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Abstract 

AI systems and human novices share a difficult problem: repairing incorrect models to improve 

expertise.  For people, the use of analogies during instruction can augment the repair of science 

knowledge. Enabling AI systems to do the same involves several challenges: representing 

knowledge in commonsense science domains, constructing analogies to transfer knowledge, and 

flexibly revising domain knowledge.  We address these issues by using qualitative models for 

representing knowledge, the Structure-Mapping Engine for analogical mapping, and a 

computational model of conceptual change for revising knowledge.  In our simulation trials, we 

initialize the system with one of several student misconceptions of the day/night cycle from the 

cognitive science literature.  The system automatically repairs these misconceptions using an 

analogy, expressed using natural language, by: (1) validating analogical correspondences via user 

feedback; (2) transferring knowledge from the base domain, and (3) constructing new explanations 

to repair misconceptions. 

1.  Introduction 

Repairing incorrect beliefs about the world is a common task during formal education.  Research 
suggests that people more effectively repair incorrect beliefs in commonsense science domains 
when they are presented with an analogy (Vosniadou et al., 2007; Brown & Clement, 1989).  

Unfortunately, our AI systems lack the flexibility of human students when revising commonsense 
science beliefs with analogy, due to four general challenges: 
 

1. Representing imprecise and incomplete knowledge in commonsense science domains. 

2. Creating a mapping between a base and target domains, when the latter has misconceptions. 

3. Transferring knowledge to the target domain. 

4. Revising beliefs in the target domain to accommodate transferred knowledge. 
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This paper presents a model that addresses these challenges.  Our claims are as follows: 
 
1. Qualitative process theory (Forbus, 1984) can represent the commonsense science knowledge 

of novice students. 
2. The Structure-Mapping Engine (Falkenhainer et al., 1989) can compute analogical mappings 

and transfer knowledge across domains, even in the presence of misconceptions. 
3. A computational model of explanation-based conceptual change (Friedman, 2012) can evaluate 

and selectively incorporate knowledge transferred via analogy.   
 

We implemented our model using the Companions cognitive architecture (Forbus et al., 2009).  
We simulate four student misconceptions about the day/night cycle from the cognitive science 
literature.  For each misconception, we use the analogy from Vosniadou et al. (2007): that the 
day/night cycle is like the cooking of gyros (a meat roasting vertical rotisserie, commonly found 
in Greek restaurants).  Using formal models of the base (gyros) and target (day/night) domains, 
and hints about correspondences provided via natural language, the system automatically (1) 

computes a mapping between the base and target, (2) interactively checks its analogical 
correspondences with a human teacher, (3) transfers beliefs, and (4) revises its knowledge 
accordingly. 

We begin with an overview of novice mental models of the day/night cycle and how analogies 
have facilitated student learning in this domain.  Then we summarize relevant background and 
describe how our model works. The simulation experiment and its results are described next, 

ending with related and future work.  
Children are not blank slates when they first encounter explanations of the day/night cycle in 

formal education.  Many students use mental models that are flawed, or that are internally 
consistent but scientifically incorrect (Sadler, 1987; Baxter, 1989; Vosniadou & Brewer, 1994).  
Some of these flawed mental models, as well as the correct model, are illustrated in Figure 1.  
These mental models used by students describe processes in the world, including the process of 

the moon  or  clouds moving to block out the sun,  the sun turning off or on,  the sun moving  and 
 
 

 

Figure 1. Mental models of day and night, including simplified correct model (E).  Superscripts 

indicate studies in which mental models were used by students: (1) Sadler (1987); (2) Baxter (1989); 

(3) Vosniadou and Brewer (1994). 

 

*click*

Day Night A:

Moon blocks sun.1,2

Night B:

Clouds block sun.2,3

Night C:

Sun shuts off.1
Night D:

Sun enters Earth.3
Night E:

Earth rotates.
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entering the earth, or the earth rotating.  They make different assumptions about the world, they 
describe different types of processes, and they even make different predictions of how changes in 
the system (e.g., the absence of a moon) would affect day and night.  

How, then, can students repair these flawed mental models, and what cognitive processes are 
responsible?  Vosniadou et al. (2007) hypothesized that a scientific explanation that includes an 
analogy would help students repair their mental models more than an analogy-free explanation.  

Their experiment on 111 Greek
 
third and fifth graders provides evidence for this hypothesis. They 

used an analogy between gyros and the Earth, shown in Table 1.   Students given the analogy 
were more likely to change their explanations to a scientific (or partially-scientific) model than 
students who were not given the analogy. 

2.  Background 

Our model uses qualitative process theory for knowledge representation and reasoning, model 
formulation to assemble this knowledge into explanations, and analogical reasoning to transfer 
this knowledge across domains for reuse.  We discuss each in turn. 

2.1  Compositional Modeling and Qualitative Process Theory 

Simulating human reasoning about dynamic systems makes several demands on knowledge 
representation.  First, it must be capable of representing incomplete and incorrect domain 
knowledge.  Second, it must represent processes (e.g., rotation on an axis, translation along a 
path) and qualitative proportionalities (e.g., the closer a light source, the brighter the light).  Our 

system meets these demands by using qualitative process theory (Forbus, 1984) for representing 
domain knowledge and reasoning about physical processes. 

We use model fragments (Falkenhainer & Forbus, 1991) to formally represent conceptual 
entities, processes, and views (Forbus, 1984) that describe multiple entities.  A model fragment 
called RemoteLighting is shown in Table 2.  It has two participant slots: (1) a source of type 
LightSource which fills the providerOf role

1
 and (2) a lit-object of type SpatialThing  

                                                 
1
 We use the OpenCyc ontology (www.opencyc.org) as a source of everyday concepts and relationships. 

Table 1. Analogy given to students.  All students saw the non-italicized text; only students in the analogy 

condition saw the italicized text. 

The Earth is round. Day changes to night because the Earth turns around its axis. The earth is moving just 

like gyros turns around on the vertical spit while roasting. The sunlight reaches only one side of the Earth 

and on this side it’s day. In the same way, the fire cooks only one side of gyros, the one that is turned 

towards it. On the other side of the Earth, which is not reached by the sunlight, it is night. As the Earth 

turns around its axis, the side where there was night turns slowly towards the Sun and it becomes day. In 

the same way, as the gyros turns around the spit, the side that was not cooked before gradually turns 

towards the fire and starts roasting. On the contrary, the side, where there was day, slowly turns away from 

the Sun and it becomes night. The Moon is not responsible for the day and night cycle. Thus, it changes 

from day to night because the Earth turns around its axis, and the sunlight shines on a different side of 

Earth.  

 

http://www.opencyc.org/
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which fills the recipientOf role.  These participants are constrained to be 
spatiallyDisjoint in order for a RemoteLighting instance to exist over any given source 
and lit-object.  Thus, the constraints describe the instantiation criteria for a model fragment.  
According to the condition, if the light of source is greater than zero, then the 

RemoteLighting consequences are inferred.  Thus, the conditions describe the behavioral 
criteria of the model fragment. 

The consequence statements of RemoteLighting include two influences: (1) the light of 
lit-object is qualitatively proportional to that of the source, and (2) the light of lit-
object is positively affected if lit-object is visibleFrom the source.  The qualitative 
proportionality is also known as an indirect influence in qualitative process theory.  Indirect 

influences describe monotonically increasing or decreasing relationships between quantities.  The 
second influence is between a proposition and a quantity, and it asserts that the quantity will be 
greater in a state where the proposition holds than in a state where the proposition does not, all 
else equal.  Once these consequences are asserted, they describe how the light of an object might 
change, e.g., its light source brightens or dims, or something occludes it. 

2.2  Model Formulation 

Model fragments and QP theory provide formalisms for representing and organizing a domain 
theory as reusable pieces.  Model formulation is the process of assembling these reusable pieces 
into a qualitative model that has predictive and explanatory power.  In this work, we use the 
abductive model formulation algorithm of (Friedman, 2012).  The algorithm is given (1) a set of 

model fragments called a domain theory, (2) a set of propositional statements (e.g., about 
astronomy) called a scenario, and (3) a proposition to justify, such as: 
 
 (greaterThan  

   (MeasurementAtFn (Light Chicago) Day) 

   (MeasurementAtFn (Light Chicago) Night)) 

 

Table 2. A model fragment that describes a relationship between a light source and a lit object. 

ModelFragment RemoteLighting 

 Participants: 

  ?source LightSource providerOf 

  ?lit-object SpatialThing recipientOf 

 Constraints: 

  (spatiallyDisjoint ?source ?lit-object) 

 Conditions: 

  (greaterThan (Light ?source) 0) 

 Consequences: 

  (qprop  

    (Light ?lit-object) 

    (Light ?source)) 

  (positivelyDependsOn 

    (Light ?lit-object) 

    (visibleFrom ?lit-object ?source)) 
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The algorithm chains backwards by finding rules and model fragments that can infer the 
statement, binding participant slots and antecedent variables accordingly, and repeating on the 
antecedent statements recursively, as in Rickel & Porter (1997).  If conditions of model fragments 
are not already known, they are assumed. 

The output is a network of justifications and assertions, as shown in Figure 2.  The justified 
belief is shown at the right, and the supporting justification structure extends to the left.  In this 

case, the system inferred that the light of Chicago positively depends on whether the sun is visible 
from Chicago, and then inferred that this must be the case during the day and not the night.  The 
change in visibility is explained by the sun entering and leaving a container, as in Figure 1(D).  
The situations of entering and leaving a container are other model fragments that are instantiated 
and activated just like RemoteLighting above.  The assertions (circular belief nodes) in Figure 
2 describe model fragment instances that might be active in various scenario states.  Some of the 

assertions are assumptions that have no justification, but must hold for other assertions to be true. 

2.3  The Structure-Mapping Engine 

The Structure-Mapping Engine (SME) (Falkenhainer et al., 1989) is a computational model of 
Gentner’s (1983) psychological theory of analogy and similarity.  SME takes two cases as inputs: 

a base, such as a description of gyros cooking on a rotisserie, and a target, such as a (potentially) 
flawed description of the day/night cycle.  SME automatically produces one or more mappings 
between the base and target, each of which consists of: (1) correspondences between base and 
target items; (2) a numerical similarity score that describes the quality of the mapping; and (3) 
candidate inferences, which are statements that might hold in the target case based on its 
correspondences to the base case.  Candidate inferences may not be deductively sound; they are 

hypotheses that are supported by the comparison.  Candidate inferences are how knowledge is 
transferred across domains by analogy. 
 

 

Figure 2. Subset of justification structure resulting from model formulation.  Circles are propositional 

beliefs and triangles are justifications that associate antecedent beliefs at left with consequences at right. 

Dashed lines indicate additional structure not shown here. 

(isa mfi1 ExitingAContainer)

(isa mfi2 EnteringAContainer)

(providerOf mfi0 TheSun)

(recipientOf mfi0 Chicago)

(posDependsOn (Light Chicago)

(visibleFrom Chicago TheSun))

(isa Chicago 

SpatialThing)

(isa TheSun

LightSource)

(spatiallyDisjoint

TheSun Chicago)

(isa RemoteLighting

ModelFragment)

(isa mfi0 

RemoteLighting)

(greaterThan

(Light TheSun) Zero)

(active mfi0)

(qprop (Light Chicago) (Light TheSun))

(greaterThan

(M (Light Chicago) Day)

(M (Light Chicago) Night))

(enabledBetweenStates Night Day

(visibleFrom Chicago TheSun))

(disabledBetweenStates Day Night

(visibleFrom Chicago TheSun))
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3.  Learning by Analogy and Explanation 

Just as people learn from analogies across domains (Vosniadou et al., 2007), our system repairs 
its knowledge base by (1) transferring knowledge via analogy and then (2) using transferred 
knowledge to construct new qualitative models.  Here we describe our approach, beginning with 
how knowledge is organized. 

3.1  Organizing Knowledge by Explanations 

Our system records the beliefs and justifications of the best explanations for its beliefs.  The 
explanation for a belief b, e.g., b = “Chicago is brighter in day than at night,” is computed in three 
steps: 

 

1. Justifying b via model formulation (e.g., Figure 2). 
2. Reifying all minimal explanations of b (sequences of justifications that fully justify b without 

redundancy).  There may be many, depending on the justification branching factor. 
3. Computing the numerical cost of each explanation and retaining the minimal-cost explanation 

as the preferred explanation for b. 
 

The preferred explanation x for a belief b acts as an index into memory.  All of the beliefs and 
model fragment instances in x are now believed by the system, whereas beliefs and model 
fragments in non-preferred explanations of b are not necessarily believed by the system.  This is 
important, because if the system switches its preferred explanation for b to a different explanation 
x’ this could cause a belief revision.  All beliefs in x’ would then be believed and beliefs 
exclusive to x would no longer necessarily be believed. 

Since beliefs are indexed using preferred explanations, the system revises its beliefs when 
either (1) new information yields a new, lower-cost explanation or (2) new information changes 
the cost ordering of existing explanations.   

Certain artifacts within an explanation incur a cost.  These artifacts and their associated costs 
include: 

 

 Logical contradictions (cost = 100). 
 Assumptions (cost = -log(P(b))) are penalized based on the probability P(b) of the belief b, 

where b is a belief that is not supported by instruction, observation, or antecedent beliefs. 
 Model fragment instances (cost = 2) are penalized to minimize the number of causal 

factors. 
 Model fragments (cost = 4) are penalized to minimize the types of causal factors. 

 Assumed quantity/state changes (cost = 40) are changes within a system that cannot be 
explained. 

 
Importantly, an artifact’s cost is only incurred once.  For example, if the model fragment 
RemoteLighting is present in a previous preferred explanation, then a new explanation that 
uses it will incur zero cost for that artifact.  This means that the system is biased to reuse existing 

models, model types, and assumptions.  This promotes simplicity within and across explanations. 
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3.2  Finding and Handling Contradictions 

Some artifacts, such as contradictions, involve more than one belief.  For a contradiction cost to 
be incurred, each of the beliefs comprising that contradiction must be in a preferred minimal 
explanation or within the adopted domain knowledge context.  Adopted domain knowledge 
consists of beliefs learned from instruction and observation.  They might not be used in preferred 
explanations, but they constrain the space of preferred explanations because they influence the 
cost computation. 

To illustrate, suppose that the system explains that the sun enters the earth to cause the night, 
and exits the earth to cause the day.  This is illustrated in Figure 1(D) and its justifications 
structure is partially plotted in Figure 2.  Suppose that this explanation x is the system’s currently-
preferred explanation for this phenomenon, and that it contains the following statement:  

 
(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun))  

  EnteringContainer) 

 

This statement asserts that EnteringContainer is the only type of event that disables the Sun 
being visible from Chicago, with a similar statement connecting ExitingContainer with 
enabling Chicago’s sun-visibility. 

Next, suppose that we instruct the system that Chicago’s sun-visibility is actually enabled and 
disabled by rotation processes (which we will accomplish using analogy, as described below).  
The following belief is added to adopted domain knowledge: 

 
(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun))  

  Occluding-Rotation) 

 
This contradicts the current preferred explanation.  Contradictions are detected using domain-
general rules, so the following contradiction will be incurred with a cost of 100: 

 
C = {(soleCauseOf-Type 

       (not (visibleFrom Chicago TheSun)) 

       EnteringContainer), 

     (soleCauseOf-Type 

       (not (visibleFrom Chicago TheSun)) 

       Occluding-Rotation)} 

 

The system might be able to reduce cost by revising its explanation preference or construct a new 
explanation altogether to replace this one. 

3.3  Transferring Domain Knowledge via Analogy 

Suppose that the agent holds the beliefs that the sun is contained in the earth at night, and then it 
exits to cause the day.  If the system does not have information to the contrary, this will be the 
lowest-cost, preferred explanation for the day/night cycle. An analogy is one way to provide new 
information to cause the system to change its model.  
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 The analogy given to students in the Vosniadou et al. (2007) study is reproduced in Table 1. 
While our natural language system is capable of processing some complete analogies (Barbella & 
Forbus, 2011), the language system and the compositional models currently use different 

vocabularies.  Since we needed to construct predicate calculus representations representing the 
different misconceptions in any case, to factor out natural language understanding errors, we also 
created a predicate calculus model of the gyros situation, but left out statements such as “The 
moon is not responsible…”, which are implications of the analogy.  We did use natural language 
to express the key correspondences of the analogy, which were used to constrain the comparison 
via SME, using natural language, specifically, "The fire is to gyros, as the sun is to the earth."  

Statements such as these are interpreted as analogical dialogue acts (Barbella & Forbus, 2011) 
that establish correspondences between the entities of the domain.  Specifically, the system 
inferred two required correspondence constraints that were used by SME: 

 
(requiredCorrespondence Gyros PlanetEarth) 

(requiredCorrespondence Fire TheSun) 

 
The cases to be compared were constructed via dynamic case constructors (Mostek et al., 2000) 
that search preferred explanations and adopted domain knowledge for statements that mention 
Gyros or Fire (for the base case) and statements that mention PlanetEarth or TheSun (for 
the target case). 

Given that the student’s understanding of the target domain can be quite far from correct, it is 

entirely possible that a student might not understand the analogy. An analogy can involve many 
correspondences and candidate inferences, some of which might be quite hard for students to 
articulate, and in any case would be far more than is reasonable to ask about in conversation.  
Consequently, the Companion was programmed to only ask about entity correspondences.  For 
each entity correspondence in the best mapping produced by SME, it produces a multiple choice 
question for its human teacher.  Here are two examples: 

 

Companion: I believe Cooking-State corresponds to Day. 

a. That is correct. 

b. Those don't match. 

c. No, Cooking-State does not belong in the mapping. 

d. No, Day-State does not belong in the mapping. 

e. No, neither belongs in the mapping. 

User: a 

 

Companion: I believe Gyros rotating to occlude GyroSide-Cooking from Fire corresponds 

to TheSun entering PlanetEarth so it is occluded from Chicago. 

a. That is correct. 

b. Those don't match. 

c. No, Gyros rotating to occlude GyroSide-Cooking from Fire does not belong in the 

mapping. 

d. No, TheSun entering PlanetEarth so it is occluded from Chicago does not belong in 

the mapping. 

e. No, neither belongs in the mapping. 

User: d 



 

REVISING DOMAIN KNOWLEDGE WITH CROSS-DOMAIN ANALOGY 

 

21 

 The underlying representation is Davidsonian (i.e., events are reified), which is why occlusion 
events can be asked about.  After all of the entity correspondences have been queried (for this 
analogy, there are ten), the Companion computes an updated list of SME constraints from the 

user’s answers.  Based on the second answer (d) shown above, the Companion will not allow 
anything to correspond to the model fragment instance of the sun entering the earth.  If any new 
constraints were identified, a new SME mapping is computed. 

The adopted domain knowledge is extended using the candidate inferences of the best 
mapping.  For the mapping in this example, thirty inferences are recorded, including: 

 
(isa Skolem-rotation Rotation-Periodic) 

(objectRotating Skolem-rotation PlanetEarth) 

(soleCauseOf-Type 

  (not (visibleFrom Chicago TheSun)) 

  Occluding-Rotation) 

(holdsIn Night (between Chicago TheSun PlanetEarth)) 

(ingredients PlanetEarth Skolem-Beef) 

(ingredients PlanetEarth Skolem-Lamb) 

 
Some of these beliefs include terms with prefix Skolem-.  These represent new entities and 
processes that did not previously exist in the target domain.  The inferences in adopted domain 
knowledge affect learning in two ways: (1) some beliefs, such as those describing the earth 

rotating, permit the construction of new explanations; and (2) some beliefs contradict beliefs in 
preferred explanations, which raises their cost and biases the system to change its explanation 
preference and revise its beliefs.  We discuss this next. 

3.4  Cost-Based Belief Revision 

The system previously believed that the mechanism preventing visibility was the sun entering the 
earth, but has just made the analogical inference that a rotation process is responsible.  These 
beliefs are contradictory.  When a contradiction is detected, the system attempts to reduce cost by 
changing its explanation preferences.  We use a greedy revision algorithm (Friedman, 2012) that 
takes a contradiction as input and then (1) finds all explanations that contain a belief from the 
contradiction and (2) for each explanation, it greedily revises the preference to a new explanation 

if it will reduce cost.  This is not guaranteed to find the globally minimum cost, but it is efficient 
and guaranteed to terminate. 

4.  Simulation  

We conducted six simulation trials.  On each trial, the system is initialized with (1) domain 
knowledge of how gyros rotate on a spit and cook one side at a time and (2) one of six possible 
starting models of the day/night cycle: a misconception in Figure 1 (A-D); the correct model in 
Figure 1(E); or no model, where the system is a blank slate.  We do not build the system’s 
explanation by hand; it automatically constructs this from its domain theory. 

For each starting model, we record the number of incorrect analogical correspondences 

corrected by the user, whether the correct model is reached without user assistance (i.e., without 
answering correspondence queries), and whether the correct model is reached with user 
assistance.  For the unassisted trials, we remove all constraints, even those from the original 
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analogical dialogue act, to determine whether the misconception interferes with unconstrained 
analogy. 

The results are shown in Table 3.  When there were no misconceptions (e.g., in the “correct 

model” or “no model” conditions), there were no incorrect correspondences.  Conversely, when 
misconceptions exist in the target domain, incorrect correspondences are computed, and the 
number of incorrect correspondences varies with the misconception.  Without instructor 
intervention, incorrect correspondences confuse the transfer of knowledge and hinder belief 
revision.  For example, in the “Moon blocks sun” example, one of the incorrect correspondences 
includes Gyros corresponding to MoonOfEarth.  This causes the inference that Chicago is on 

the moon, and ultimately leads the system to revise its beliefs, concluding that the moon rotates to 
cause Chicago’s day/night cycle. 

5.  Related Work 

Two earlier systems bear close relation to the approach we have reported here. One of these, 
CARL (Burstein, 1986) was a computer model of analogical learning that learned from multiple 
analogies presented by a teacher.  It modeled students who were tutored on the programming 
language BASIC.  CARL coordinated multiple analogies such as (1) variable assignment is like 
“putting things in boxes” and (2) variable assignment is like algebraic equality.  It constructed 
analogical hypotheses and then revised them when they did not hold in the target domain.  Unlike 

CARL, our system uses qualitative models, it evaluates new hypotheses and explanations using a 
cost function, and it interacts with the user to debug analogical correspondences (whereas CARL 
interacted to debug the hypotheses themselves).  Since our simulation makes an average of 40 
analogical inferences (i.e., hypotheses) in a single analogy, debugging all of them with the user is 
impractical. 

ECHO (Thagard, 2000) is a connectionist model that uses constraint-satisfaction to judge 

hypotheses by their explanatory coherence.  This system creates excitatory and inhibitory links 
between consistent and inconsistent propositions, respectively.  Its “winner take all” network 
means that it cannot distinguish between there being no evidence for competing propositions 
versus balanced conflicting evidence for them.  ECHO requires a full explanatory structure as its 
input.  By contrast, our system generates its justification structure automatically and evaluates it 
using a cost function. 

 

Table 3. Simulation results for six starting models.  SME errors are incorrect correspondences between 

base entities and target entities. 

Starting model 
# SME 

errors 

Correct 

unassisted 

Correct 

assisted 

Moon blocks sun at night 4 No Yes 

Clouds block sun at night 4 No Yes 

Sun shuts off at night 2 Yes Yes 

Sun enters earth at night 3 Yes Yes 

Correct (rotation) model 0 Yes Yes 

No model 0 Yes Yes 
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6.  Discussion 

We have described a system that (1) uses qualitative models to represent humanlike 
misconceptions in a commonsense science domain and then (2) interactively works through an 
analogy to repair its misconceptions.  We tested our system using four misconceptions about the 
day/night cycle from the cognitive science literature, and showed that learning is improved by 
user interaction during analogical reasoning. 

Our simulation results diverge from Vosniadou et al.’s (2007) study in at least one respect.  
Like their study, reading an analogy improved the chances of mental model repair, but our 
simulation is more ready to change its beliefs than the students were.  This is especially 
interesting because the analogy given to the students has direct instructional information that was 
not given to our simulation (e.g. “The Moon is not responsible for the day and night cycle.”) 
There could be several reasons for this.  First, the students did not have the opportunity to 

actively query a teacher, the way the simulation did.  Second, there are very likely individual 
differences between students in how hard they push an analogy, and in their strategies for coping 
with inconsistencies that they find.  A student who sees that her current mapping implies that 
Chicago is on the moon, for example, might simply drop that inference instead of looking for a 
better mapping.  

Analogies are pervasive in science texts and in conversation, so we plan to integrate this 

analogical learning mechanism into our Companions-based learning by reading work. The 
processes of analogical mapping, contradiction detection, and explanation construction are useful 
processes for offline processing and rumination (Forbus et al., 2007) to accommodate new 
information.  
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