such extraneous detail in an analysis will not only slow 
down the process, but may also lead to over-fitting and 
hence learning of an incorrect model.  Clearly though, a 
balance must be found, since with too little data it becomes 
unlikely that anything can be learned at all. 
The problem is perhaps even worse when dealing with re-

lational data.   Since most relational learning algorithms 
operate by comparing across instances of the relation itself, 
redundant relations become particularly dangerous.  The 
more expressive a vocabulary, the more ways there may be 

to express the same information.  Unless all such language 
redundancies are detected ahead of time, relational learning 
algorithms will suffer. 
The issue is also particularly relevant whenever a learning 

system is to be deployed in any sort of real-world environ-
ment.  Such environments tend to be brimming with unre-
lated observations.  Robotic systems for example, will 
wisely choose to focus on only a few sensory inputs, which 
they can analyze carefully, rather than a cursory analysis of 
many inputs which would only confuse the picture.  A simi-
lar application is the automatic extraction of knowledge 
from text.  This is becoming more popular as the internet 
grows, and it is crucial to identify which relationships are 
useful to know, and which convey practically the same in-
formation. 
This paper, which was motivated by just such an attempt 

to improve knowledge extraction from text, is an analysis of 
the contrasting effects between using a large, very detailed 
but often redundant vocabulary, and a small, consistent, but 
extremely simplified one.  The two different vocabularies 
are applied to the Whodunit Problem, which tries to learn 
how to predict the perpetrator of a terrorist event, given 
many descriptions of similar events expressed by proposi-
tional assertions.  The descriptions are currently entered by 
hand but will eventually be extracted from text, which 
makes the choice of vocabulary especially relevant.  Each 
vocabulary is used by three different learning algorithms, in 
order to better understand the effects of the vocabulary size 
and to find the best overall combination. 
Section 2 begins by introducing the Whodunit Problem.  

Following that, each of the three learning algorithms for 
solving the problem are explained in Section 3.  Section 4 
describes how the original, large vocabulary was reduced, 
and Section 5 presents our results.  Finally, we conclude 
with a discussion of related work.   

2 The Whodunit Problem 

An important task for analysts is coming up with plausible 
hypotheses about who performed an event.  Recall the pre-
election bombing in Madrid, Spain.  While the Spanish gov-
ernment originally claimed that the Basque Separatist group 
ETA was the most likely suspect, evidence quickly mounted 
that Al Qaeda was very likely responsible.  Multiple, highly 
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coordinated attacks, for example, are more similar to Al 
Qaeda's modus operandi than previous ETA actions.  This is 
an example of what we call the Whodunit problem.   
Stated more formally, given some event E whose perpe-

trator is unknown, the Whodunit problem is to construct a 
small set of hypotheses {Hp} about the identity of the per-
petrator of E.  These hypotheses should include explanations 
as to why these are the likely ones, and be able to explain on 
demand why others are less likely.   
We define a more restricted class of Whodunit problems 

to begin with: 
Formal inputs.  We assume that the input information is 

encoded in the form of structured descriptions, including 
relational information, expressed in a formal knowledge 
representation system.  Note that we do not require uniform 
representations in each input; that is, we treat each case as 
simply a collection of arbitrary predicate calculus statements 
rather than as an object with predefined slots that may or 
may not be filled. 
Accurate inputs.  We assume that the input information is 

completely accurate, i.e., that there is no noise. 
One-shot operation.  Once the outputs are produced for a 

given E, the system can be queried for explanations, but it 
does not automatically update its hypotheses incrementally 
given new information about E. 
Passive operation.  The hypotheses are not processed to 

generate differential diagnosis information, i.e., "tells" that 
could be sought in order to discriminate between the small 
set of likely hypotheses.   
Supervised learning.  We allow the system to train on a 

set of pre-classified examples {D}.  For some algorithms, 
this involves forming non-overlapping generalizations {G} 
over those examples. 
The assumption of formal inputs is reasonable, given that 

producing such representations from news sources is the 
focus of considerable research in the natural language com-
munity these days.  The assumptions of accurate inputs, of 
one-shot, passive operation, and of supervised learning are 
good starting points, because if we cannot solve this re-
stricted version of the problem, it makes no sense to try to 
solve harder versions.     

 
Table 1.  Example of a Whodunit case description 

(ISA  ATTACK-1  TERRORISTATTACK ) 

(EVENTOCCUREDAT  ATTACK-1  FALLUJAH) 

(CITYINCOUNTRY  FALLUJAH  IRAQ) 

(THEREEXISTATLEAST  2  ?X 

    (AND (CITIZENOF  ?X  IRAQ)  (WASINJURED  ATTACK-1  ?X))) 

 
The corpus we use in our experiments is an independ-

ently-developed knowledge base of terrorist incidents, pro-
vided to us by Cycorp.  The version they provided consists 
of 3,379 descriptions of different terrorist attacks, each 
hand-entered and checked by domain experts.  These attacks 
were all expressed using the symbolic representation vo-
cabulary of the Cyc KB, which (in our subset) consists of 

over 36,000 concepts, over 8,000 relationships and over 
5,000 functions, all constrained by 1.2 million facts.  The 
descriptions of terrorist attacks ranged in size from 6 to 158 
propositions, with the average being 20 propositions.   
 The Whodunit problem is an excellent domain for explor-
ing relationships between similarity and probability.  The 
input data consists entirely of arbitrarily high order sym-
bolic relations with arbitrary structure between them.  This 
means we will have to pay careful attention to structure in 
order to get probabilities over the correct statements (i.e. 
those which uniformly correspond to the same concept 
within each case).  There is a very large number of records 
of terrorist attacks on which to train, but there is also a large 
number of possible perpetrators (67) to choose from during 
testing.   

3 Learning Algorithms  

We used three different algorithms to try to solve the Who-
dunit problem.  Since the contribution of this paper is on the 
effects of vocabulary reduction and not the learners them-
selves, we have only selected algorithms which have been 
previously published.  Here then, we present only a terse 
description of each learner and the implementation details 
particular to the domain. 
All three algorithms utilized structural analogy in some 

fashion, in order to make comparisons between and across 
cases.   
Our approach to analogy is based on Gentner's [1983] 

structure-mapping theory of analogy and similarity.  In 
structure-mapping, analogy and similarity are defined in 
terms of structural alignment processes operating over struc-
tured representations.  The output of this comparison proc-
ess is one or more mappings, constituting a construal of how 
the two entities, situations, or concepts (called base and 
target) can be aligned.  For the purposes of this paper, a 
mapping consists of a set of correspondences and a struc-
tural evaluation score.  A correspondence maps an item 
(e.g. an entity or expression) from the base to an item in the 
target.  The structural evaluation score indicates the overall 
quality of the match. 
We used the Structure-Mapping Engine (SME) to imple-

ment this theory of analogical mapping [Falkenhainer, For-
bus, & Gentner, 1986].  SME uses a greedy algorithm to 
compute approximately optimal mappings in polynomial 
time [Forbus & Oblinger, 1990].  
Formally, the task of each learning algorithm is, given 

descriptions to train on {D}, and input event E, to produce n 
hypotheses about the identity of the perpetrator of event E. 

3.1 Exemplar-based Analogy: MAC/FAC 

The first algorithm operates purely on exemplar retrieval.  
That is, it is designed to find a small number of input cases 
which are most similar to the probe case E.  For each such 
case, it hypothesizes that the perpetrator of E is the same as 
the perpetrator of the similar case.  The process can be iter-
ated until n unique hypotheses are generated.  MAC/FAC 
[Forbus, Gentner, & Law, 1994] is an algorithm which per-
forms this similarity-based retrieval in two stages. 



  The first stage uses a special kind of feature vector, called 
a content vector, which is automatically computed from 
each structural description.  A content vector consists sim-
ply of the counts of each predicate in the corresponding de-
scription.  Their dot product then is an estimate of how 
many correspondences SME will generate when considering 
possible mappings between two descriptions, and therefore 
an estimate of the quality of the match.  Content vector 
computations are used to rapidly select a few (typically 
three) candidates from a large memory.   
In the second stage, SME is used to do an analogical 

comparison between the subset of {D} which was returned 
by the first stage and the probe description E.  It returns the 
one (or more, if very close) most similar of the cases in 
memory as what the probe reminded it of.  
As deployed performance systems, both SME and 

MAC/FAC have been used successfully in a variety of dif-
ferent domains, and as cognitive models, both have been 
used to account for a variety of psychological results [For-
bus, 2001].   

3.2 Prototype-based Analogy: SEQL 

The second algorithm is designed to also use analogy.  
However, it first builds generalizations of the cases to serve 
as prototypes.  Each generalization is constructed from the 
cases of only one perpetrator at a time.  This way, each gen-
eralization serves as a prototypical description of the events 
associated with that single perpetrator.  Then instead of 
comparing E to every case in {D} (as the first algorithm 
does), this algorithm compares E to every prototype. 
The generalizations are built by using analogy to deter-

mine which concepts in one case best correspond to the 
concepts in another case.  We use a probabilistic implemen-
tation of the SEQL algorithm to do this.  SEQL [Kuehne, 
Forbus, et al., 2000], which stands for Sequential Learner, is 
designed to produce generalizations incrementally from a 
stream of examples.  It uses SME to compare each new ex-
ample to a pool of prior generalizations and exemplars.  If 
the new example is sufficiently similar to an existing gener-
alization, it is assimilated into that generalization.  Other-
wise, if it is sufficiently similar to one of the prior exem-
plars, it is combined with it to form a new generalization. 
A generalization of two cases is done by taking the union 

of the expressions in the two descriptions, and adjusting the 
probability of each expression according to whether or not it 
was in both descriptions.  Matching entities that are identi-
cal are kept in the generalization, and non-identical entities 
are replaced by new entities that are still constrained by all 
of the statements about them in the union.  
SEQL provides an interesting tradeoff between traditional 

symbolic generalization algorithms like EBL [Dejong & 
Mooney, 1986] and statistical generalization algorithms, 
such as connectionist systems.  Like EBL, it operates with 
structured, relational descriptions.  Unlike EBL, it does not 
require a complete or correct domain theory, nor does it 
produce a generalization from only a single example.  Like 
most connectionist learning algorithms, it is conservative, 
only producing generalizations when there is significant 

overlap.  However, SEQL has been shown to be substan-
tially faster than connectionist algorithms when compared 
head-to-head [Kuehne et al., 2000].  Moreover, this was 
done using the same input representations as the connection-
ist models, and the SEQL-based simulation continued to 
work when given noisy versions of the data.   
One potential drawback with SEQL is that generaliza-

tions – the union of many case descriptions – can grow 
quickly in size, but SME has polynomial memory require-
ments.  Therefore SEQL must often pare down the facts in a 
generalization (it culls those with lowest probability), 
throwing away information to preserve a higher level of 
abstraction within a reasonable space requirement. 

3.3 Rule Learning 

The third method that we applied was more statistical in 
nature.  It learns a list of association rules for predicting 
each possible perpetrator.  In order to do this, it must con-
vert the structured relational data of {D} into a feature-value 
representation.  We used a case flattening approach  intro-
duced by Halstead & Forbus [2005] to accomplish this.  
Namely, SEQL was applied to all of the input cases at once 
in order to build one very large generalization.  This gener-
alization was then used as the framework for building a fea-
ture set, with each assertion in the generalization corre-
sponding to one feature.  The generalization and feature set, 
taken together, form an invertible mapping from relational 
case descriptions to features and back again. 
 For interpretation of the results, it is important to note 
here that features come in two types.  The first, an existen-
tial feature, is the default type.  It simply takes the value 
true or false depending on whether the assertion it repre-
sents is present in a given case or not.  A characteristic fea-
ture on the other hand, can be used when more is known 
about the structure of the assertion, and so more information 
can be conveyed.   For example, the English sentences “the 
attack killed someone” and “it was an ambush” are existen-
tial features – they are either true or false.  The sentences 
“the attack killed three people” and “it happened in Bagh-
dad” are characteristic features, which have the values 3 and 
Baghdad, respectively.  As we will show, the conciseness of 
a reduced relational vocabulary makes it easier to extract 
characteristic feature values from the data. 
For rule learning, we use the definition of association rule 

introduced by Agrawal, et al. [1996].  Hence, each associa-
tion rule is a conjunction of feature-value pairs (a.k.a. liter-
als, such as <location . Iraq>) which implies another such 
conjunction.   
The actual rule learning is done using an ad-tree to cache 

the joint probabilities of the input data [Anderson & Moore, 
1998].  Adopting Anderson & Moore’s algorithm, we start 
with a list of candidate hypotheses (antecedents) H, initially 
empty, and perform a breadth-first search with a beam-
width of 10 over the space of possible hypotheses.  On each 
iteration of the search, we further specify each hypothesis in 
H by adding literals from the set of possible literals L.  We 
then re-evaluate each hypothesis, choose the best 10 again, 



and re-iterate until H is empty or the rules are 5 terms long.  
One example of a rule learned looks like: 

(IF  (AND  (LOCATION  ?ATTACK  PHILIPPINES) 

                     (AGENTCAPTURED  ?ATTACK  ?AGENT)) 

(PERPETRATOR  ?ATTACK  MOROISLAMICLIBERATIONFRONT)) 
 
Finally, for every possibly perpetrator, the algorithm ac-

tually learns a rule-list by recursively calling the rule-
learner.    For any perpetrator P, it begins by learning a sin-
gle rule H1 ⇒ P.  On the next iteration, it tries to learn a 
rule for H2 ⇒ P^¬H1.  This process continues until it 
reaches a maximum of 5 rules or no more rules can be 
found. 
Once a list of rules RP is learned for every perpetrator P, 

then the input case E is applied to every RP, to see which 
rules fire.  The n rules which fired with the highest confi-
dence have their consequents returned as the hypothesis to 
the identity of the perpetrator.   
Whereas the other two learners are limited to reductive 

learning, the rule learner learns simple, higher-level pat-
terns.   

4 Reduced Vocabulary 

The original human-encoded input data consisted of 581 
predicates, drawn from a vocabulary of over 8,000.  This 
was translated into only 22 predicates, a 96% reduction in 
vocabulary size and knowledge compression ratio of 26.4. 
The reduced vocabulary that we used was a subset of the 

vocabulary designed by Language Computer Corporation 
for their Polaris system (Bixler, Moldovan, & Fowler, 
2005).  Their vocabulary consisted of 40 predicates, chosen 
for their usefulness in natural language processing, the fea-
sibility of their automatic extraction from text, and of par-
ticular importance to this research, the broadest semantic 
coverage with the least amount of overlap.  LCC explains: 

While no list [of predicates] will ever be perfect… 
this list strikes a good balance between being too 
specific (too many relations making reasoning dif-
ficult) and too general (not enough information to 
be useful). 

The subset of 22 predicates which we selected from this 
vocabulary was based simply on those Polaris predicates 
which were needed to represent the information already 
present in the Whodunit training cases.  The final list of 
predicates is provided in Table 2. 
 
Table 2.  All relations in the reduced vocabulary 

Agent Goal Result Theme 

Predicate Purpose Location Time 

Measure Property Part Cause 

Instrument Topic Belief Associated 

Reason Source Experiencer Recipient 

Possible Entails   

 

Each new predicate corresponds to any of a set of old 
predicates.  These relationships were easily hand-coded into 
a list of 38 translation rules, which were used for the actual 
data reduction.  For example, the following rule handles 
intentional actions: 

(TRANSLATE 

     (OR  (DONEBY  ?EVENT  ?AGENT)  

              (EVENTPLANNEDBY  ?EVENT  ?AGENT)) 

     (AND  (AGENT  ?EVENT  ?AGENT)  (GOAL  ?AGENT  ?EVENT))) 

 
The above rule fires on any facts in the original Cyc rep-

resentation whose predicates are either doneBy or event-
PlannedBy, or are specializations of doneBy or event-
PlannedBy.  Each such fact is translated into two new facts: 
the first describing that the agent played some causal role in 
the event, and the second describing that the event was in 
fact a goal of the agent.  Some facts are actually translated 
by the application of more than one rule.  An example of 
this translation process can be seen in Table 3. 
 
Table 3.  Translation Example 

Cyc (THEREEXISTEXACTLY  3  ?AGENT 

      (AGENTCAPTURED  ATTACK  ?AGENT)) 

Rule 1 
(TRANSLATE 

   (THEREEXISTEXACTLY  ?NUMBER  ?VARIABLE  ?FACT) 

   (AND  (MEASURE  ?VARIABLE  ?NUMBER)  ?FACT)) 

Rule 2 

(TRANSLATE 

   (OBJECTACTEDON  ?EVENT  ?OBJECT) 

   (AND  (THEME  ?EVENT  ?OBJECT) 

            (PREDICATE  ?OBJECT  ?PREDICATE) 

            (RESULT  ?EVENT  ?PREDICATE))) 

Polaris 

(MEASURE  ?AGENT  3) 

(THEME  ATTACK  ?AGENT) 

(PREDICATE  ?AGENT  AGENTCAPTURED) 

(RESULT  ATTACK  AGENTCAPTURED) 

 
Note that since the original Cyc vocabulary is much 

richer, many of the facts in the original data must be repre-
sented by more than one fact upon translation.  Specifically, 
the average translation rule turns one fact into 1.3 new facts.  
The average number of facts in a case increased by 70%.   

5 Results 

We used three criteria for bounding the size of the set of 
hypotheses n.  The most restrictive is producing only a sin-
gle perpetrator, i.e., guessing directly who did it.  The least 
restrictive is a "top 10" list, rank ordered by estimated like-
lihood.  The middle ground is the "top 3" list, which has the 
virtue of providing both the best and some (hopefully mind-
jogging) alternatives. 

 



Chart 1.  Results under old and new vocabularies, resp. 
 

 

 

 

 

 

 

 

 

 

 

 
 

The results turn out to be very different for each algo-
rithm.  Chart 1 shows that under the conditions of the origi-
nal vocabulary, the rule learner performs the best.  It is able 
to return the correct answer on its first guess more than 50% 
of the time.  SEQL finds as many correct answers in the 
long run, but is less certain in the beginning, providing the 
correct answer in its first guess only 30% of the time.  Fi-
nally, MAC/FAC does a little better than SEQL on its first 
guess.  Interestingly though, continuing to construct hy-
potheses from MAC/FAC beyond that point proved useless. 
Under the new vocabulary, the exemplar-based algorithm 

improved (p-value .045).  SEQL though, performed worse 
(p-value .004).  Perhaps stranger still, the rule learner, which 
depends on the generalization algorithm provided by SEQL, 
performed even better than it had before (p-value .015).  It 
gets the correct answer on its first guess 60% of the time. 
Closer examination reveals that the SEQL algorithm was 

hard-pressed.  In the original vocabulary, SEQL generalized 
from case descriptions which contained an average of 20 
facts each.  However, 16% of those facts had to be discarded 
to preserve memory as dimensionality (case description 
size) increased with abstraction.  Under the reduced vocabu-
lary, which is already an abstraction of the original data, this 
information loss is compounded.  When the average descrip-
tion size increases by 70%, so does the number of facts dis-
carded by SEQL during generalization, which rises to 28%. 
Furthermore, the facts which remain carry less information 
than they did under the original vocabulary (the average 
reduced predicate corresponds to 106 different predicates 
from the original vocabulary). 
So, how did the rule-learner improve in performance?  

One possible explanation may be because of the leap it takes 
from reductive to higher-order learning.  However, this 
seems to be only part of the story.  More important is that 
the rule learner is able to take advantage of the conciseness 
in the reduced vocabulary.  This conciseness allows the flat-
tening process to generate many more characteristic values 
for the features than before: the average arity increases by  
250%.  This plethora of feature values gives the rule learner 
more grist by having more relevant options to consider than 
before.  Further analysis shows that when features are 
treated as existential and allowed only two values again (as 

84% of them had under the original vocabulary), the rule-
learner reverts to almost SEQL-like levels of performance. 

We were surprised by how well all three strategies per-

formed, even the non-statistical ones, given the difficulty of 

the problem.  Consider that although each case contains an 

average of only 24 facts, there are over 100 features in the 

dataset.  This means that for any given record, over 75% of 

the features will be missing.  This makes for a very sparse 

dataset.  Fortunately, the closed world assumption seems to 

have held up.  Yet, when we consider that the arity of the 

output attribute is 67, it seems that those 100 features may 

not be enough.  A random algorithm would select the cor-

rect perpetrator 1.5% of the time, and would get it right with 

ten guesses only 15% of the time.  Therefore, we believe 

that success rates of 60% are quite good.  

In conclusion, given that researchers tend to use larger re-

lational vocabularies, it is extremely interesting that a re-

duced relational vocabulary can improve two out of three 

learners tested.  Certainly, since these experiments only test 

one reduced vocabulary in one domain, some caution in 

interpreting the results is warranted.  It also seems that re-

duced vocabularies are dangerous to use in a learning algo-

rithm that already relies heavily on abstraction (e.g. SEQL), 

since it may lead to too much data and/or too much loss of 

information.  However, vocabulary reduction does trade 

away smaller case descriptions and some information for 

added conciseness.  Learning algorithms which are known 

to do well with large amounts of data (high dimensionality) 

and which can take advantage of this extra conciseness 

(such as the rule learner, which pays attention to the greater 

number of extractable feature values) appear likely to do 

better under a well-chosen reduced relational vocabulary. 

6 Related Work 

At first glance, this work appears to tie in strongly to forms 
of dimension reduction, such as feature selection.  However, 
the task in feature selection is to automatically select a sub-
set of concepts, a form of filtering.  Reduced relational vo-
cabularies abstract and transform more than they filter.  
Other forms of dimension reduction do perform a transfor-
mation on the data, such as Principal Component Analysis.  
However, the result of this transformation has often lost any 
real-world meaning.  Furthermore, all of these techniques 
are typically automated within a given domain.  This par-
ticular reduced vocabulary, in contrast, was manually con-
structed (by other researchers), based on needs of natural 
language processing, to work under any domain.  Finally, 
although the number of relations in the data decreases under 
vocabulary reduction, the dimensionality of the data actually 
increases, since the simpler relations must be used in many 
different sentences to convey the same information. 
Many different ontologies have also been developed in an 

effort to balance language expressiveness with computabil-
ity.  OWL is a common example targeted for use with the 
world wide web.  Work has also been done on computing 
the expressiveness of a given ontology.  For example, Cor-



cho and Gomez-Perez [2000] establish a common frame-
work for comparing the expressiveness and reasoning 
capbility between languages, and apply this methodology to 
compare and contrast between ontologies.  Also, Golbreich, 
Dameron, et al. [2003] attempt to establish some minimal 
requirements that a web-based ontology should meet. 
A number of alternative cognitive simulations of analogi-

cal mapping and retrieval have been developed.  Some are 
domain-specific [Mitchell, 1993], and thus inapplicable to 
this problem.  Others are based on connectionist architec-
tures [Hummel & Holyoak, 1997; Eliasmith & Thagard, 
2001], and are known to not be able to scale up to the size of 
examples used in these experiments.  While CBR systems 
have been used to tackle similar structured representation 
problems [Leake, 1996], they also tend to be built as spe-
cial-purpose systems for each domain and task.  By contrast, 
the simulations used here are applicable to a broad variety 
of representations and tasks. 
Also, there are many other approaches for doing learning 

from high-order relational data which do not use analogy at 
all.  One of the most notable in recent years may be the 
building of probabilistic relational models, or PRM’s [Ge-
toor et al., 2001].  A PRM is a Bayesian dependence model 
of the uncertainty across properties of objects of certain 
classes and the relations between those objects.  Other ap-
proaches include Blockeel and Uwents [2004], who present 
a method for building a neural network from relational data, 
and Dayanik and Nevill-Manning [2004], who discuss clus-
tering relational data through a graph-partitioning approach.  
Recent work in link analysis also provides a means for tying 
probability in with relational data to do learning.  Cohn and 
Hofmann [2001] actually create joint probability tables of 
both properties and links (in this case, terms and citations in 
document analysis) through a probabilistic decomposition 
process related to LSA, and then use it to perform classifica-
tion.  Variants on ILPs such as Bayesian logic programs 
(BLPs) [Kersting, de Raedt, & Kramer, 2000] have also 
been suggested for this sort of application.   
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