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Abstract 

Learning by reading is an important scientific problem 
because it requires modeling a wide range of human 
abilities.  It also could break the knowledge engineering 
bottleneck, enabling the bootstrapping of intelligent systems 
via interaction with people using natural language.  This 
paper outlines our progress on creating a 2nd generation 
learning by reading system, focusing on three main areas: 
Multimodal knowledge capture, reasoning for �L 
understanding and learning, and analogical dialogue acts. 

Introduction 

Learning by reading is an important scientific problem 
because it requires capturing a wide range of human 
abilities.  It also provides a means of breaking the 
knowledge engineering bottleneck, potentially enabling the 
bootstrapping of intelligent systems via interaction with 
people using natural language.   For creating systems that 
can be treated as long-term collaborators, where the system 
adapts to its humans rather than the other way around, the 
generality and flexibility of natural language interaction 
seems essential.  Consequently, there has been growing 
interest in research on learning by reading.   

One fundamental distinction in work so far has been the 
breadth of materials/depth of understanding tradeoff.  On 
one extreme are the broad/shallow systems, i.e., systems 
which use a broad range of materials (i.e., slices of the 
web) and tried to extract only very simple facts from them.  
Examples include KnowItAll [Etzionoi et al 2005] and 
Factivore [Matuszek et al 2005].  For example, KnowItAll 
processes large numbers of web pages, extracting recurring 
word triples.   These triples can be inspected and used in 
some ways that object/ attribute/value triples can be.  
Factivore identifies knowledge gaps by comparing existing 
instances of a concept (e.g., politicians), and uses NL 
generation to construct search engine queries to find 
sentences that can potentially provide missing facts.  A 
refinement process involving combining multiple sources 
and a human-in-the-loop vetting process ensure quality.   

On the other extreme are the narrow/deep systems, i.e., 
systems which handle only a narrow range of materials 
(either in terms of simplified NL syntax or being limited to 
a single domain), but try to extract as much knowledge as 
possible from those materials.  Examples include Learning 

Reader [Forbus et al 2007] and Mobius [Barker et al 
2007].   Learning Reader is reviewed below.  Mobius was 
a pilot experiment, examining what could be extracted 
from short paragraphs of unrestricted text, limited to the 
topic of how hearts work.   

The work described here lies on the narrow/deep end of 
this space, based on our experience in building (with 
others) Learning Reader.  While additional experiments 
with Learning Reader are in progress, what we have 
learned so far has led us to begin the creation of a second 
generation learning by reading system.  This paper 
describes our progress to date on that effort.  We begin by 
briefly reviewing Learning Reader and its strengths and 
weaknesses.  We then outline the design of the Explanation 
Agent (EA), our 2

nd
-generation system currently under 

construction.  We then describe three areas of work in 
progress: multimodal knowledge capture, reasoning for �L 
understanding, and analogical dialogue acts.  We close 
with a discussion of future work. 

Learning Reader: A 1
st
-Generation LbR 

system 

Learning Reader takes as input short stories, written in 
simplified English.  It extracts knowledge from them, using 
a direct memory access parser (DMAP) [Livingston & 
Riesbeck, 2007]. DMAP exploits a massive set of phrasal 
patterns linking KB concepts to how they are expressed in 
language, automatically extracted from NL knowledge in 
ResearchCyc.  The system’s understanding of what it 
learned was tested by using parameterized questions.   

A unique feature of Learning Reader is a model of 
rumination, i.e., the process of assimilating learned 
knowledge by asking itself questions.  Questions arise 
from knowledge patterns (e.g., in learning world history, 
the standard journalists’ questions – who, what, when, 
where, why – are reasonable things to ask about every 
event) and from comparison with prior experience.   

Efficient inference is a key problem in LbR systems.  
Most practical AI systems are made efficient through 
careful hand-crafting of representations and hand-tuning of 
reasoning procedures.  This is not an option for LbR 
systems, since having a human in the loop at this level of 
detail simply does not scale.  Consequently, we developed 
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techniques for automatically extracting sets of axioms from 
knowledge bases for reasoning, based on existing KB 
contents and what kinds of facts might be gleaned via 
future reading [Sharma & Forbus, in preparation].   

As described in [Forbus et al 2007], in one experiment 
Learning Reader was given a corpus of 62 stories (956 
sentences) about the geography, history, and current events 
in the Middle East.  Based on the structure of the 
parameterized questions and the entities mentioned in the 
stories, a quiz of 871 questions was automatically 
generated.  Before reading, Learning Reader was able to 
answer 10% of the questions with 100% accuracy, based 
on its initial knowledge base contents.  After reading, it 
answered 37% of the questions, with 99.7% accuracy.  
After reading plus deductive rumination, it answered 50% 
of the questions, with 99.3% accuracy.  Adding in a non-
deductive form of rumination (essentially accepting all 
non-falsifiable analogical inferences as true) gained 
another 10%, but at the cost of dropping accuracy to 
90.8%, since half of the newly-derived answers were 
incorrect.  This experiment shows that Learning Reader is 
clearly capable of learning from reading, and that 
rumination can improve understanding in an LbR system.  

Analysis of strengths and weaknesses 

Learning Reader showed several important things.  (1) It 
showed that deep-understanding learning by reading is 
possible for medium-sized corpora of simplified English 
texts.  (2) It showed that the contents of ResearchCyc can 
be useful in natural language experiments.  We use our 
own reasoning engine instead of Cycorp’s, since ours is 
optimized for our purposes, but our knowledge base is 
created from knowledge extracted from ResearchCyc plus 
our own extensions for analogical and qualitative 
reasoning.  Without ResearchCyc, Learning Reader would 
not have been possible.  (3) It showed that the DMAP 
approach can scale to large knowledge bases.  Previous 
attempts at using DMAP were on hand-constructed frame-
systems, the largest being on the order of 10

3
 axioms.  

Being able to operate with ResearchCyc contents 
represents a factor of 1,000 scale-up.  (4) Learning 
Reader’s model of rumination seems likely to be applicable 
to any LbR system.  (5) It demonstrated the automatic 
extraction and optimization of axioms, given patterns of 
queries to be handled and information about what patterns 
of facts might be learned.   

Learning Reader also had several weaknesses, which 
illustrate gaps in the scientific understanding and the 
engineering needed for LbR systems.  Currently DMAP 
system is good at handling simple facts and stories about 
events, but has trouble handling quotation and complex 
nested relational patterns

1
.   Parameterized questions 

provided a useful batch evaluation mechanism, but are too 
restrictive for the range of questions one would like to use 
for evaluating a system’s knowledge.  For example, using 

                                                 
1
 Work in progress by Livingston and Riesbeck is tackling this 

problem. 

analogical retrieval and generalization in rumination 
sometimes produced questions that, if answered, would 
have provided important insights for the system, but such 
questions fell outside the range of the parameterized 
questions.  Rumination was purely local, looking only at 
what could be filled in about each new story.  Detecting 
that a misunderstanding has occurred by comparing 
problems across a set of stories is beyond its capabilities, 
as is debugging such misunderstandings.   More basically, 
Learning Reader was not constructed to handle many 
features common in explanatory texts, such as diagrams 
and analogies.  While experiments with Learning Reader 
continue, we are also working on a second-generation LbR 
system, described next. 

Explanation Agent: A 2
nd
-Generation LbR 

system in progress 

The Explanation Agent has its roots in experiments aimed 
at understanding the roles of qualitative representation in 
natural language semantics.  The EA NLU system (Kuehne 
& Forbus, 2004) uses Allen’s parser [Allen, 1994] and 
ResearchCyc KB contents.  We developed a simplified 
English dialect, QRG-CE (QRG Controlled English), to 
factor out complex syntactic structures so that we could 
better focus on semantics.   We showed that QP theory 
provided a formal semantics for a number of English 
constructions, in ways that are broadly compatible with 
linguistic accounts such as FrameNet, and that QP theory 
descriptions could be automatically constructed via NLU 
using QRG-CE.  This success with simplified language 
inspired its subsequent use in Learning Reader. 

The development on EA NLU continued, motivated both 
by exploring qualitative models in semantics and to reduce 
tailorability in stimuli for cognitive simulations.  For 
example, to handle complex scenarios (e.g., used in 
psychological studies of moral decision-making [Dehghani 
et al 2008]), EA NLU was extended with ideas from 
Discourse Representation Theory [Kamp & Reyle, 1993], 
enabling it to handle tense, quotation, counterfactuals, and 
complex relational structures.   For example, the sentence 
“Because of a dam on a river, 20 species of fish will be 
extinct.” is understood with the appropriate nested 
quantifiers and the introduction of an intentionally 
specified set of species, each member of which participates 
in an extinction event.  This level of understanding is much 
closer to what is needed for science and engineering 
textbooks and manuals.   

We have also been developing the Companions 
cognitive architecture (Forbus & Hinrichs, 2006; Forbus, 
Klenk, & Hinrichs, 2008) to explore the roles of analogy 
and qualitative reasoning in cognitive architecture.  In 
Companions, our goal is to create “software organisms”, 
i.e., systems that interact and learn with people over 
extended periods of time, operating more like collaborators 
than like tools.  Companions use coarse-grained 
parallelism, with agents that perform broad functional 
roles.  Figure 1 illustrates the architecture that has already 



been used in a number of experiments (Klenk et al 2005; 
Klenk & Forbus, 2007).  The Session Manager, which 
provides facilities for interacting with a Companion, runs 
on the user’s machine, while the other agents run on a 
cluster.  The Facilitator starts up agents and brokers 
connections between them.  The Executive controls the rest 
of the agents, using an HTN planner/execution system to 
ascertain what it should be doing and do it.  The Session 
Reasoner works on whatever external problem is being 
tackled currently.  Access to prior experience is handled 
via a Tickler, an agent which uses the MAC/FAC model of 
analogical retrieval (Forbus et al 1994) to constantly 
provide the most relevant remindings given the contents of 
the Session Reasoner’s working memory.   

 
We are currently extending this architecture in several 

ways, which can be most easily described in terms of new 
agents.  The Interaction Manager handles interaction with 
the user.  We have embedded the EA NLU system into this 
agent, and are developing new semantic interpretation and 
dialogue management strategies that exploit the context 
provided by the architecture.  Generalization agents 
automatically construct generalizations from experience, 
using SEQL (Kuehne et al 2000; Halstead & Forbus, 
2005), which produces probabilistic relational 
representations without the need for pre-defined schema.  
Ticklers will be added to the Executive and Interaction 
Manager as well as the Session Reasoner, so that they can 
exploit prior cases.  Generalizers will be added to the 
Session Reasoner, Interaction Manager, and Executive, to 
facilitate Companions learning about their domain, 
interactions with users, and themselves.   

This new expansion of the Companions architecture is 
the foundation for our 2

nd
 generation LbR system, the 

Explanation Agent.  Our focus in the Explanation Agent 
(hereafter, EA) is understanding complex explanations, 
such as those found in science texts.   Rumination will be 
implemented as something that the whole system can do 
when it is not interacting with a user.  The rest of this paper 
describes our efforts in progress on creating this system.   

Multimodal Knowledge Capture 

Most of the sources that we read contain more than just 
text – pictures, charts and diagrams all contain important 
information that contributes to the knowledge that we gain 
from reading.  Studies (e.g. Hegarty & Just, 1993; Mayer 
& Gallini, 1990) show that people often learn more when 
presented with a combination of text and diagrams than 
they do from either modality alone. This suggests that LbR 
systems should also be able to exploit multiple modalities 
in texts.  We are particularly interested in combinations of 
text and diagrams as commonly found in textbooks.  
Consider Figure 2, taken from Basic Machines (1994), a 
physics training manual from the Navy: 
 

 
The physical arrangement of block and tackle that makes 
up the gun tackle could have been described in text, but the 
diagram simplifies communication.  Here the physical 
arrangement shown in the diagram needs to be combined 
with the function of each individual block, described in the 
text, to form a comprehensive understanding of the system.   

An important property of textbook diagrams is that they 
often contain a variety of real-world objects, which can be 
novel or put together in a novel fashion. Labels in the 
diagram and/or captions aid in understanding.  These 
textual labels, along with other clues from the text, provide 
scaffolding for the reader on how to integrate information 
across modalities. 
 We are currently developing a model of combining 
information across modalities during knowledge capture.  
In addition to using EA NLU, we are using the CogSketch 
sketch understanding system to input all of the diagrams 
that appear in the source material.  Currently, worked 
solutions and equations from the source text are being 
hand-represented and added to the system, although in the 
future, these will be automatically processed as well. 
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Figure 1: The Companions Architecture (dashed lines show 

components in progress) 

The sailor in figure 2-4 is in 

an awkward position to pull. 

If he had another single 

block handy, he could use it 

to change the direction of 

the pull, as in figure 2-6. 

This second arrangement is 

known as a gun tackle. 

Because the second block is 

fixed, it merely changes the 

direction of pull. 

 

 

Figure 2: A diagram illustrating a basic machine 



CogSketch 
CogSketch (Forbus et al 2008) is an open-domain sketch 
understanding system.  Each drawn item in CogSketch is a 
glyph.  Glyphs have ink, content, and a name.  Ink consists 
of the polylines drawn by the user.  The content is a token 
used to represent what the glyph denotes.  In CogSketch, 
users indicate the type of the content of the glyph in terms 
of concepts from the KB.  The name of the glyph is a 
natural-language string used to identify the glyph 
linguistically.  CogSketch automatically computes a 
variety of qualitative spatial relationships between the 
glyphs in a sketch.  CogSketch also has specialized glyphs 
called annotations that can be used to attach a numeric 
dimension to other glyphs in the sketch.  For example, 
Figure 3 shows diagram from Basic Machines and its 
sketched counterpart: 

 
In Figure 3, the resistance arm and effort arm are both 
annotations of the lever glyph.  Each has a numerical value 
and units associated with them, much like the numerical 
labels in the original diagram.   
 

Experiments and Materials 
Our experimental corpus consists of chapters from three 
instructional texts: Basic Machines [US Navy, 1994], a 
book on solar energy [Buckley 1979], and an elementary 
school textbook on optics and light.  The texts are being 
translated to QRG-CE, and diagrams are being drawn 
using CogSketch.  Both Basic Machines and the 
elementary textbook come with assignments (multiple 
choice questions) which will be used to test our system.  
Many of the assignments also include diagrams that must 
be understood to correctly answer a given question. 
 While our experiments are still in progress, we outline 
some interesting problems we have already encountered. 

Integrating across modalities: Our current approach is 
to use analogical matching (see below) to compare the 
representations of texts and diagrams.  Common names in 
the text and sketch act as required correspondences.  The 

analogical inferences then become conjectures about how 
information might be combined cross-modally.   

Integrating �ew Concepts.  A key role of textbooks is 
introducing students to new concepts.  New concepts are 
often grounded by tying them to concepts that the reader is 
presumed to already have.  EA will have to correctly 
connect new concepts to pre-existing concepts.  Consider 
the following set of passages from Basic Machines: 

The simplest machine, and perhaps the one with 
which you are most familiar, is the lever. A seesaw is 
a familiar example of a lever … 

The three classes of levers are shown in figure 1-2. 
The location of the fulcrum (the fixed or pivot point) 
in relation to the resistance (or weight) and the effort 
determines the lever class. 

 The first paragraph introduces the concept of a lever and 
an example (seesaw) is given to help the reader tie the 
concept to a physical object that they have experienced.  
An LbR system might have knowledge that bears on the 
example from prior reading, which provides an opportunity 
to build on what it has already learned.  Truly new 
concepts can be detected by lack of denotation for the 
word, e.g., “lever” and “seesaw”

2
.  But if there is already 

some knowledge about levers, the new knowledge must be 
tested for consistency against the existing knowledge, and 
tested to see if it allows any standing questions (generated 
by rumination) to be resolved.  Polysemy can lead to 
interesting problems.  For example, consider this passage 
from Basic Machines: 

The wedge is a special application of the inclined 
plane. You have probably used wedges. Abe Lincoln 
used a wedge to help him split logs into rails for 
fences. 

 Unfortunately, our knowledge base had only two 
denotations for the word “wedge”: Wedge-GolfClub and 
SubmarineSandwich.  Clearly, EA should not treat either of 
these types of wedge as a special application of an inclined 
plane!  Consistency checking needs to detect such cases 
and trigger the introduction of a new concept (and 
denotation). 

Organizing Information. Information in textbooks is 
organized into chapters, sections, etc.  Clues like headings, 
indentation, and call-out boxes give human readers cues as 
to how to organize the information they extract.  We plan 
to exploit this same structure to similarly help EA. 

Disambiguation.  A benefit of multiple modalities is that 
each can help disambiguate the other.  Unfortunately, 
sometimes even with both the text and the diagram, there 
will be ambiguity.  Consider again the diagram and text in 
Figure 2.  There are two blocks (pulleys) in the problem.  
There are two possible ways to distinguish between them.  

                                                 
2
 Not all of the concepts in the ResearchCyc KB are tied into the 
NL lexicon, so there could be a preexisting concept without the 

denotation.  Looking for such overlaps should be part of the job 

of rumination, we think. 

 

 

Figure 3 Annotations enable input of forces and numerical 

dimensions. 



Since the text refers to adding a pulley to a previous setup, 
EA could refer back to the previous diagram and realize 
that the “second block” is the one that is in this diagram, 
but not the other.  Or, EA could use the phrase “Because 
the second block is fixed …” along with basic knowledge 
of what it means for an object to be fixed.  Both of these 
strategies, which are natural for people, are needed in LbR 
systems.   

Reasoning for .L understanding and for 

Learning 

EA must be able to reason with its knowledge, which we 
will test by asking questions, including the ability to ask 
follow-up questions.  It must also identify gaps in its 
knowledge when it fails to answer questions, and formulate 
learning goals to drive subsequent reading and rumination.  
This section describes progress on these issues. 

Reasoning for .L Understanding 

Syntactic natural language patterns are often ambiguous. 
Prepositions like ‘in’ and ‘to’ can be used to mean different 
things depending on the context.  EA NLU, like many 
other NLU systems, uses generic, underspecified 
relationships to provide a minimal interpretation.   
Consider for example this sentence and its interpretation: 

Text: The heat flows to the cylinder. 
(to-UnderspecifiedLocation flow9172 

          cylinder9275) 

(isa flow9172 FluidFlow-Translation) 

(isa cylinder9275 Cylinder) 

 
Underspecified predicates avoid inappropriate 
commitments during parsing, but are problematic for 
reasoning.  Most axioms used for deductive reasoning 
require more concrete predicates.  Underspecified 
predicates can also make analogical matching less 
accurate, since they lead to alignments between entities 
that are unlikely to be productive.  Consequently, we need 
techniques for what Cycorp calls predicate strengthening.  
Using co-occurrence statistics involving predicates and 
collections, we have developed a method for estimating the 
most plausible specialization of a predicate.  For the 
previous example, our algorithm can change the first 
assertion to (toLocation flow9172 cylinder9275).   
This method can also identify missing knowledge or 
imperfect understanding. For example, consider the 
following sentence and a part of its interpretation.  
 

Text: Radiation is the method by which heat escapes from 

the planet to space.  
(by-Underspecified method3668 heat3718) 

(isa method3668 TechniqueType) 

(isa heat3718 ThermalEnergy) 

 
Our method predicts that none of the specializations of by-
Underspecified are expected to contain instances of 

TechniqueType and ThermalEnergy. Therefore, we can 
conclude that either the relevant predicate is missing or the 
interpretation is erroneous. How well this algorithm scales 
is an open question at this point, and it seems likely that 
backtracking must be supported. It is clear that such a 
method should also analyze the predicates and collections 
in the interpretation and estimate the likelihood that they 
could co-occur.  

Reasoning for Learning 

AI systems should be cognizant of gaps in their 
understanding. Missing assertions can often be identified 
by searching for disconnected components in the 
interpretations. In such cases, the aim is to infer an 
assertion about the disconnected entity and other entities in 
the discourse. We have found that this process is aided by 
two kinds of heuristic knowledge:  
Constraints on event structure: Event structure plays 

an important role in identifying the missing knowledge. 
The ResearchCyc KB provides useful information about 
the expectations of predicates.  For example, given an 
instance of Translocation, we should expect predicates 
like fromLocation and toLocation about that event. The 
task of the inference algorithm is to identify which entities 
in the discourse best fit the arguments of expected 
predicates. Argument constraints of predicates are not 
sufficient to narrow down the choices. We have designed a 
method for analyzing the ground facts to identify the most 
suitable argument for the predicate. This method relies on 
co-occurrence of collections and predicates in axioms and 
ground facts. For example, we can infer that instances of 
collections like AscendingStairs and Aspirating are less 
likely to appear as the first argument of fromLocation than 
instances of collections like CrossingABorder and 
Smuggling. This method depends upon bottom-up 
propagation of evidence from ground facts and axioms.  
Commonsense knowledge: Knowledge about the 

physical structure of the world also helps in identifying 
suitable options for the arguments of expected predicates. 
For example, given an instance of Runway and an Airport-
Physical, we could assert that the runway is a physical 
part of the airport

3
. Similarly, for an event of type 

SuicideAttack, it should be possible to identify at least 
one patient of the event. Moreover, we can use different 
kind of knowledge to rule out some alternatives. For 
example, an instance of SingleDoerAction cannot have 
more than one agent. This increases the likelihood that 
other entities could be the patients of such events. 
Similarly, it is not possible to have both (eventOccursAt 
x y) and (eventOccursAt x z) when y and z are disjoint.   

Learning new facts which could extend the deductive 
closure is a very interesting problem. Traditional inductive 
learning methods need many examples for constructing a 
model of the target concept. In an open-ended question 
answering system, it is difficult to come up with the small 
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 The KB has information which helps us to reason that runways are 

physical parts of airports. 



set of target concepts because the list of potential queries is 
unknown. Therefore, we believe that a different method for 
learning to reason is needed.   

We are using a connection graph approach to suggest 

plausible deductive rules.  In our approach, we construct a 

connection graph from ground facts and use a spreading 

activation algorithm to find paths.  For example, 
(biologicalMother ChelseaClinton HillaryClinton) 

will be represented by two nodes ChelseaClinton and 

HillaryClinton. The edge between these nodes is labeled 

biologicalMother. A query like (acquaintedWith  

BillClinton HillaryClinton) would involve 

representing the KB as a graph and finding a path between 

the nodes labeled BillClinton and HillaryClinton.  
Of course, spreading activation networks do not have 

any mechanism for enforcing consistency on possible 
inferences. For example, path 1 shown below is relevant 
for our query. However, path 2 is very general and cannot 
be used for inferring any specific information.  

(biologicalMother ChelseaClinton HillaryClinton), 

(father ChelseaClinton BillClinton)    …..(Path 1) 
 

(familyName HillaryClinton “Clinton”), 

(familyName BillClinton “Clinton”)      …(Path 2) 

Therefore, we need to augment the expressive power of 
connection graph methods by a filtering mechanism to 
prune incorrect inferences. In this example, we need to 
infer that predicates like biologicalMother and father 
are relevant for inferring the predicate in the target query 
acquaintedWith whereas predicates like familyName are 
not.  

We believe that knowledge patterns written in terms of 
high-order predicates can play an important role in 
enforcing consistency. Such patterns, if extracted from 
existing axioms, would help in extending the deductive 
closure by generalization. For example, the rule below 
represents that predicates belonging to the collection 
FamilyRelationSlot could be combined to justify 
predicates of type PersonalAssociationPredicate.  

FamilyRelationSlot* � PersonalAssociationPredicate                                      

This rule identifies path 1 as plausible because 
biologicalMother and father are instances of 
FamilyRelationSlot and acquaintedWith is an instance 
of PersonalAssociationPredicate. On the other hand, the 
predicate in path 2, familyName, does not satisfy the 
constraints of any rule. 

Currently we are working on such a method which uses 
these high level predicates for enforcing consistency.  We 
suspect that a number of diagnostic strategies will be 
needed to understand errors and prevent them in future 
inferences. For example, assertions like (bordersOn 

SeaOfJapan KoreanPeninsula) and (bordersOn 
SeaOfJapan Russia) cannot be used to infer (bordersOn 
Russia KoreanPeninsula).  A LbR system should be able 
to learn that bordersOn is not a transitive relation. Our 
current focus is on finding a small set of learning strategies 

which could help us in diagnosing incorrect answers and 
identifying missing facts.    

Analogical Dialogue Acts 

Analogies are commonplace in explanatory texts.  Distant 
cross-domain analogies are often used to explain novel 
ideas, as when water flow is used to explain electricity.  
Within-domain analogies are also commonly used to 
connect ideas in useful ways.  For example, Figure 4 
illustrates how an analogy with mining gold can be used to 
explain the economics of solar energy.    The first 
paragraph starts with a question, setting up the target 
domain of the analogy, and then introduces the base 
domain of the analogy, which presumably is more familiar 
to the reader.  The second paragraph starts laying out the 
correspondences of the analogy, then introduces several 
inferences.  The third paragraph details further inferences 
that the author wants you to draw from the analogy.  Such 
analogies are a powerful way to communicate complex 
ideas.  One of our goals is to understand how this process 
works. 

Our working hypothesis is that there are a set of 
analogical dialogue acts that are used in communicating 
analogies.  Like other dialogue acts, they have criteria by 
which they can be recognized, and a set of implied 
commitments and obligations for the dialogue participants.  
We believe that their organization follows directly from the 

If sunlight is free, why hasn't solar energy been used 

before to heat houses and produce electricity? […] Let's 

suppose you owned a gold mine that contained only very 

low-grade gold ore.  You would have to do a lot of digging 

before you got even a little gold. If you bought some 

expensive mining equipment, you could process much more 

of the low-grade ore and get more gold. Thus, even though 

the gold itself is free, it would be very costly to get very 

much of it out of the mine.  […] Many gold mines in Utah 

that have only low-grade ore were closed down years ago; 

some have recently reopened because the price of gold has 

increased enough to make mining it worthwhile. 

Solar energy is like the low-grade ore. The sun's rays 

must be "mined," or collected, and then transformed into 

useful heat or electricity before they are worth anything. A 

solar energy system helps you get "free" solar energy, just 

as the mining equipment helps you get "free" gold. But, like 

mining equipment, a solar energy system can be very 

expensive - perhaps more than the sun's energy is worth. 

[…] Just as many gold mines in Utah were shut down 

when it became too costly to mine their gold, many solar 

hot-water heaters used in Florida and California during the 

1950s were shut down when the cost of electricity was so 

cheap. Recently the cost of heating by gas, oil, and 

electricity has risen so much that solar energy systems are 

once again worthwhile, much as the Utah gold mines have 

once again become profitable because of the rise in the 

price of gold. 

Figure 4: A complex analogy from [Buckley, 1979] 



concepts of Gentner’s (1983) structure-mapping theory.  In 
structure-mapping, analogical matching takes as input two 
structured, relational representations, the base and target, 
and produces as output one or more mappings.  Each 
mapping consists of a set of correspondences, identifying 
how entities and statements in the base align with entities 
and statements in the target.  Mappings can also contain 
candidate inferences, statements in the base that are 
projected onto the target, using the correspondences of the 
mapping.  The candidate inferences represent conjectures 
about the target, and constitute a source of analogy’s 
generative power.  Here is the initial catalog of analogical 
dialogue acts we are working with, focusing on their 
functional role in communicating the intended analogy: 

Introduce base/target: The descriptions to be matched 
must be introduced.  Depending on circumstances, this can 
be as telegraphic as naming them, describing each in detail 
up front, or anywhere in between.  One of the key 
problems is that the sender and recipient may have quite 
different models of the base as well as the target, and can 
construe either of them (as expressed linguistically) in 
multiple ways using their knowledge of the world.   If the 
linguistic cues are ambiguous, dynamic case construction 
(Mostek et al 2000) could be used to search for construals 
of both base and target that lead to significant overlap.   
For instructional texts, the recipient is assumed to not 
understand the target well, if the analogy is to be 
informative, so introducing the base tends to be done more 
carefully, to circumscribe the intended content and perhaps 
to fill in some details of the base that the recipient might 
not easily derive or know (e.g., closing of mines in Utah). 

Introduce/block correspondence:  These acts describe 
what is intended to go with what in the analogy, or block 
correspondences that a listener might otherwise be tempted 
to make.  In Figure 4, “Solar energy is like the low-grade 
ore” is an example of introducing a correspondence. 

Introduce/block candidate inference: These acts describe 
what inferences the sender intends the recipient to draw, or 
blocks inferences that otherwise might be tempting.  The 
last sentence of the second paragraph of Figure 4 is an 
example of candidate inference introduction. 

Introduce alignable difference:  Alignable differences 
are differences that are connected an analogy’s 
correspondences (Gentner & Markman, 1994).  Alignable 
differences are sometimes introduced via diagrams 
(Ferguson & Forbus, 1995). 

We are currently working on identifying linguistic 
signals for recognizing analogical dialogue acts in text and 
in text/diagram combinations.  For example, a sequential 
pair of sentences (sometimes separated by a semicolon) 
with parallel syntax, the first about the base and the second 
about the target, suggests correspondence introduction.    
The third paragraph of Figure 5 indicates that these can be 
combined in interesting ways; it strengthens the analogy by 
combining correspondence introduction with adding a 
novel fact about the target, which helps strengthen the 
believability of the analogy.   

We are also working on dialogue management strategies 
that use structure-mapping operations to respond to, and 
generate, these actions.  For example, we suspect that 
recipients maintain evolving descriptions of the base, 
target, and best conjectured mapping, to generate 
expectations about subsequent exchanges.  Our model of 
analogical mapping, the Structure-Mapping Engine 
(Falkenhainer et al 1989; Forbus et al 1994), has several 
features that support this.  SME can incrementally extend 
its mappings as information is added to the base or to the 
target, which is important for handling introduction of base 
and target information.  SME can also take in constraints 
on mappings, i.e., the effect of an accepted correspondence 
introduction act is to add a requiredCorrespondence 
constraint to SME, and blocking a correspondence will 
lead to adding an excludedCorrespondence constraint.   
 

Discussion 

We believe that learning by reading is one of the key 
scientific problems for artificial intelligence.  Systems that 
can communicate fluently via combinations of text, 
sketches, and analogies, and can manage the extension of 
their own knowledge and skills, could revolutionize the 
way people and software interact.   The first generation of 
LbR systems showed that AI learning by reading systems 
were now possible.  The next generation must expand the 
range of materials that can be handled, and show that these 
ideas can scale.  For the narrow/deep region of the LbR 
spectrum, the next step in scale consists of textbook 
chapters, where a set of interrelated ideas are expressed in 
a coherent fashion across multiple paragraphs.  Our 
Explanation Agent project is exploring these issues, for 
explanatory material that combines texts with diagrams, 
and uses analogy as a communication device.   

While this is clearly work in progress, we believe it is 
promising.  Our medium-term goal is for EA to both 
understand multiple chapters of material, and use material 
from earlier chapters in learning later chapters.  

In the longer term, as both the broad/shallow and 
narrow/deep regions are better understood, it will be time 
to tackle the broad/deep region of potential LbR systems.  
This will involve web-scale text processing and visual 
processing of bitmaps (thus overcoming the confines of 
syntax and media types that define the narrow region) and 
deep conceptual-level representations of the content (thus 
overcoming the confines of the word-level representations 
that define the shallow region).    
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