

Graph-Based Reasoning and Reinforcement Learning for Improving Q/A

Performance in Large Knowledge-Based Systems

Abhishek Sharma and Kenneth D. Forbus
Qualitative Reasoning Group, Northwestern University

Evanston, IL 60208, USA

{a-sharma, forbus}@northwestern.edu

Abstract

Learning to plausibly reason with minimal user intervention
could significantly improve knowledge acquisition. We
describe how to integrate graph-based heuristic
generalization, higher-order knowledge, and reinforcement
learning to learn to produce plausible inferences with only
small amounts of user training. Experiments on
ResearchCyc KB contents show significant improvement in
Q/A performance with high accuracy.

 Introduction and Motivation

Question answering is an important application for AI

systems. Inference based Q/A systems have an advantage

over information extraction systems because they can

reason and can provide explanations for their answers.

However, knowledge base construction is difficult and

tedious. One solution to this problem is to exploit

whatever learning strategies are available to populate a

knowledge base and use feedback to learn to reason. For

example, learning by reading systems [Matuzek et al 2005;

Forbus et al 2007] are currently better at providing ground

facts than correct, fully quantified logical axioms. Being

able to learn plausible patterns of inference over ground

facts could significantly improve the scalability of

knowledge base construction. Such plausible inferences

also help solve a second problem in reasoning with large

KBs: Typically the set of logically quantified axioms has

woefully low coverage. At this point it is far from clear

that human reasoning rests on massive sets of correct

logically quantified axioms, and some interesting evidence

against it (e.g., the Wason task). While prior work has

explored plausible inference schemes (e.g. [Collins 1978])

we are also concerned with learning to do such reasoning.

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

Since human attention is a scarce resource, our goal is to

minimize the amount of feedback users must provide.

 This paper shows how to integrate graph search, higher-

order knowledge representation, and reinforcement

learning to learn reliable patterns of plausible reasoning

from ground facts. Given a fully ground query, we show

how to incrementally search the facts which mention the

entities in it guided by a set of plausible inference patterns

(PIPs). PIPs are similar to knowledge patterns [Clark et al

2000], but are expressed in terms of higher-order concepts

in the knowledge base, specifically predicate type

information. Since the number of predicate types is much

smaller than the number of predicates, this greatly reduces

the size of search space. We show that the quality of

inference chains of PIPs can be learned by reinforcement

learning.

We begin by discussing other related work. We then

discuss the idea of PIPs and how they are defined in terms

of predicate types. How reinforcement learning is used to

learn the quality of answers is discussed next. We describe

results and conclude in the final section.

 Related Work
Researchers from the fields of Information Retrieval,

Natural Language Processing, Databases and Logical

Inference have contributed to the advancement of question

answering technologies [Brill et al 2002] [Prager et al

2004]. Overviews of question answering techniques can be

found in [Belduccinni et al 2008, Molla and Vicedo 2007].

A comparison of challenge problems and different

approaches has been discussed in a recent IBM report

[Ferrucci et al 2009]. Learning Bayesian networks for

WordNet relations for QA systems [Ravichandran and

Hovy 2002] and surface patterns from natural language

text [Molla 2006, Grois and Wilkins 2005] have been

discussed. Our work is different in that we are trying to

improve the performance of a plausible inference based

Q/A system by learning to reason. Other learning to reason

jenn
Typewritten Text
Sharma A. and Forbus, K. D. (2010). Graph-Based Reasoning and Reinforcement Learning for Improving Q/A Performance in Large Knowledge-Based Systems. AAAI Fall Symposium on Commonsense Knowledge, Arlington, VA.

jenn
Typewritten Text

frameworks [Khardon 1999] have been explored.

However, their efficacy for improving Q/A performance is

not known. Reinforcement learning has been used for

learning control rules for guiding inference in ResearchCyc

KB [Taylor et al 2007]. To the best of our knowledge,

there has not been prior work which develops a method for

providing plausible explanations for queries (without using

logically quantified axioms) with a learning framework.

Representation and Reasoning

We use conventions from Cyc in this paper since that is the
major source of knowledge base contents used in our
experiments

1
. We summarize the key conventions here

[Matuszek et al 2006]. Cyc represents concepts as
collections. Each collection is a kind or type of thing
whose instances share a certain property, attribute, or
feature. For example, Cat is the collection of all and only
cats. Collections are arranged hierarchically by the genls
relation. (genls <sub> <super>) means that anything that
is an instance of <sub> is also an instance of <super>. For
example, (genls Dog Mammal) holds. Moreover, (isa
<thing> <collection>) means that <thing> is an
instance of collection <collection>. Predicates are also
arranged in hierarchies. In Cyc terminology, (genlPreds
<s> <g>) means that <g> is a generalization of <s>. For
example, (genlPreds touches near) means that touching
something implies being near to it. The set of genlPreds
statements, like the genls statements, forms a lattice. In
Cyc terminology, (argIsa <relation> <n> <col>)

means that to be semantically well-formed, anything given
as the <n>th argument to <relation> must be an instance
of <col>. That is, (<relation>……<arg-n> …) is
semantically well-formed only if (isa <arg-n> <col>)
holds. For example, (argIsa mother 1 Animal) holds.
We use Cyc’s predicate type hierarchy extensively.
PredicateType is a collection of collections and each
instance of PredicateType is a collection of predicates.
The predicates in a given predicate category represented in
the KB are typically those sharing some common feature(s)
considered significant enough that the collection of all such
predicates is useful to reify

2
. Instances of PredicateType

include TemporalPartPredicate, SpatialPredicate,

Goals-Attitude-Topic, PhysicalPartPredicate and
PropositionalAttitudeSlot. ResearchCyc can be viewed

1
 We use knowledge extracted from the ResearchCyc

knowledge base with our own reasoning system, instead of

using Cycorp’s reasoning system.
2
 http://research.cyc.com

either as incorporating higher-order logic or as a first-order
knowledge base with extensive reification. We take the
latter perspective here.

The task of answering questions without using

logically quantified axioms is difficult because it involves

finding arbitrary relations between predicates which could

explain the query. Therefore, we have taken the simpler

approach of building a small sub-graph of relations around

the entities in the query and then assessing the quality of

inference chains between them. This intuition is similar to

connection graphs [Faloutsos et al 2004] and relational

pathfinding, where the domain is viewed as a (possibly

infinite) graph of constants linked by the relations which

hold between the constants [Richards & Mooney 1992].

Since prior knowledge is important for biasing learning,

we leverage existing axioms in the KB to create plausible

inference patterns (PIPs) which are used to keep only more

likely inference chains. These PIPs are created by

replacing predicates in axioms by their predicate types.

PIPs are accepted if they are generated by more than N

axioms. (In this work, N=5). We turn to a concrete

example for illustration.

Let us assume that the system has been asked to

provide a plausible inference for the query

(acquaintedWith BillClinton HillaryClinton). A

small section of the KB relevant for answering this query is

shown in Figure 1. In the first step of the algorithm shown

in Figure 3, e1 is set to BillClinton and e2 is set to

HillaryClinton. For simplicity, let us assume that we

have just one PIP:
FamilyRelationSlot(?x,?y) AND

FamilyRelationSlot(?y,?z) →

PersonalAssociationPredicate(?x,?z) [PIP1]

This pattern represents the knowledge that two predicates

of type FamilyRelationSlot can plausibly combine to

infer assertions involving personal associations. This

representation has been chosen because we believe that

predicate types like SubEventPredicate,

PhysicalPartPredicate and CausaltyPredicate provide

a meaningful level of abstraction for identifying plausible

inference patterns. For instance, all predicates of type

SubEventPredicate can be used for proving

eventPartiallyOccursAt queries
3
. Similarly, all

predicates of type PhysicalPartPredicate are relevant for

proving objectFoundInLocation queries
4
.

3
 Some examples of SubEventPredicate predicates are

firstSubEvents, cotemporalSubEvents,

finalSubEvents etc.
4
 Some examples of PhysicalPartPredicate are

physicalParts, internalParts, northernRegion etc.

Figure 1: Plausible inference example

HillaryClintonBillClinton

ChelseaClinton

“Clinton”
familyName

daughter

spouse

familyName

father

Therefore, learning knowledge in terms of predicate types

is easier and more natural. The relative tractability of this

formulation can also be seen by noting the difference

between the sizes of search spaces. Learning to distinguish

between correct and incorrect derivations of length k

involves searching in a space of size N
k
, where N is the

size of vocabulary. In our KB, the number of predicates is

24 times larger than the number of predicate types.

Therefore, learning PIPs in terms of predicate types is

significantly easier. The algorithm FPEQ (see Figure 3)

constructs a graph around the entities mentioned in the

query and returns explanations which plausibly entail the

query. Steps 1-3 perform initialization, with the path search

being handled in Step 4. It maintains a list of partial paths

which are extended by retrieving facts involving the

frontier entities
5
. The algorithm terminates when all paths

which match the antecedents of the available PIPs are

found. In the previous example, acquaintedWith is a

PersonalAssociationPredicate predicate; therefore the

pattern PIP1 is relevant for this query. The algorithm

shown in Figure 3 finds paths by successively expanding

nodes at the frontier and keeps the partial paths in the list

Paths. In step 3 of the algorithm, a new path p is created.

Here, p.starting-entity, p.target-entity and p.remaining are

set to BillClinton, HillaryClinton and

5
 The algorithm shown in Figure 3 has been simplified for

clarity. In particular, the algorithm keeps track of bindings

of variables and paths can only be extended when bindings

are consistent.

[FamilyRelationSlot(?x,?y),

 FamilyRelationSlot(?y,?z)]

respectively. Essentially, this means that we are looking for

a path between the nodes labeled BillClinton and

HillaryClinton traversing two edges labeled with

predicates of type FamilyRelationSlot. In Figure 1, a

small section of the graph is shown
6
. In step 4 of the

algorithm, all facts involving the current entity

(BillClinton in this example) are retrieved. The partial

path p is extended by including the fact (father

ChelseaClinton BillClinton) in the partial proof. At

this stage, we are looking for a path from the node

ChelseaClinton to HillaryClinton such that the edge

label is a predicate of type FamilyRelationSlot. Another

expansion of this path with the fact (mother

ChelseaClinton HillaryClinton) satisfies this

requirement, and the path is added to the solutions
7
. The

second path involving two edges labeled ‘familyName’

would not be selected because no PIPs use predicates of

type ProperNamePredicate-Strict to entail

PersonalAssociationPredicate predicates. Similarly,

the PIP shown below would help in proving

6
 For simplicity, the direction of arcs is not shown. The

order of arguments is represented in the PIPs.
7
 The algorithm shown in Figure 3 only finds simple

proofs. A more complete proof procedure would involve

finding a spanning tree between the entities. This can be

done by ensuring that p.current-entity is a list of entities

(and not a single entity).

Algorithm: FindPlausibleExplanationsForQuery (FPEQ)

Input: query: A query for which plausible explanations have to be found

Output: A set of facts which would justify query.

1. Let pred← predicate in query, e1← Entity in first argument position of query, e2← Entity in second argument position of

query, Paths← Ø. Let Solutions← Ø.

2. Let patterns ← Relevant plausible inference patterns for pred

3. For each pattern in patterns

a. Create a new path p. Set p.completed ← Ø, p.remaining ← Antecedents of pattern, p.starting-entity ← e1,

p.target-entity ← e2, p.current-entity ← e1, Add p to the list Paths

4. For each p in Paths

a. Let facts← All ground facts involving p.current-entity

b. For each fact in facts

1. Let ptypes ← Predicate types of the predicate in fact

2. Let E ← Entities in fact

3. For each constraint c in p.remaining

a. If c ɛ ptypes

i. Create a new path p1. Initialize p1← p. Add p1 to Paths

ii. p1.completed ← p.completed + c

iii. p1.remaining ← p.remaining – c

iv. p1.current-entity← E - p.current-entity

v. If p1.remaining = Ø and p1.current-entity = p1.taget-entity then add

p1 to Solutions and Remove p1 from Paths

c. Remove p from Paths.

5. Return Solutions Figure 3

(objectFoundInLocation ArmyBase-Grounds-

FtShafter-Oahu HawaiianIslands) (see Figure 2)8.

SpatialPredicate(?x, ?y) Group-Topic(?z,?y) →

SpatialPredicate(?x, ?z) … [PIP2]

The FPEQ algorithm uses the predicate type hierarchy.

Our inference scheme also simplifies inference by

condensing inference chains. For example, wife is a

PersonalAssociationPredicate; therefore the inference

from wife to acquaintedWith is a one-step process. On the

other hand, using the normal predicate type hierarchy

involves multi-step inferences. For example, the inference

chain from wife to acquaintedWith requires following

axioms.
(← (acquaintedWith ?x ?y)

 (mutualAcquaintances ?x ?y))

(← (mutualAcquaintances ?x ?y) (mate ?x ?y))

(← (mate ?x ?y)(spouse ?x ?y))

(← (spouse ?x ?y) (wife ?x ?y))

As discussed above, the number of predicate types is less

than the number of predicates. Therefore, the predicate

type hierarchy maps the predicates to a smaller space. This

phenomenon speeds up the search because the average path

length between two nodes in this smaller space is less than

what we encounter in a typical predicate hierarchy. This

plays an important role in improving inference in resource

constrained Q/A systems.

 The FPEQ algorithm can be easily extended to handle

queries with variables. This would entail checking that the

node at the search frontier satisfies the argument constraint

of the predicate. For example, let us consider the query

(acquaintedWith BillClinton ?x). When the search

process reaches the node labeled HillaryClinton, it would

notice that all antecedents of the PIP have appropriate

bindings and the entity HillaryClinton satisfies the

argument constraint of the second argument position of

acquaintedWith. Such inference chains will be included in

the solutions.

Learning to Reason

Many learning systems find the correct level of

generalization by trial-and-error. Our approach gets initial

plausible inference patterns by replacing predicates in

axioms by their predicate types. These generalizations

certainly increase the deductive closure but can lead to

8
 We note that groupMembers and

objectFoundInLocation are instances of Group-Topic

and SpatialPredicate respectively.

erroneous answers. For example, the pattern PIP2 shown

above would lead to an incorrect answer if we use

bordersOn as an instance of SpatialPredicate in the

consequent. Therefore, our aim is to design a system which

could learn to identify incorrect search steps from minimal

user feedback without sacrificing the gains obtained from

generalization. This task is complicated by the fact that a

typical user may not be able to identify the incorrect search

choice(s) made during a multistep reasoning process. The

learner should be able to work with delayed feedback

about the correctness of the final answer and learn to find

plausible inferences for queries. We believe that

reinforcement learning is a reasonable method for solving

this problem. Formally, the model consists of (a) a discrete

set of states, S; (b) a discrete set of agent actions, A; (c) a

reward function R: S x A → {-1, 1, 0}and (d) a state

transition function T: S x A → ∏(S), where a member of

∏(S) is a probability distribution over the set S [Kaelbling

et al 1996].

In this context, a state is the list of predicate types

already used during the partially complete search process.

At each step of the reasoning process, the inference engine

has choice points at which it chooses or rejects different

alternatives. It has to assess how useful a particular

predicate type is for completing the proof given the

predicate types already chosen in the current search path.

The actions are the selection of a particular predicate type

for completing the partial assignment of variables. The

value function (or V(s)) is the inference engine’s current

mapping from the set of possible states to its estimates of

the long-term reward to be expected after visiting a state

and continuing the search with the same policy. Q(s, a)

represents the value of taking the action a in state s. We

use the value iteration algorithm [Kaelbling et al 1996] for

learning the plausibility of search paths.

For example, V({Group-Topic}) for proving

objectFoundInLocation would represent the value of

starting with a predicate of type Group-Topic while finding

a solution of an objectFoundInLocation-query. Similarly,

Q({Group-Topic}, Betweenness-Spatial-Topic)

represents the quality of choosing a Betweenness-

Spatial-Topic predicate when the partial search path has

already chosen a Group-Topic predicate. We use a delayed

reward model with user-provided rewards of +1 and -1 for

Figure 2: Another plausible inference example

HawaiianIslands

Oahu-Island-
Hawaii

ArmyBase-
Grounds-

FtShafter-Oahu
groupMembers

objectFoundInLocation

Value Iteration Algorithm

1. Initialize V(s) arbitrarily

2. Repeat step 3 until policy good enough

3. loop for s ε S

a. Loop for a ε A

1. Q(s, a)← R(s, a)+γ ∑S T(s,a, s’) V(s’)

b. V(s) ← max a Q(s, a)

 Figure 4: Value Iteration algorithm

 (From Kaelbling et al 1996)

correct and incorrect answers respectively. Rewards are

generalized via the predicate hierarchy. For instance,

reward statements for spatiallySubsumes are also used

for computing V(s) values for its generalizations like

spatiallyIntersects. The computational complexity of

each iteration of the algorithm is O(|A||S|
2
). In our

experiments, the policy converged in less than ten

iterations.

Experimental Method and Results

To show that these ideas generate more answers compared
to traditional deductive reasoning, we describe a set of
experiments. Five sets of questions were selected based on
the availability of ground facts in KB and their relevance in
learning by reading [Forbus et al 2007]. These questions
templates were: (1) Where did <Event> occur? (2) Who is
affected by <Event>? (3) Where is <SpatialThing>? (4)
Who performed the <Event>? and (5) Where is
<GeographicalRegion>? Each question template expands
to a disjunction of formal queries. The parameters in the
question template (e.g., <Event>) indicate the kind of
thing for which the question makes sense. Queries were
generated by randomly selecting facts for these questions
from the KB.

For a baseline comparison, we included all axioms for
these predicates and their subgoals through depth 3. We
used a simple backchainer working on a LTMS based
inference engine [Forbus & de Kleer, 1993]. The depth of
backchaining was limited to three and each query was
timed out after three minutes. All experiments were done
on a 3.2 GHz Pentium Xeon processor with 3GB of RAM.
25% of the queries were used as the training set for
learning the V(s) values. Answers whose V(s) values were
more than a threshold were accepted.

Table 1 compares the performance of FPEQ algorithm
and reinforcement learning against the baseline for the test
set (i.e. remaining 75% queries). Column T is the total
number of queries, with AW being the number that could
be answered given the KB contents, as determined by hand
inspection. The columns P and R indicate precision, and
recall, respectively. The user assessed 334 unique answers
(from the training set) and the feedback was used for
learning the V(s) values. The accuracy of answers provided
by FPEQ algorithm was 73%. We then removed answers
whose V(s) values were below the threshold. The total
number of new answers at this stage is 1010 and the
accuracy has improved from 73% to 94%. The FPEQ
algorithm mainly reduces false negatives whereas
reinforcement learning reduces false positives. Together,
they provide a factor of 2.2 improvements (i.e. 120%
improvement) over the baseline with an average accuracy
of 94%.

It is clear from these results that the ResearchCyc KB
contents are not uniformly distributed and different regions
have different densities of ground facts. Moreover, some
questions are easier to answer than others. For example,
the accuracy for Expt. No. 5 is significantly better than the

accuracy for Expt. No. 3. We believe that this is due to the
fact that it was possible to generate answers for queries
involved in Experiment 5 from simple reasoning on a tree-
like hierarchy. By contrast, queries involved in Experiment
3 needed more general inference.

As mentioned above, 6% of the derived answers were

incorrect. Moreover, the last column in Table 1 shows that

some answers are still not being generated by the algorithm

proposed here. Therefore, we would like to know the types

of failures associated with these missed and incorrect

answers. Knowledge of the causes of such failures would

help the researchers prioritize their research goals. The

second column of Table 2 (TC) shows the total number of

corrective actions needed to obtain all answers correctly. It

is basically the sum of false positives and false negatives

for the algorithm FPEQ. The other columns of Table 2

show our by-hand analysis of what additional learning

strategies would be required to improve performance

further. We have found that randomly chosen training set is

imbalanced and leads to redundancy. We believe that a

training set which would represent all sections of the KB

without redundancy would be smaller and lead to better

results. The third column (labeled A) in Table 2 shows the

number of problems which would be solved by a better

training set. In some cases, we found that we need to

augment the graph representation so that it could handle

functions (e.g. (industryFacilities

(IndustryOfRegionFn OilIndustry SaudiArabia)

Iraq-SaudiArabiaPipeline)), and quantified assertions.

The number of such cases is shown in the column labeled

B. The column labeled C shows cases when additional

knowledge would have helped. Cases where a PIP needs to

be replaced by a more specific pattern in terms of existing

predicate types are indicated by D, and cases where a new

predicate type between existing predicate types would

improve matters are indicated by E. Note that the amount

of training data is small compared to the relative

improvement for each experiment.

Exp.

No.

Query

sets

T AW P R

1

Baseline 833 412 1.00 0.51

FPEQ 833 412 0.95 0.87

2

Baseline 200 61 1.00 0.42

FPEQ 200 61 0.92 0.77

3 Baseline 1834 433 1.00 0.32

FPEQ 1834 433 0.92 0.88

4 Baseline 953 226 1.00 0.34

FPEQ 953 226 0.93 0.93

5 Baseline 1309 724 1.00 0.43

FPEQ 1309 724 0.97 0.94

Table 1: Summary of Inference Results. Experiment
numbers are the same as query numbers

Conclusion

Learning to reason, while minimizing user intervention,
is an important problem. We have shown how plausible
inference patterns, expressed in terms of higher-order
knowledge and learned via reinforcement learning, can be
used to reason with reasonable accuracy. The use of
predicate types for representing PIPs leads to a succinct,
easily learnable and tractable representation. The FPEQ
algorithm mainly reduces false negatives whereas
reinforcement learning reduces false positives. By
integrating them, we get a 120% improvement over the
baseline with an average accuracy of 94%.

 While these experiments used the contents of
ResearchCyc, we believe they would be applicable to any
large-scale KB whose predicate types were classified
sensibly. Our technique is especially suitable for
knowledge capture because it exploits ground facts, which
are much easier to gather than logically quantified facts.
We believe that this technique can be used to help
bootstrap intelligent systems and reduce the dependence on
hand-crafted axioms.

Our results suggest three lines of future work. First, we
found that a randomly chosen training set does not
represent all regions of the KB adequately. Finding these
gaps in coverage could be used to suggest new learning
goals for learning by reading and other forms of
knowledge capture. Second, being able to refine plausible
inference patterns to use more specific predicate types
would improve accuracy and coverage. Finally, plausible
inference patterns could be used as an intermediate stage
for postulating new logically quantified statements,
perhaps by using a technique like relational reinforcement
learning approach [Dzeroski et al 2001] to carry out the
refinements.

Acknowledgements

This research was funded by the Intelligent Systems

program of the Office of Naval Research.

References:

 M. Belduccinni, C. Baral and Y. Lierler (2008).

Knowledge Representation and Question Answering. In Vladimir

Lifschitz and Frank van Harmelen and Bruce Porter, ed In

Handbook of Knowledge Representation.

 E. Brill, S. Dumais and M. Banko (2002). An analysis of

the AskMSR question-answering system. Proc. of ACL, 2002.

 P. Clark, J. Thompson and B. Porter (2000). Knowledge

Patterns. Proc. of KR, 2000

 A. Collins. (1978). Human Plausible Reasoning. BBN

Report No. 3810.

 S. Dzeroski, L. de Raedt and K. Driessens (2001).

Relational Reinforcement Learning. Machine Learning, 43, pp. 7-

52

 C. Faloutsos, K. S. McCurley and A. Tomkins (2004).

Fast Discovery of Connection Subgraphs. Proc. of KDD, 2004.

 D. Ferrucci, E. Nyberg et al (2009). Towards the Open

Advancement of Question Answering Systems. IBM Research

Report. RC24789 (W0904-093), IBM Research, New York.

 K. Forbus & J. de Kleer (1993) Building Problem

Solvers. MIT Press

 Forbus, K., Riesbeck, C., Birnbaum, L., Livingston, K.,

Sharma A., and Ureel, L. (2007). Integrating Natural Language,

Knowledge Representation and Reasoning, and Analogical

Processing to Learn by Reading. Proceedings of AAAI-07

 E. Grois and D. Wilkins (2005). Learning Strategies for

open-domain natural language question answering. Proc. of

IJCAI, 2005

 R. Khardon. (1999) Learning Function-Free Horn

Expressions. Machine Learning, 37, pp. 241-275.

 L. P. Kaelbling, M. L. Littman and A. W. Moore. (1996).

Reinforcement Learning: A Survey. Jl. of AI Research, 4, pp.

237-285, 1996

 Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J.,

Schneider, D., Shaw, P., and Lenat, D. 2005. Searching for

common sense: Populating Cyc from the web. Proceedings of

AAAI05.

 C. Matuszek, J. Cabral, M. Witbrock and J. DeOlivieira An

Introduction to the Syntax and Content of Cyc. AAAI Spring

Symposium, Stanford, CA, 2006.

 D. Molla (2006). Learning of Graph-based Question

Answering Rules. Proc. of HLT/NAACL Workshop on Graph

Algorithms for Natural Language Processing. 2006

 D. Molla and J. L. Vicedo (2007). Question Answering in

Restricted Domains: An Overview. Computational Linguistics, 33

(1), pp. 41-61

 J. Prager, J. Chu-Carroll and K. Czuba (2004). Question

Answering Using Constraint Satisfaction: QA-by-Dossier-with-

Constraints. Proc. of ACL, 2004.

 D. Ravichandran and E. Hovy. (2002). Learning Surface

Text Patterns for a Question Answering System. Proc. of ACL,

2002.

 B. Richards and R. Mooney (1992). Learning Relations by

Pathfinding. Proc. of AAAI, 1992.

 M. E. Taylor, C. Matuszek, P. Smith and M. Witbrock

(2007). Guiding Inference with Policy Search Reinforcement

Learning. Proc. of FLAIRS, 2007.

Exp.

No.

TC A B C D E

1 73 47 0 5 19 2

2 18 14 0 0 4 0

3 81 12 1 39 28 1

4 33 14 2 0 16 1

5 66 9 1 33 22 1

Table 2: Distribution of Learning Actions.

