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Abstract 

Building models of the physical world from examples is an 
important challenge for qualitative reasoning systems.  We 
describe a system that can learn intuitive models of physical 
behaviors from a corpus of multimodal, multi-state stimuli, 
consisting of sketches and text.  The system extracts and 
temporally encodes exemplars from the stimuli and uses 
analogical generalization to abstract prototypical behaviors.  
Using statistical analysis, the system parameterizes these 
abstractions into qualitative representations for reasoning.  
We show that the explanations the system provides for new 
situations are consistent with those given by naïve students. 

Keywords: Cognitive modeling; conceptual change; 
misconceptions; naïve physics; qualitative reasoning 

Introduction 

Many people have intuitive models of physical domains that 

are at odds with scientific models (Smith, diSessa, & 

Roschelle, 1994; diSessa, 1993; Brown, 1994; Vosniadou, 

1994).  While productive for reasoning about everyday 

physical phenomena, these naïve models cause patterns of 

misconceptions.  These misconceptions may result from 

improperly generalizing or contextualizing experience 

(Smith, diSessa, & Roschelle, 1994) or from incorporating 

instruction into a flawed intuitive framework (Vosniadou, 

1994).  Understanding how such intuitive models come 

about is an important problem for understanding conceptual 

change (Forbus & Gentner, 1986). 

Computational models of conceptual change (e.g. 

Esposito et al., 2000; Ram, 1993) tend to describe how 

existing concepts are changed, but not how those initial 

concepts are learned.  We believe it is important for such 

models to encompass the learning of the initial concepts, to 

reduce tailorability.  This paper describes a simulation of 

learning intuitive physics models from experience.  

Experiences are provided as combinations of sketches and 

natural language, which are automatically processed to 

produce symbolic representations for learning.  The 

encoding process is centered on the concepts to be learned, 

and it constructs qualitative representations of behavior 

across time as exemplars.  Analogical generalization is used 

with a statistical criterion to induce abstract models of 

typical patterns of behavior, which constitutes our 

representation of intuitive models.  These models can be 

used to make predictions and perform simple counterfactual 

reasoning.  We compare the system’s explanations to those 

of human students on reasoning tasks from Brown (1994) 

and the Force Concept Inventory (Hestenes et al., 1992).   

We next briefly summarize the relevant aspects of 

qualitative process theory and structure-mapping theory 

used in the simulation.  Then we describe how our stimuli 

are represented and encoded, motivated by results and ideas 

from the cognitive science literature.  The learning process 

itself is described next, followed by how these models are 

used in reasoning.  We show that the system’s explanations 

of two physical situations are compatible with student 

explanations.  We close with related and future work. 

Qualitative Process Theory 

People’s intuitive physical knowledge appears to rely 

heavily on qualitative representations (Forbus & Gentner, 

1986; Baillargeon, 1998).  Consequently, we use qualitative 

process theory (Forbus, 1984) as part of our model.  The 

learning we model here is what provides the foundation for 

ultimately learning physical processes; in the framework of 

Forbus & Gentner (1986), we are modeling the construction 

of protohistories to describe typical patterns of behavior 

from experience, and building on those a causal corpus 

consisting of causal relationships between those typical 

patterns.  To represent these patterns of behavior, we use the 

concept of encapsulated history (EH) from QP theory. 

An encapsulated history represents a category of 

abstracted behavior, over some span of time.  Unlike model 

fragments, EHs can mention time explicitly, referring to 

multiple qualitative states and events.  The participants are 

the entities over which an EH is instantiated.  The 

conditions are statements which must hold for an instance of 

the EH to be active.  When an instance of an EH is active, 

the statements in its consequences are assumed to be true.  

We use encapsulated histories as explanatory schemata: 

When instantiated, they provide an explanation for a 

behavior via recognizing it as an instance of a typical 

pattern.  Furthermore, they can predict possible causes and 

consequences of a behavior, and hypothesize hidden 

conditions when a behavior is known to be active. 

Since EHs can include multiple qualitative states, they 

can be used for learning causal relationships between 

behaviors and properties of the world.  In naïve mechanics, 

for example, the models of movement, pushing, and 

blocking learned by the simulation are represented by EHs.   

Figure 1 illustrates an EH learned by the simulation.  This 

can be read as: P1 pushes P2 while P1 and P2 touch; the 

direction dir1 from the pusher P1 to the pushed P2 matches 

the direction of the push; and pushed P2 consequently 

moves (M1) in the direction dir1 of the push.  When given a 

test scenario, the system checks its learned EHs to 



determine whether its participants match entities in the 

scenario.  If so, instances of those EHs are created.  Each 

EH instance is active only if the statements in its conditions 

hold in the scenario.  If the consequences fail to hold, that is 

a prediction failure of an active EH. 

Encapsulated history consequences may contain typicality 

expressions, such as the Normal-Usual attribute in Figure 

1.  Inferring this consequence in a scenario context indicates 

that the phenomenon (here, the PushingAnObject event) 

has been explained by an encapsulated history. 

 
define-encapsulated-history Push05 

Participants: 

Entity(?P1), Entity(?P2), PushingAnObject(?P3), 

Direction(?dir1), Direction(?dir2) 

 

Conditions: 

providerOfMotiveForce(?P3, ?P1),  

objectActedOn(?P3, ?P2),  

dir-Pointing(?P3, ?dir1),  

touches(?P1, ?P2), 

dirBetween(?P1, ?P2, ?dir1),  

dirBetween(?P2, ?P1, ?dir2) 
 

Consequences: 

Normal-Usual(and(PushingAnObject(?P3), 

                providerOfMotiveForce(?P3, ?P1), 

                objectActedOn(?P3, ?P2))) 

causes-SitProp(Push05, 

                (exists ?M1 

                  (and MovementEvent(?M1),  

                       objectMoving(?M1, ?P1),  

                       motionPathway(?M1, ?dir1))) 

 

Figure 1: An encapsulated history relating pushing and 

movement. 

Analogical Generalization 

Our hypothesis is that people use analogical 

generalization to construct encapsulated histories.  To model 

this process, we use SEQL  (Keuhne et al., 2000).  SEQL is 

grounded in structure-mapping theory (Gentner, 1983), and 

uses the Structure-Mapping Engine, SME (Falkenhainer et 

al., 1989).  Given two representations, a base and a target, 

SME computes a set of mappings that describe how they 

can be aligned (i.e. correspondences), candidate inferences 

that might be projected from one description to the other, 

and a structural evaluation score that provides a numerical 

measure of similarity.  SEQL uses SME as follows.  SEQL 

maintains a list of exemplars and generalizations.  Given a 

new exemplar, it is first compared against each 

generalization using SME.  If the score is over the 

assimilation threshold, they are combined to update the 

generalization.  Otherwise, the new exemplar is compared 

with the unassimilated exemplars.  Again, if the score is 

high enough, the two exemplars are combined to form a 

new generalization.  Otherwise, the exemplar is added to the 

list of unassimilated exemplars.  The combination process 

maintains a probability for each statement in a 

generalization, based on how frequently it occurred in the 

exemplars generalized within (Halstead & Forbus, 2005).  

These probabilities are used in our simulation for doing 

statistical tests.  

Multimodal Stimuli 

To reduce tailorability, we provide experiences to the 

simulation in the form of sketches (e.g. Figure 2) 

accompanied by natural language text.  This serves as an 

approximation to what learners might perceive and hear in 

the world.  The sketches are created in CogSketch1 (Forbus 

et al., 2008), an open-domain sketch understanding system.  

In CogSketch, users draw and label glyphs, objects in the 

sketch, to link the content of the sketches to concepts in 

CogSketch’s knowledge base2.  CogSketch automatically 

computes qualitative spatial relations between the glyphs 

such as topological relations (e.g. touching), relative size, 

and positional relationships (e.g. above). 

Sketched behaviors are segmented into distinct states 

according to qualitative differences in behavior (e.g. 

changes in contact and actions of agents) to accord with 

findings in psychological event segmentation (Zacks, 

Tversky, & Iyer, 2001).  Each state is drawn as a separate 

sketch.  The sequential relationships between them are 

drawn as arrows on the metalayer, where other sub-sketches 

are treated as glyphs, as Figure 2 illustrates.  The child, 

truck, and car are glyphs in the sketched states. The two 

right-pointing arrows in state Push-13 are pushing 

annotations, and the two right-pointing arrows in state 

Move-13 are velocity annotations. 

Two lines of evidence motivate our encoding of the 

physical phenomena of pushing, movement, and blocking as 

separate concepts.  diSessa (1993) notes that people are 

unlikely to confuse successful resistance (i.e. a wall 

blocking a person’s push) from nonsuccess (i.e. a ball 

moving due to tugging a string) in recalling events, and that 

these phenomena are encoded separately.  Talmy (1988) 

attributes this separation of success and nonsuccess 

encoding to varying language schemata between the two 

conditions. 

For information not easily communicated via sketching, 

we use simplified English, which is converted to predicate 

calculus via a natural language understanding system 

(Tomai & Forbus, 2009).  One sentence used in conjunction 

with the sketch in Figure 2 is, “The child child-13 is playing 

with the truck truck-13.”  The special names child-13 and 

truck-13 are the internal tokens used in the sketch for the 

child and the truck respectively, so that linguistically 

                                                           
1 CogSketch is available online at 

http://spatiallearning.org/projects/cogsketch_index.html 
2 CogSketch uses a combination of knowledge extracted from 

OpenCyc (www.opencyc.org) and our own extensions for 

qualitative, analogical, and spatial reasoning. 

 
Figure 2: A sketched behavior 

http://www.opencyc.org/


expressed information is linked with information expressed 

via the sketch.  This sentence leads to these assertions being 

added to the exemplar: 

 
(isa truck-13 Truck) 

(isa play1733 RecreationalActivity) 

(performedBy play1733 child-13) 

(with-UnderspecifiedAgent play1733 truck-13) 

 

If the NLU system finds an ambiguity it cannot handle, it 

displays alternate interpretations for the experimenter to 

choose.  No hand-coded predicate calculus statements are 

included in the stimuli. 

This method of simulation input has limitations: Sketches 

are less visually rich than images, and they do not provide 

opportunities for the learner to autonomously experiment.  

Nevertheless, we believe that this is a significant advance 

over the hand-coded stimuli typically used by other systems, 

given the reduction in tailorability.  These multimodal 

stimuli are used by our system as examples for learning and 

as scenarios for reasoning. 

Learning 

The system is provided with a set of target phenomena to 

learn, here pushing, movement, and blocking.  We assume 

that for a truly novice learner, words used in contexts of 

behaviors that they do not understand are clues that there is 

something worth modeling.   

Given a new stimulus, the system finds all instances of 

target phenomena that it describes, and generates an 

exemplar for each instance.  Since an instance of a particular 

phenomenon may continue across state boundaries, these 

occurrences can span multiple states.  Temporal 

relationships between these occurrences are derived to 

support learning of preconditions and consequences.  For 

example, consider a series of states S1-S3, where a man is 

pushing a crate in S1-S2 and not in S3, and the crate moves 

in S2-S3 but not in S1. The motion would have a 

startsDuring relationship with the pushing.  Each 

stimulus observed by the simulation is automatically 

temporally encoded into exemplars using this strategy. 

Generalizing behaviors 

For each target phenomenon, the system maintains a 

separate instance of SEQL, a generalization context 

(Friedman & Forbus, 2008).  A generalization context has 

an entry pattern that is used to determine when an exemplar 

is relevant.  For example, the entry pattern for pushing is: 

 
(and (isa ?x PushingAnObject) 

     (providerOfMotiveForce ?x ?y) 

     (objectActedOn ?x ?z)) 

 

Figure 3 shows the generalization contexts and their 

contents after the learning experiment described below.  Our 

system currently operates in batch mode, not attempting to 

construct models until after all of the stimuli have been 

processed. 

Generalization

Contexts

Generalizations

Pushing

Moving

Blocking
Ungeneralized

Exemplars

 
 

Figure 3: Generalization contexts after learning 

Constructing intuitive models 

The system creates encapsulated histories from 

generalizations in two steps: (1) Statistics are used to 

determine which generalizations are worth modeling with 

EHs, and (2) worthwhile generalizations are parameterized 

to create EHs.  We discuss each step in turn. 

 

Filtering generalizations 

Not all SEQL generalizations can be parameterized into 

useful encapsulated histories.  Some generalizations are 

overly broad, and would result in EHs that make inaccurate 

predictions.  Consequently, the system filters out overly 

broad generalizations using the probability information 

constructed during generalization. 

Generalizations are filtered by identifying correlated 

phenomena within generalizations and measuring the 

phenomena’s correlation across generalizations.  We assume 

a probability threshold t (here, 0.9) for correlation.  That is, 

if any target phenomenon p is in a generalization with 

probability P(p) ≥ t, then p is considered a correlated 

phenomenon within that generalization’s context.  A 

generalization is decisive if the binary entropy of all 

correlated phenomena p are less than the binary entropy of t, 

or H(P(p)) ≤ H(t).  Entropy is the appropriate criterion to 

use because it measures information gain (i.e., low entropy 

implies high gain).  Only decisive generalizations are 

parameterized into encapsulated histories. 

 

Extracting Causal Models from Generalizations 

The system creates one encapsulated history per decisive 

generalization.  Expressions whose probability is lower than 

the probability threshold t (here, 0.9) are excluded from the 

EH, thus reducing contingent phenomena.  Expressions that 

remain are analyzed to determine what role they should play 

in the encapsulated history.   

An expression is held to be either (a) a cause of the state, 

(b) a consequence of the state, or (c) a condition that holds 

during the state, based on analyzing the temporal 

relationships involved.  If an expression begins with the 

current state, ends with the start of the current state, or ends 

during the current state, it is a possible cause.  If it 

temporally subsumes or coincides with the state, it is a 



possible condition.  Otherwise, if it begins at any point 

during or immediately following the current state, it is a 

possible consequence.    

  Probabilities and temporal relationships are used to 

hypothesize causality.  For instance, in one generalization, 

movement starts with a pushing event with P = 0.5, and 

starts after a pushing event with P = 0.5.  In this case, 

movement is not a likely condition for pushing because it 

only satisfies the temporal requirement half the time, 

P(starts-with) < t.  Conversely, movement is a likely 

consequence, because starting with and starting after are 

both permissible temporal relations of consequences, and 

P(starting-with) + P(starting-after) > t. 

After the causes, conditions, and consequences are 

determined, the system defines an encapsulated history by 

introducing variables for entities that appear in the 

conditions, creating existence statements for the entities that 

appear only in the consequences, and using the 

generalization’s attribute information to construct the 

participants information.   Figure 1 and Figure 5 illustrate.  

Notice that, while the learning process removes most 

irrelevancies, in Block00 the entity ?P1 is included even 

though it is not causally relevant.  It is there because the 

examples involving pushing all involve the pushing agent 

standing or sitting on a surface – so to the system, blocking 

must involve touching something else. 

Reasoning with Encapsulated Histories 

Given a new scenario, the system attempts to make sense of 

it by instantiating its encapsulated histories.  For each EH, it 

finds instances within the scenario.  When an instance’s 

conditions hold, it is active, and the statements in its 

Consequences are assumed to hold.  This can include 

predicting new phenomena, as illustrated by the movement 

M1 consequence in Figure 1.  When constraints are violated, 

or consequences are not satisfied, the EH instance can be 

used to generate counterfactual explanations, as explained 

below. 

To illustrate, consider a scenario used by Brown (1994) 

and others, illustrated in Figure 4.  The sketch shows a book 

on a table.   Gravity pushes down on the book and the table. 

 
Figure 4: An example from Brown (1994) for testing learned 

knowledge 

 

The scenario description includes two occurrences of 

pushing: gravity pushing the book and gravity pushing the 

table.  The encapsulated history in Figure 5 can be 

instantiated sufficiently to be considered for inference by 

the simulation, since the criterion is that all non-event 

participants be identifiable in the scenario.  Some event 

participants, such as pushing and blocking, need not be 

identified because these can be instantiated as predictions. 

 
define-encapsulated-history Block00 
Participants: 

Entity(?P1), Entity(?P2), Entity(?P3), Entity(?P4), 

PushingAnObject(?P5), PushingAnObject(?P6), 

Blocking(?P7) 

 

Conditions: 

providerOfMotiveForce(?P5, ?P2),  

objectActedOn(?P5, ?P3),  

dir-Pointing(?P5, ?dir1), 

providerOfMotiveForce(?P6, ?P3),  

objectActedOn(?P6, ?P4),  

dir-Pointing(?P6, ?dir1),  

doneBy(?P7, ?P4),  

objectActedOn(?P7, ?P3),  

dirBetween(?P2, ?P3, ?dir1),  

dirBetween(?P3, ?P4, ?dir1),  

dirBetween(?P3, ?P2, ?dir2),  

dirBetween(?P4, ?P3, ?dir2),  

touches(?P2, ?P3),  

touches(?P3, ?P4),  

touches(?P2, ?P1) 

 

Consequences: 

Normal-Usual(and(PushingAnObject(?P5), 

                providerOfMotiveForce(?P5, ?P2), 

                objectActedOn(?P5, ?P3))) 

Normal-Usual(and(PushingAnObject(?P6), 

                providerOfMotiveForce(?P6, ?P3), 

                objectActedOn(?P6, ?P4))) 

Normal-Usual(and(Blocking(?P7), doneBy(?P7, ?P4), 

                objectActedOn(?P7, ?P3))) 

 
Figure 5: An encapsulated history relating pushing and 

blocking phenomena 

 

Specifically, activating Block00 to explain gravity pushing 

the book requires assuming two additional events, per the 

conditions in Figure 5: (1) gravity ?P2 pushes the book ?P3 

in the direction ?dir1 of the initial push, and (2) an entity 

?P4 blocks the book ?P3.  The table alone satisfies the 

constraints on ?P4, binding the last of the non-event 

participants.  This is sufficient grounds for the simulation to 

instantiate new pushing and blocking events, binding them 

to ?P6 and ?P7, respectively. 

The simulation has two strategies for answering questions 

about a scenario.  If the question concerns a phenomenon 

that is predicted by the EH instances it has created for the 

scenario, it answers based on that information, including 

any causal argument provided as part of the EH.  If the 

question concerns some phenomenon that is not predicted, it 

assumes that phenomenon occurs and looks at what new 

EHs could be instantiated to explain it.  The instantiation 

failures for those EH instances are provided as the reasons 

for the phenomenon not occurring, as shown below. 

Experiment 

To test whether this model can learn psychologically 

plausible encapsulated histories from multimodal stimuli, 

we observe the explanations it provides for a question from 

Brown’s (1994) assessment of student mental models and a 

question from Hestenes et al.’s (1992) Force Concept 

Inventory.  We start by summarizing human results, then 



describe the conditions used for the simulation, and compare 

the human and simulation results. 

Brown’s results 

A question about the scenario in Figure 5 was asked of high 

school students: Does the table exert a force against the 

book? 

Brown reported that 33 of 73 students agreed that it must, 

in order to counteract the downward force of the book.  This 

is the physically correct answer.  However, the 40-student 

majority denied that the table exerted a force.  Their reasons 

fell into five categories: 

1. Gravity pushes the book flat, and the book exerts a 

force on the table.  The table merely supports the 

book (19 students) 

2. The table requires energy to push (7 students) 

3. The table is not pushing or pulling (5 students) 

4. The table is just blocking the book (4 students) 

5. The book would move up if the table exerted a 

force (4 students) 

We query our simulation similarly, to determine whether 

it can reproduce some of the reasons that students gave. 

Force Concept Inventory 

The Force Concept Inventory (FCI) (Hestenes et al., 1992) 

is an assessment designed to identify student 

misconceptions about force.  Many FCI questions involve 

the relationships between force, mass, and velocity, and the 

composition of forces to determine direction of motion.  

Figure 6 illustrates our sketch of question 6 from the FCI.  

The scenario describes a puck on a frictionless surface, 

moving with constant velocity, until it receives an 

instantaneous kick.  The student must decide along which of 

the five paths (labeled choice-27-a/b/c/d/e below) the puck 

will move after receiving the kick. 

 
Figure 6: An example from the Force Concept Inventory 

(Hestenes et al, 1992) 

 

Five pre-physics-instructed student populations, ranging 

from high school to college, predicted the puck would, on 

average: 

(a) 34% - move upward, in the direction of the kick. 

(b) 38% - per Newtonian principles, move diagonally. 

(c) 3% - move upward and then curve to the right. 

(d) 6% - gradually curve in the direction of the kick. 

(e) 18% - curve in the direction of initial motion. 

Other FCI questions concerned the relationships between 

velocity, mass, and acceleration, which were not target 

concepts of our simulation. 

Simulation setup 

Our simulation was implemented using the Companion 

Cognitive Systems architecture (Forbus et al., 2008), using 

semi-independent asynchronous agents.  The Session 

Reasoner (the Companions agent responsible for domain 

reasoning) begins with 17 sketches with accompanied 

natural language as learning stimuli.  Like Figure 2, all 

stimuli include pushing phenomena, and either movement or 

blocking phenomena.  The learning stimuli did not include 

the test scenarios. 

For each stimulus, the Session Reasoner first encodes it 

into exemplars, resulting in a total of 28 pushing exemplars, 

16 moving exemplars, and 6 blocking exemplars.  Before 

encoding the next stimulus, the Session Reasoner contacts 

the Analogical Tickler agent to generalize the exemplars 

using SEQL.  The SEQL assimilation threshold was set to 

0.5, which results in ten generalizations across the three 

generalization contexts, as illustrated in Figure 3. 

After all of the learning stimuli are encoded and the 

exemplars are generalized, the Session Reasoner generates 

EHs from the resulting SEQL generalizations.  The EH 

probability threshold was set to 0.9.  Consequently, six of 

the generalizations were decisive, leading to the 

pushmove model of Figure 1, the pushblock model in 

Figure 5, and four additional models. 

The four additional models learned by the system were 

not activated during problem solving.  Three EHs describe 

movement behaviors caused by pushing, with minor 

variations in the conditions.  The fourth EH describes 

classic “billiard ball” causality, with a push causing motion, 

which then causes another push and setting another entity 

into motion. 

Both problem solving scenarios are conducted by the 

Session Reasoner, which tries to activate its learned EHs 

within the scenario contexts. 

Comparison with human results 

Given these EHs, how does the system perform?  When 

given Brown’s (1994) test scenario, the system activates 

EHs to infer the additional events of the book pushing down 

against the table and the table pushing down against the 

ground. 

For Brown’s query, since the simulation does not have 

the event of the table pushing upward against the book as a 

current prediction, it uses the counterfactual strategy.  Only 



the EH of Figure 1 can provide a possible explanation.  

Assuming this EH is active, the simulation gets a new 

prediction: The book should move upward as a result of the 

table’s push.  This prediction contradicts the book’s lack of 

motion in the scenario.  Consequently, it answers that the 

table does not push up on the book.  This is essentially the 

same as answer 5, given by four students. 

After the proof by contradiction, the system identifies 

activated EHs in which the book and table jointly participate 

to explain their behavior in the scenario.  Consequently, it 

uses the EH in Figure 5 to explain that gravity pushes down 

on the book, that the book pushes down on the table, and 

that the table blocks the book.  This is similar to answer 4, 

given by four students.  This explanation also resembles 

answer 1, given by 19 students, though the students cite the 

concept of support, which was not among the simulation’s 

target phenomena. Could the system learn models 

corresponding to the other explanations for this scenario?  If 

the target phenomena and corpus included the concept of 

support and energy, it seems likely to us that it could, but 

this is an empirical question.  With a different corpus of 

examples – perhaps including examples like those used by 

Camp & Clement (1994) and the rest of Brown (1994) – the 

simulation may be capable of coming to the correct model.  

Answer 3 may rest on an interpretation of events being 

mutually exclusive, i.e., if the table is blocking, then it 

cannot be doing the other actions.  Further experiments 

should clarify this. 

When given the FCI scenario, the system activates the EH 

from Figure 1 within the “kick” state and predicts that the 

puck will translate in the direction of the kick during or 

immediately after the kick.  Upon evaluating all possible 

following states, the system concludes that choice-27-a is 

the only successor state that fulfills this prediction.  The 

system predicts this path for the puck, as do 34% of the 

FCI-assessed students in Hestenes et al. (1992), which 

represents the most popular misconception.  The results 

from both scenarios support the hypothesis that the models 

learned by the system are like those used by physics-naïve 

students. 

Related Work 

The closest simulations are the COBWEB (Fisher, 1987) 

model of conceptual clustering and INTHELEX (Esposito et 

al., 2000), which develops and revises prolog-style theories. 

COBWEB does unsupervised learning of hierarchical 

relationships between concepts, in contrast with our use of 

supervised learning (via entry patterns in generalization 

contexts) of causal models.  COBWEB calculated 

probabilities of features, whereas SEQL provides 

probabilities of structured relations.  INTHELEX uses 

refinement operators to model multiple steps in a trajectory 

of learned models, whereas we focus only on one transition, 

the first.  Both COBWEB and INTHELEX used hand-

represented input stimuli, whereas ours is derived by the 

simulation from sketches and natural language.  Ram (1993) 

discusses SINS, a robot navigation system that retrieves 

cases, adapts control parameters, and learns new 

associations incrementally.  Both our system and SINS 

develop concepts incrementally from experience; however, 

our system learns models of physical behaviors and causal 

laws, while SINS learns associations between environmental 

conditions and control parameters. 

Lockwood et al. (2005) used CogSketch and SEQL to 

model the learning of spatial prepositions, using single 

sketches labeled with words, in contrast to the sequences of 

sketches labeled with sentences used here. 

Discussion & Future Work 

We have described how analogical generalization and 

qualitative modeling can be used to simulate the process of 

learning initial intuitive models.  To reduce tailorability, the 

simulation inputs were combinations of sketches and 

simplified English.  The resulting answers match a subset of 

those of given by human students on the same scenarios. 

While we believe that this is a significant first step, there 

is much more to be done.  Other domains and physical 

phenomena must be incorporated, to provide more evidence 

as to generality.  Second, we need to conduct statistical tests 

to determine how order-sensitive the simulation is, and how 

the quality of models learned varies with the number of 

examples provided.  Additionally, modeling the induction of 

physical process models from the encapsulated histories 

learned by the system is an important step in learning 

intuitive physics (Forbus & Gentner, 1986). 

Finally, we plan to incorporate these ideas in a larger-

scale learning model, where the quality and content of its 

predictions guide future learning.  The Companion 

Cognitive Systems architecture is an ideal platform for this 

endeavor because one of its primary goals is ubiquitous 

learning over an extended lifetime.  With our learning and 

reasoning methodologies integrated into Companion 

Cognitive Systems, agents can use multimodal stimuli to 

learn new models and evaluate the productivity of existing 

models.  These are important characteristics of a larger 

model of conceptual change. 
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