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Abstract 

This paper examines the use of qualitative representations in 
modeling the similarities and differences in causal reasoning 
for biological kinds between X1 culture and US majority 
culture. Qualitative Concept Maps are used for modeling 
and analyzing transcripts of interviews conducted with these 
groups.  The individual models are used to construct 
generalizations for the groups, which are tested both by 
inspection and by creating a classifier to distinguish models 
from these two cultures.   

Introduction  

Qualitative modeling could become an important tool for 
cognitive science, by providing formal languages for 
expressing human mental models.  Formalization provides 
two benefits: First, we should be able to make predictions 
about what someone believes, based on what we have been 
able to glean of their models.  Second, we should be able to 
use machine learning techniques to construct 
generalizations across particular people over time, or 
across people from particular groups, to concisely capture 
common properties of the models of people and groups.  In 
this paper, we examine the relationship between culture, 
expertise, and causal reasoning in the domain of biology. 
Culture is defined here as the causally distributed patterns 
of mental representations, their public expressions, and the 
resultant behaviors in given ecological contexts (Atran, 
Medin & Ross, 2005; Sperber, 1985; 1996). People’s 
mental representations interact to the extent that those 
representations can be physically transmitted in a public 
medium (language, dance, signs, artifacts, etc.). These 
public representations, in turn, are sequenced and 
channeled by ecological features of the environment 
(including the social environment) that constrain 
interactions between individuals.  
 The cultural communities involved in the present work 
include rural X, rural European Americans and 
Northwestern undergraduate students. The X live on many 
acres of heavily forested land in North America. The 
European Americans involved in this research live in the 
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neighboring town of Y
2
. X individuals are more likely to 

engage in culture-specific ceremonial practices outdoors 
and are also more likely to simply engage in ‘observing’ 
practices (e.g., walks in the forest), whereas rural European 
Americans are more likely to engage in outdoor sporting 
activities (e.g., fishing competitions) and outdoor work-
related activities (e.g., landscaping; Bang, 2007). One of 
our goals is to examine the similarities and differences in 
causal reasoning for biological kinds between these two 
cultures. By automatically constructing generalizations 
from field data, we should get a more objective perspective 
on these differences.  One important way to test this 
hypothesis is to train classifiers, to automatically recognize 
which culture a causal model belongs to. 
 First, we discuss the role that culture plays in causal 
reasoning. Next, we describe our Qualitative Concept Map 
(QCM) system, used here to construct models of food webs 
from interview transcripts.  We then describe how we use 
cognitive simulations of analogical matching and 
generalization to automatically construct generalizations 
that are used for classification.  Experimental results are 
discussed, followed by related and future work. 

The Role of Culture and Expertise in 

Reasoning about Biological Kinds 

There are many reasons to believe that there might be 
similarities in individuals’ causal understanding of 
relationships in nature. Medin, Atran, and their colleagues 
(see Atran et al., 2005; Medin & Atran, 2004), building on 
decades of important work in ethnobiology (see Berlin, 
1992 for one summary), have found that, in spite of highly 
varying input, a few key principles guide the recognition 
and organization of biological information in 
extraordinarily similar ways. For instance, there is marked 
cross-cultural agreement on the hierarchical classification 
of living things, such that plants and animals are grouped 
according to a ranked taxonomy with mutually exclusive 
groupings of entities at each level (Atran, 1990; Berlin, 
Breedlove, & Raven, 1973; 1974; Brown, 1984; Hays, 
1983; Hunn, 1977). The highest level of taxonomic 
organization includes the most general categories, such as 
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the folk kingdom rank (which includes groupings such as 
plants and animals), and lower levels distinguish between 
increasingly greater degrees of specificity (e.g., life forms 
such as tree or bird; generic species level such as oak or 
blue jay). The generic species level appears to be 
consistently privileged for inductive inference when 
generalizing properties across plants and animals, as it is 
the lowest level for which inductive power is the greatest, 
and only minimal inductive advantage is gained at more 
subordinate levels (Coley, Medin, and Atran, 1997). There 
is cross-cultural agreement that the appearance and 
behavior of every species is caused by an internal 
biological (and usually unspecified) essence that is 
inherited from the birth parents and is responsible for 
identity persistence in the face of physical and 
developmental transformation (Atran, 1998; Atran, Estin, 
Coley, & Medin, 1997; Gelman, 2003; Gelman & 
Wellman, 1991; Medin & Atran, 2004; Sousa, Atran, & 
Medin, 2002). 
 However, there is also evidence suggesting considerable 
variability within these universal constraints in folk 
biological concept formation as a function of both 
experience with the natural world and cultural salience 
(two highly related factors). For instance, Rosch and 
Mervis (1975) have found that the life form level is the 
level for which urban undergraduates possess the greatest 
knowledge (i.e., basic level), but Berlin (1992) found that 
among traditional societies in which individuals have more 
direct experience with the natural environment, the basic 
level corresponds to the generic-species level, and these 
differences have been attributed to differences in expertise 
(Medin & Atran, 2004). Other findings implicate cultural 
differences above and beyond expertise. For instance, 
some native American groups are more likely than rural 
European Americans to see themselves as a part of nature 
rather than apart from nature and to say that every creature 
has a role to play on Mother Earth (Bang, Unsworth, 
Townsend, & Medin, 2005).  
 When asked to sort biological kinds into categories, 
individuals from different communities vary not only in 
their taxonomic sorting but also in the degree to which they 
spontaneously sort along ecological dimensions, and this 
difference is not as predictable on the basis of expertise or 
experience alone. Specifically, Medin, Ross, Atran, 
Burnett, and Blok (2002) found that Menominee fisherman 
and European American fishermen, who both have similar 
levels of expertise about fish and fish habitats, exhibit 
differences in ecological sorting of fish during a regular 
sorting task.  Menominee fishermen are significantly more 
likely to sort in terms of ecological relationships. This 
pattern was found for both expert fishermen and for 
nonexperts in the two communities. Furthermore, in a 
subsequent task involving questions about fish-fish 
interactions, Menominee fishermen were significantly 
more likely to report positive and reciprocal relations, 
although both groups were equally likely to report negative 
relations.    

 Similar differences in ecological reasoning were found 
for children from these communities, such that X children 
were more likely to reason about shared properties between 
living things on the basis of ecological relations, relative to 
rural European American children (Ross, Medin, Coley, & 
Atran, 2003). Differences in ecological reasoning appear to 
be the result of both culture and expertise, as rural 
European American children were more likely to engage in 
ecological-based reasoning than were urban European 

American children who had comparatively less experience 
with the natural world.  
 Although prior research suggests that there are cross-
cultural differences in causal models, little research has 
focused on directly assessing such differences.  
Consequently, we interviewed experts (i.e., hunters and 
fishermen) and novices (individuals who do not hunt or 
fish) from X and from European American cultural 
communities. Participants were presented a scenario in 
nature and were asked open-ended questions about the 
scenarios. Transcriptions of three scenarios were modeled 
in the present study. In each scenario, participants were 
told about a perturbation in an ecological system and were 
asked to speculate about the effects of such an event on 
other plants and animals in the forest. In one scenario, the 
perturbation involved the disappearance of all of the bears 
in a nearby forest. In another scenario, the perturbation 
involved a doubling of the bear population in a nearby 
forest. In a third scenario, the perturbation involved the 
disappearance of all of the poplar trees in a nearby forest. 
Each participant was presented with all three scenarios, 
and after each scenario participants were first allowed to 
openly discuss any consequences that came to mind before 
being probed with an exemplar (e.g., eagle) that 
represented a particular trophic type with respect to the 
perturbation species (e.g., competitor). Given the open-
ended nature of the interviews, the number of probes 
presented to participants varied across individuals 

Do you think that the disappearance in the bears would affect other 

plants and animals in the forest? 
-Probably just like shrubs and stuff that these animals the basic food 

sources like berry plants and stuff.  And then maybe larger trees, too, 

because bears climb trees.  
… 

Because of there’s a more competing for water in the soils.  There’s 

more shade, because I’m assuming it’s a taller tree.  So there’s more 
shade so the ground growth couldn’t grow as well.  It would provide 

more nesting areas for the animals that use it for nesting.  So they 

might benefit from it but they’d  have less food.   
-Right.  And so do you think that other trees would be affected?   

-Yes, because there’s a competing for space.  So the underbrush and 

that wouldn’t grow as well, or any tree that’s smaller.   
-Yeah.  And what about larger animals like bears?  Do you think that 

they would be affected?   

- If their food source was decreased because of the lack of 

undergrowth. 

Figure 1: Excerpts from a transcript 



depending on the depth of initial responses and the degree 
to which they responded to subsequent probes. 
 The verbal explanations of the subjects were transcribed 
(see Figure 1 for example), and used as data to construct 
formal qualitative models expressing their beliefs.  Based 
on previous research cited above, we predicted that X’ 
causal mental models of nature would be more inclusive 
and would include more interconnections, relative to rural 
European Americans. 
  

Qualitative Concept Maps 

We use the Qualitative Concept Maps (QCM) system to 
create formal models based on transcripts of the 
interviews. QCM provides a friendly interface for 

experimenters to explore causal models using Qualitative 
Process (QP) Theory semantics (Forbus, 1984). QP theory 
as a representation language for physical phenomena 
includes:  

•  Continuous parameters (quantities)  
•  Causal relationships between them (influences)  
•  Mechanisms underlying physical causality 

(physical processes) 
QCM uses a concept map interface (Novak & Gowin, 
1984). QCM automatically checks for any modeling errors 
which violate the laws of QP theory, providing detailed 
error messages. 
  QCM uses multiple panes to represent distinct 
qualitative states.  This is important for capturing changes 
over time.  For example, in the scenarios outlined above, 
participants would often discuss immediate effects of a 
change followed by long-term effects of changes.  Figure 2 
illustrates one pane from a model for the Bears 
Disappearing scenario. The meta-pane (Figure 3) allows 

modelers to see all the states at once. Modelers can easily 
extend the vocabulary of specific processes and quantities 
used in the models, to expedite model creation.   

 QCM can import and export models via GraphML 
(Brandes et al., 2002), allowing graphs drawn in QCM to 
be easily viewed in other graph drawing programs. This 
facilitates collaboration between modelers. More 
importantly, for cognitive simulation purposes, models can 
be exported as predicate calculus statements. This enables 
QCM models to be used in a variety of reasoning systems. 
We are also working on directly importing propositional 
statements into QCM, to visualize models constructed via 
other systems. In this paper, we use the propositional 
statements produced by QCM to automatically construct 
generalizations, testing them via learning a classifier. 

Computational Experiments 

Here we describe a method for building generalizations 
from transcripts modeled in QCM.  These generalizations 
make explicit the common structure found in the models.  
They can also be used to automatically categorize 
subsequent models, based on the culture they belong to. 
The learning technique that we use in this experiment has 
previously been used in automatic sketch recognition 
(Lovett, Dehghani and Forbus 2007), automatic music 
genre classification (Dehghani and Lovett 2006) and 
classifying terrorist activities by perpetrator (Halstead and 
Forbus 2007). The major benefit of this technique is that, 
although it only requires very small training sets, utilizing 
qualitative representations it can achieve the performance 
of machine learning algorithms which require orders of 
magnitude larger data sets.  

Comparison and Generalization 

We compare representations using the Structure-Mapping 
Engine (SME) (Falkenhainer, Forbus and Gentner, 1989). 
SME is a computational model of similarity and analogy 
based on Gentner’s (1983) structure mapping theory of 
analogy in humans.  It works on structured representations, 
consisting of entities, attributes of entities and relations.  
There are both first-order relations between entities and 
higher-order relations between other relations. Given two 
representations in this form, a base case and a target case, 
SME aligns their common structure to form a mapping 

Figure 3: The meta-pane provides an overview of 

the qualitative states in the model 

Figure 2: A QCM model 

 



between the cases. This mapping consists of a set of 
correspondences between entities and expressions in the 
two cases. SME tries to find mappings that maximize 
systematicity; that is, it prefers mappings with higher-order 
relations and relationally connected structure. 
 Our system learns categories of objects using SEQL 
(Kuehne et al, 2000), a model of generalization built on 
SME. SEQL is based on the idea that when humans are 
exposed to multiple exemplars of a category, they 
construct generalizations by comparing the exemplars and 
abstracting out the common structure. SEQL does this by 
comparing individual cases with SME.   For each category, 
SEQL maintains a list of generalizations and exemplars.  
Each new incoming exemplar is compared against the 
existing generalizations, and if it is sufficiently similar, the 
generalization is refined based on their common structure.  
Otherwise, the exemplar is compared against other, 
unassimilated exemplars.  If sufficiently close to one of 
them, a new generalization is formed from their common 
structure.  Originally non-overlapping structure was simply 
thrown away.  Now, SEQL associates a probability with 
every expression in a generalization which is updated with 
each new exemplar, and only gets rid of very low-
probability structure (Halstead and Forbus 2005).   SEQL 
can be forced to construct a single generalization for a 
category by simply setting the assimilation threshold to be 
extremely low. 

Results 

81 transcripts, generated in response to three food web 
scenarios, were modeled using QCM.  The transcripts for 
two additional scenarios were excluded because 
participants rarely responded to these scenarios in detail. 
These two scenarios were structurally similar to the other 
scenarios presented and were always presented at the end 
of the interview, and so it is speculated that participants 
perceived repetition as they progressed through the 
interview and reduced responding as a result. 

We randomly divided the models into a test and a 
training set 1,000 different times. In each run, we used 
SEQL to produce two generalizations, one for X and one 
for non-X, from the models in the training set. These 
generalizations were then used to classify models in the 
test set by using SME to compare each model with the two 
generalizations. We calculated the percentage of the 
model’s expressions that aligned with each generalization, 
and the percentage of the generalization’s expressions that 
aligned with the model, and classified test models based on 
which generalization it had more in common with. We 
tabulated successful classification by cultural group and 
averaged the results over all 1,000 trials.   
 Table 1 shows the results of our experiment.  In the first 
two columns the percentage of X models being correctly 
classified as X and non-X being classified as non-X are 
shown. The last column shows the overall accuracy of the 
system. The average accuracy across the three scenarios 
was 64%. 

 Our system was able to automatically compute 
generalizations which differentiated between the two 

culture models. Our system was also able to find 
similarities in causal models from the same culture. By 
examining the system’s results, we can gain insights into 
the differences and similarities between the models.  
Specifically, we found that the number of facts that were 
consistent across individuals was higher in X models. We 
examined the generalizations from a single test run for 
each scenario, in which the system achieved 70% 
accuracy.  For this test run, there were 24 facts found 
consistently across all X models vs. 16 facts for non- X. 
Also, the number of consistent causal relations was higher 
among X. X models contained 4 causal relations found 
consistently across all models, whereas non-X models only 
contained 2. We can conclude from this result that causal 
understanding of relationships in nature is more 
homogeneous among X than among non- X. 
 As per our prediction, the generalizations that were 
made from X models were more detailed, larger and 
therefore subsumed other smaller generalizations. This had 
the unfortunate side-effect of biasing models towards being 
classified as X.  However, as mentioned above, the open-
ended nature of the interviews led to variation in the 
number of probes presented to participants across 
individuals, and the resultant variability in responses can 
introduce some difficulty when attempting to evaluate 
similarities in causal maps. Open-ended interviews are 
useful for exploratory investigations of the ways in which 
participants are likely to respond to hypothetical scenarios, 
and future research can build on the knowledge gained 
here. Specifically, the present results can now be used as a 
basis for designing a more structured survey in which 
participants are presented with a larger, more 
comprehensive list of animals and plants that represent all 
of the trophic levels and ecological considerations 
mentioned by X and non-X adults of varying hunting and 
fishing expertise. This should help provide the most 
systematic probing of their knowledge.   

Related Work 

QCM can be thought of as the second generation VModel 
(Forbus, Carney, Harris and Sherin, 2001). VModel was 
developed to help middle-school students learn science. 
Like QCM, it uses a subset of QP theory to provide strong 

64% 64% 64% Poplar 

Disappearing 

67% 52% 82% Bears Doubling 

61% 57% 65% Bears Disappearing 

Overall 
Accuracy 

Non-X X 

 
Table 1: Performance of the classification system 



semantics.  However, VModel was limited to single-state 
reasoning, whereas QCM can be used to model physical 
causal phenomena with multiple states. Similar differences 
hold with Betty’s Brain (Biswas et al 2001), which 
provides a concept-map interface for single-state 
qualitative reasoning designed for middle-school students.   

The closest other qualitative modeling tools are 
MOBUM (Machado & Bredeweg, 2001) and VISIGARP 
(Bouwer & Bredeweg 2001), which have lead to Garp3.

3
  

Like QCM, these environments are aimed at researchers, 
but their focus is on constructing models for qualitative 
simulation, using generic, first-principles domain theories.  
QCM focuses instead on helping capture concrete, 
situation-specific qualitative explanations of phenomena.  
Thus it provides a useful tool for scientists working with 
interview data.  

Discussion  

We have shown that cultural differences in causal 
reasoning about food webs can be captured to some degree 
in terms of similarities and differences in qualitative 
models extracted from transcript data.   Although previous 
manual analysis of the transcripts have shown to be very 
difficult and time consuming, by using SEQL and SME we 
were able to find similarities and differences and 
automatically cluster causal models built from the 
transcripts. While the results are significant, the accuracy 
could be improved, and we plan to use a more stringent 
interview protocol to test this. We also plan to use more 
than one expert for modeling the results. Also, we are 
investigating how causal models of hunters (experts) are 
different from non-hunters (novices). 
 More generally, we are encouraged by the success of 
QCM in providing a scientist friendly environment, where 
QP theory can be used to model interview data.  We plan 
to extend QCM in several ways.  First, we plan to use 
similarity-based qualitative simulation (Yan & Forbus, 
2005) to support creating predictions based on learned 
generalizations from transcript models.  Second, we plan to 
integrate our qualitative simulator (Gizmo), to provide a 
complementary first-principles simulation engine.  Finally, 
we plan to provide a more comprehensive interface, to 
provide a unified platform for representing, clustering, and 
reasoning about qualitative models derived from data. 
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