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Abstract 

Creating systems that can work with people as apprentices, 

learning from them in natural ways, is a long-standing goal 

of AI. Being able to teach systems new concepts via 

sketching is an important step towards this goal. This paper 

explores the role of qualitative representations in learning 

geographic concepts indicated on 2D maps. We propose 

three principles for representation bias when learning via 

analogical generalization, and describe two dimensions of 

variation in qualitative encoding schemes for 2D maps. An 

experiment with multiple encoding schemes, using Freeciv, 

an open source strategy game, is described. 

Introduction 

Analogical learning over qualitative representations has 

been used to effectively learn spatial concepts (e.g. 

Lockwood et al 2008).  A central problem in learning is 

how to choose (or construct) an appropriate representation 

scheme for learning new concepts. This must be done 

automatically, in order to support learning the broadest 

range of concepts. Analogical generalization can separate 

characteristic structure from irrelevant noise in the input, 

but this assumes that the qualitative representations (1) are 

rich enough to include the important information and (2) 

do not include so much noise that the matching process is 

derailed. This trade-off in analogical retrieval has been 

called the Goldilocks problem (Finlayson & Winston, 

2005). 

 Previous work on learning spatial concepts from 

sketched input (e.g. Lovett, Dehghani and Forbus 2006; 

McLure, Friedman and Forbus 2010; Veselova 2003) 

relied on hand-tuned, fixed encoding schemes. 

Unfortunately, different concepts can require different 

encoding strategies.  For example, on tasks involving 

comparison between simple closed shapes it is beneficial to 

attend to the edges that constitute each shape, because this 

is the level of abstraction at which a handful of entities 

exhibit a number of informative relationships. However, 

when encoding a scene with many disconnected objects, it 

is often useful to begin by attending to the relationships 

between the objects and ignoring their internal structure 

(Lovett and Forbus 2011). There is psychological evidence 

that even though people organize perceptual entities 

bottom up, they seem to attend to them top down 

(Hochstein and Ahissar 2002). Thus quickly determining 

what strategies might be reasonable for a new concept is an 

important problem. 

 This paper investigates what are the properties of good 

encoding strategies for analogical learning, and how can 

they be selected automatically based on the properties of a 

given example. We use a rich simulated environment, the 

open-source strategy game Freeciv.  Freeciv uses a 2D map 

of Earth-like terrain, making it a useful domain for 

exploring learning of geographical concepts. The game 

 
 

Figure 1. Examples are introduced to the system by circling them 

in the CogSketch/Freeciv interface.  
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world map interfaces with CogSketch (Forbus et al 2011), 

our sketch understanding system, to enable human trainers 

to introduce examples by circling them on the map, as 

illustrated in Figure 1.  This fluid style of interaction 

provides a natural way to communicate spatial ideas. 

 In the machine learning community, learning bias is 

sometimes considered a combination of representational 

bias, i.e. a definition of the hypotheses space, and 

procedural bias, i.e. methods for searching the hypothesis 

space (Gordon and des Jardins 1995).  Our goal is to find a 

representational bias that is synergistic with the procedural 

biases of analogical learning, and understand how this 

representational bias can be operationalized for 

geographical concepts in a 2D map. 

 We begin summarizing relevant background about 

sketch understanding and analogical processing. Then we 

discuss some proposed principles for representational bias 

for analogical learning. We discuss several encoding 

schemes and a simple discrimination tree for choosing 

between them.  The effectiveness of this model on learning 

a set of six geographic concepts is evaluated by an 

experiment. Finally, the results are discussed, along with 

related and future work. 

Background 

We start by describing CogSketch and its interface with 

Freeciv, which provides a means of introducing perceptual 

examples to the learning system through a shared sketching 

interface. We then briefly discuss our models for 

analogical learning and classification since representational 

bias inherently interacts with procedural bias. 

Perceptual Encoding Models 

CogSketch 

CogSketch (Forbus et al. 2011) is an open-domain sketch 

understanding system. It takes digital ink as input and 

produces structured, qualitative representations.  The basic 

level of organization for ink in CogSketch is the glyph.  A 

user may segment hand-drawn ink into glyphs, but glyphs 

are also generated by the system.  CogSketch is capable of 

computing various spatial relationships between glyphs, 

including adjacency, relative position (e.g. 2D occlusion), 

topological relationships and relative size.  CogSketch can 

also compute shape attributes of glyphs, such as roundness. 

 CogSketch can operate on glyphs to construct new 

entities on the fly. It can create glyphs from the 

intersection, difference, or union of two existing glyphs. It 

can also create new glyphs by intersecting visible glyphs 

with the drawing pane. CogSketch can decompose a glyph 

into a network of edges that represent either its ink or its 

medial-axis transform (2D skeleton).  Just like at the glyph 

level, there is a collection of qualitative spatial 

relationships and attributes that can be automatically 

computed at the edge level, including various flavors of 

connectedness, relative length, concavity, axis alignment, 

and curvature. See (Lovett and Forbus 2011) for a full 

catalog of edge-level descriptors. 

 The organization of a glyph’s ink into edges is based on 

intersections and discontinuities in the curvature of the ink, 

using a modification of the Curvature Scale Space corner 

detector (Mokhtarian and Suomela 1998).  For edges in a 

medial-axis transform (MAT), we instead separate edges at 

the forks in the MAT and points where there is a 

qualitative change in the radius function, i.e. the distance 

between the points along the MAT and their respective 

closest points on the exterior of the glyph, i.e. their 

generating points. For example, in Figure 2, the section of 

the MAT corresponding to each finger of the hand is 

carved into three pieces as it extends outward from the 

palm: (1) a segment entering the base of the finger where 

the radius function is decreasing, (2) a segment where the 

radius function is approximately constant, and (3) a 

segment at the tip of the finger where the radius function is 

again decreasing.  There are some extensions to the basic 

edge-level vocabulary for describing attributes of and 

relationships between MAT edges. MAT edges may be 

directed (oriented in the direction of decreasing radius 

function) or undirected (along segments where the radius 

function holds constant at a local minimum or maximum).  

weaklyDirectedConnection is an asymmetric 

relationship between a directed edge and an undirected one 

that connects to it, whereas 

stronglyDirectedConnection relates two directed 

edges that are connected head-to-tail. The 

   
Figure 2. A user-drawn hand and its medial-axis transform 

(MAT) as generated by CogSketch. Edges are segmented at forks 

in the MAT as well as qualitative changes in the radius function. 

Edges in orange are segments with a decreasing radius function, 

whereas those in brown have a roughly constant radius function. 



sourceConnection relation holds between two 

connected edges, neither of which is directed toward the 

other. Inversely, sinkConnection relates two connected 

edges, neither of which is directed away from the other.  

The Freeciv/CogSketch Interface 

CogSketch is capable of interfacing with the Freeciv world 

map by communicating through a Lisp-based Freeciv AI 

player (Houk 2004). A base layer is created in the sketch to 

render the terrain tiles of the map. Other layers in the 

sketch are populated with glyphs corresponding to entities 

from the Freeciv world, such as units and cities. 

 Additional layers are created for various types of blob 

representations. A blob is a region in the sketch that 

demarks a cluster of adjacent tiles belonging to some 

category. The most coarse-grained types of blobs are 

continent blobs, which divide the terrain into regions of 

land and water. At a finer granularity are trafficability 

blobs, which subdivide continent blobs into regions based 

on the degree of trafficability of tile types. There are three 

degrees of trafficability for land tiles and two for water 

tiles. At the finest granularity are terrain blobs, which 

subdivide trafficability blobs based on the literal type of 

the tile (e.g. forest, desert, mountain, ocean, lake). 

Importantly, blobs are an entirely ink-based representation 

of clusters of tiles in the Freeciv world; CogSketch treats 

them as domain-independent ink polygons (possibly with 

holes). Therefore the encoding and learning processes 

described in the rest of this paper are applicable to any 2D 

terrain for which blobs can be constructed. 

 At the top of the layer stack is the interaction layer 

where the user can draw additional glyphs by hand, called 

interaction glyphs. In the simulation discussed later, 

examples are introduced to the system by circling regions 

of the map on the interaction layer and providing a textual 

label. Figure 1 provides a snapshot of one such interaction.  

To avoid excessive computation on large maps, the glyphs 

that represent blobs are pruned down to the portion that is 

visible in the sketching pane at the time the stimulus is 

introduced. To maintain consistency during simulation, the 

same zoom (relative to the interaction glyph) and aspect 

ratio are used across all examples. 

Analogical Models for Learning and Classification 

This subsection describes the analogical models used to 

learn from examples and to classify them. 

The Structure Mapping Engine 

SME, the Structure Mapping Engine (Falkenhainer et al. 

1989), is a domain-general computational model of 

Gentner’s (1983) structure mapping theory of analogy and 

similarity.  It takes two structured, relational cases as input: 

a base and a target.  SME computes up to three mappings 

between the base and target. Mappings include a list of 

correspondences between entities and expressions in the 

base and target, candidate inferences which are suggested 

by the mapping, and a numerical similarity score. We 

normalize the similarity score by dividing it by the score 

computed for mapping the base with itself. 

 Structure mapping theory includes a systematicity bias, 

which states that higher-order relations (relations whose 

arguments are relations) have a more significant impact on 

similarity judgments than do lower-order relations, and 

lower-order relations have more impact than surface-level 

attributes. Structure mapping also requires that mappings 

are one-to-one: i.e., an entity or expression in the base can 

correspond with at most one entity or expression in the 

target, and vice-versa. 

MAC/FAC 

During learning and classification our system makes 

repeated use of MAC/FAC (Forbus et al. 1995), a domain-

general computational model of similarity-based retrieval.  

It takes as input a probe case, which is again a structured, 

relational representation, along with a case library of other 

such representations.  In a two-stage process, MAC/FAC 

retrieves up to three remindings from the case library that 

are similar to the probe.  The first stage is an efficient, 

coarse filter that computes dot products between the 

content vectors of each case in the library and that of the 

probe.  The three most similar cases from the first stage 

advance to the second, where SME is used to compute a 

mapping between each one and the probe.  The best 

mapping, or up to three if they are all within 10% of the 

best, is returned as MAC/FAC’s output.  The returned 

remindings include the associated similarity scores and 

SME mappings. 

Learning with SAGE 

SAGE is a computational model of analogical 

generalization descended from SEQL (Kuehne et al. 2000), 

extended with probability (Halstead and Forbus 2005). The 

approach presented here uses SAGE for automatically 

clustering and merging positive examples into 

generalizations. Each user-provided category (label) is 

assigned a generalization context, where positive examples 

are assimilated incrementally and clustered into 

generalizations based on similarity.  Each incoming 

example is first subjected to a selection phase, in which 

MAC/FAC is used to retrieve remindings from the 

generalization context given the incoming example as the 

probe. If the top reminding has a similarity score over the 

similarity threshold, then the new example is assimilated 

into it. That is, if the reminding is a generalization, the new 

example is merged into it, and if the reminding is a 

previous example, the old and new examples are combined 

to form a new generalization. Otherwise, the new example 

is added to the context as an ungeneralized example. The 

merge process updates the probabilities of each statement 

in a generalization, based on their frequency of occurrence 



in the examples in that generalization. Non-identical 

entities that correspond are replaced by new abstract 

entities, not logical variables. 

 As a generalization assimilates more examples, 

incidental features fade into low-probability and eventually 

disappear when below a probability cut-off, whereas 

common features retain high probability.  When the 

generalization participates in future analogical matches, the 

probabilities of statements influence the matching process. 

Classification 

Our classification approach uses MAC/FAC to fetch 

remindings across the union of the SAGE generalization 

contexts for all learned concepts. The label associated with 

each returned reminding is treated as a vote for a concept, 

and each vote is weighted with the similarity score of the 

reminding. The system assumes that the concepts are 

mutually exclusive and thus assigns the highest-voted label 

to the example. 

Encoding Strategies 

Here we describe some new encoding strategies for 

learning spatial concepts via analogical generalization.  We 

begin by describing a set of principles that we believe 

should guide the encoding process, thus defining (at least 

conceptually) a representational bias for the system.  Next, 

we describe a set of encoding schemes designed using 

these principles.  Finally, we describe a dynamic encoding 

strategy (referred to as the Selective Strategy) in which the 

system chooses an appropriate encoding scheme for a 

given example based on the proposed representational 

biases. 

Representational Biases 

To investigate appropriate representational bias for a 

learning system, it is useful to consider its procedural bias.  

The representational bias and procedural bias in a learning 

system may interact synergistically or adversely (Guyon 

and Elisseef 2003; Cardie 1993). In the present system, the 

procedural bias is fixed as we attempt to find a synergistic 

representational bias.  We use background knowledge 

about the procedural bias of the analogical learner and past 

research on qualitative representations of space to propose 

a set of three principles that should lead to a beneficial 

representational bias for learning spatial concepts via 

analogy: sparsity, structure and locality.  

Sparsity 

In light of the Goldilocks problem, reasonably sparse 

representations are preferred to large ones. Representations 

that are too sparse will lack discriminatory power. Bloated 

representations can derail the analogical matching process, 

because they make good matches harder to find. In 

CogSketch, spatial representations that describe 

relationships between more entities tend to result in more 

facts, due to the combinatorial nature of relations, and the 

availability of multi-argument relations.  Therefore, all else 

being equal, an encoding scheme that produces fewer 

entities is preferred to one that produces more entities.  

This rule breaks down for encoding schemes that produce 

fewer than two entities, as discussed next. 

Structure 

Because systematicity is a fundamental bias in SME, it is 

also a fundamental procedural bias in a learning system 

that uses SAGE and MAC/FAC.  It follows that the 

learning system should perform better on input that 

includes a higher degree of structure (i.e. representations 

containing relations are preferred to those containing only 

attributes, and those containing higher order relations are 

preferred to those containing only low order relations).  In 

the Selective Strategy below we operationalize the 

structure bias by seeking encoding schemes that operate on 

multiple blobs rather than just one. Attending to more than 

one entity will allow for at least some relations to be 

encoded, thereby avoiding structure-less cases (i.e., only 

containing attributes). There is an inherent trade-off 

between structure and sparsity. 

Locality 

When the user selects an item in the sketch and introduces 

it as an example, encoding should prioritize information 

about the items in the sketch that are near the selected item.  

Locality is already built into several of CogSketch’s 

algorithms, e.g. positional relationships are only computed 

between glyphs that are adjacent. In our task, the selected 

interaction glyph is a closed shape overlaid on top of a 

map, so the region it encloses is considered the stimulus. 

At least one of the entities that participate in the 

representation should lie completely within the region of 

focus.  Thus the lack of a containment relationship between 

the interaction glyph and at least one participating entity is 

taken as a signal that the current encoding strategy is not 

sufficiently localized. 

Encoding Schemes 

We define an encoding scheme as a partially ordered list of 

queries that are issued to CogSketch.  The results of these 

queries are compiled into a structured, propositional 

description used as a case for analogical learning. The 

queries are partially ordered because some queries are 

constrained by the results of previous queries in the 

scheme. The following three scheme definitions are 

functional; they take a blob-level (continent, trafficability 

or terrain) as input, which determines the exact partial 

order of queries that is instantiated.  Since there are three 

functional schemes and three blob levels, there are nine 

possible encoding schemes. 



Whole blobs 

The Whole Blob encoding scheme first queries for every 

blob glyph at the given blob level that overlaps the 

interaction glyph, and it encodes each overlap as a binary 

relation.  Next, all attributes of the overlapping blob glyphs 

are encoded, including the blob type (e.g. land/water, or 

forest/grassland/mountain/etc.) as well as glyph shape 

information such as the degree of roundness and 

elongation.  Next all pairs of adjacent blob glyphs are 

encoded, where adjacency is determined using the Voronoi 

diagram.  For triples that exhibit a transitive adjacency 

relationship (A is adjacent to B and B is adjacent to C), we 

check for 2-D occlusion (whether B occludes A from C) 

and encode it in the case. This captures a sense of between-

ness. We also encode a relative size relationship for any 

pair of adjacent glyphs in which one is more than twice the 

size of the other.  Finally, for every pair of adjacent glyphs, 

A and B, we encode any topological relationships that hold 

between A and the convex hull of B, as well as those 

between B and the convex hull of A.  This captures when 

one blob is nested within another blob’s concavity. 

Severed blobs 

As with the Whole Blobs scheme, the Severed Blob 

encoding scheme first queries for every blob glyph at the 

given blob-level that overlaps the interaction glyph, and 

the type information for each of these blobs in encoded.  

Every overlapping blob glyph is then decomposed into two 

pieces, one from the intersection between the blob glyph 

and the interaction glyph and another from the difference 

between the blob glyph and the interaction glyph, each of 

which forms a new glyph in the sketch.  Figure 3(D) 

demonstrates how the intersections and differences 

between three blob glyphs and the interaction glyph result 

in seven new (severed) glyphs. The intersection and 

difference relationships are encoded.  From this point 

forward, the queries closely imitate the Whole Blobs 

scheme, except that they operate on the severed glyphs. 

The shape attributes of the severed glyphs are encoded. 

Then their pairwise adjacency relationships between the 

glyphs are encoded, and used to constrain the subsequent 

encoding of occlusion, relative size, and convex-hull 

topological relationships. 

Blob Skeletons 

Like the other two encoding schemes, the Skeleton Blobs 

scheme begins by encoding which blob glyphs overlap 

with the interaction blob.  Next it queries for a more strict 

type of overlap relationship: symmetric bisection.  There is 

a symmetric bisection between two glyphs A and B if 

taking the difference between A and B results in at least 

two new glyphs and taking the difference between B and A 

also results in at least two new glyphs.  In Figure 3(E), the 

land blob has a symmetric bisection relationship with the 

interaction glyph whereas neither water blob does. The 

symmetric bisections between blob glyphs and the 

interaction glyph are encoded, and any blob glyph for 

which a symmetric bisection holds is then decomposed 

using the medial-axis transform. The 

hasMedialAxisEdge relationship is encoded to link each 
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Figure 3. Across the top row are three 

levels of abstraction for blobs: (A) 

continent blobs, (B) trafficability blobs 

and (C) terrain blobs. Blobs at each level 

may be decomposed according to their 

intersections and differences with the 

user’s interaction glyph (D) or using the 

medial-axis transform (E), resulting in 

nine encoding schemes to choose from. 



MAT edge to its parent glyph. To respect sparsity and 

locality, only the MAT edges that overlap the interaction 

glyph are included.  All of the standard qualitative MAT 

edge attributes (length, curvature, axis alignment and 

directed vs. undirected) are encoded for these edges, plus 

any MAT edge relationships that hold for any pair of them. 

(e.g. sinkConnection, weaklyDirectedConnection). 

Scheme Selection with a Decision Tree 

The system has nine possible encoding schemes to choose 

from for a given stimulus. With the intuition that the 

spatial properties of the stimulus can inform which of these 

schemes is most appropriate for striking a balance between 

sparsity, structure and locality, the Selective Strategy was 

designed to dynamically choose an encoding scheme based 

on the region enclosed by the interaction glyph. To 

accomplish this, it uses the simple decision tree shown in 

Figure 3. First, a decision is made about which blob-level 

at which to encode.  The continent level is preferred 

because it is most sparse, but the system only proceeds to 

encode at this level if the interaction glyph overlaps 

multiple blobs here.  Recall that this is how we 

operationalize the structure bias.  If this criterion is not 

met, the search moves to progressively finer-grain blob 

levels until one is found that does meet the criterion or no 

lower levels are available. 

 Once a blob level is chosen, the system chooses between 

the Whole Blob, Severed Blob, and Blob Skeleton 

schemes.  If an entire blob is contained within the 

interaction glyph, we can assume that the contained blob(s) 

is/are the intended focal point(s), so we encode using the 

Whole Blob scheme to capture relevant local relationships 

with neighboring blobs while respecting sparsity by not 

introducing extra entities. Otherwise, if at least one of the 

blobs has a symmetric bisection relationship with the 

interaction glyph, then it is assumed that a subsection of 

the blob’s MAT overlaps with the interaction glyph 

(serving the locality bias), and we pursue the Blob 

Skeleton scheme.  This heuristic may be overly aggressive 

for spatial concepts outside of our dataset but we leave that 

for future work.  The system chooses the Severed Blobs 

scheme as a last resort.  This scheme guarantees that some 

entities will be local to the interaction glyph because it 

generates intersections between the interaction glyph and 

overlapping blobs. However, it typically results in the least 

sparse representations. 

Experiment 

We investigated the efficacy of the nine fixed encoding 

schemes and the Selective Strategy by evaluating their 

performance on a classification task. The learner was 

trained on a set of geographical concepts from the Freeciv 

world, and was then asked to classify a series of unlabeled 

examples. The dataset consisted of 60 examples spread 

evenly across 6 concepts: Isthmus, strait, peninsula, valley, 

island and archipelago. For each of the 10 encoding 

conditions (9 fixed encoding schemes plus the Selective 

Strategy), the learner was evaluated using a 10-fold cross-

validation pattern where each fold included one example of 

each concept. 

Results 

The accuracies for the 10 encoding strategies are shown in 

Table 1.  The classification accuracy for the Selective 

Strategy (encoding scheme selection by decision tree) 

approach was 76.67%.  Chance is at 16.67%.  The 

Selective Strategy condition performed better than any of 

the individual schemes that it ended up selecting for any of 

the concepts in our dataset. A paired t-test over the 10 folds 

revealed that this difference was significant with p < 0.1. 

However, the selective strategy did not end up significantly 

outperforming the best-performing baseline, Whole Terrain 

Blobs, which demonstrated an accuracy of 73.33%. 

 We were interested in which pairs of concepts were 

most confusable for the top-performing schemes. For the 

Selective Strategy, confusion between isthmi and straits 

 Continents Trafficability Terrain 

Whole 45% 65% 73.33% 

Severed 61.67% 48.33% 40% 

Skeleton 58.33% 40% 33.33% 

Selective Strategy 76.67% 

 

Table 1. Classification accuracies for the 9 baseline encoding 

schemes and the proposed Selective Strategy approach. The 

schemes shaded in gray are those that the Selective Strategy 

ended up selecting for at least one stimulus in our dataset. 

  

 

Figure 4. A decision tree for selecting an encoding scheme to use 

based on the properties of region circled by the user. 



accounted for 62% of the misclassified examples – the 

most by far. The pair of concepts confused most by the 

Whole Terrain Blobs scheme was isthmi and peninsulas, 

which accounted for 25% of the misclassified examples. 

This scheme confused 7 distinct pairs of concepts, but it 

never confused straits with isthmi. 

 The decision tree for selecting an encoding scheme 

ended up dividing the examples by conceptual label; all 

peninsulas ended up being encoded with the Severed 

Continent Blob scheme, all isthmi and straits with the 

Continent Blob Skeleton scheme, all archipelagoes and 

islands with the Whole Continent Blobs scheme, and all 

valleys with the Whole Trafficability Blob scheme.  This 

leaves open the possibility that the decision tree to decide 

the encoding scheme is responsible for the classification 

accuracy. The accuracy at chance using the decision tree 

alone to classify the examples directly is 67%.  We 

established using a within-sample bootstrap that the 

Selective Strategy condition outperformed this 

hypothetical “chance given decision tree” condition within 

a 90% confidence interval, thus ruling out this possible 

explanation for the results. 

Discussion 

We proposed a set of principles to guide representational 

bias in a system that learns spatial concepts via analogy. 

Based on these principles, we designed a set of encoding 

schemes for attending to various types of entities at 

different levels of abstraction. We tested each of these 

encoding schemes on a classification task, along with a 

strategy that selects between the available schemes based 

on the spatial properties of a given stimulus. The Selective 

Strategy outperformed the baseline accuracies of the four 

encoding schemes that it ended up selecting, but it did not 

outperform the best-performing baseline, the Whole 

Terrain Blobs scheme.  This is interesting because the best 

performing scheme was deemed by the Selective Strategy 

to be too fine a granularity to use on any of the concepts in 

our dataset, despite the fact that it performed well on them 

overall. This may mean that our encoding schemes are too 

sparse, since the most detailed scheme performed best. 

 The similar performance between the Selective Strategy 

and the Whole Terrain Blobs scheme may result from a 

property of analogical generalization. For example, isthmi 

and straits have nearly identical relational structure when 

encoded by any continent-based scheme. This pair of 

concepts was by far the most confusable for the Selective 

Strategy. The distinguishing features between these two 

concepts are the type attributes (water/land) of the blobs, 

rather than their spatial relationships. Thus classifying 

based on structural similarity alone leads to confusability 

between these concepts at the continent level, despite the 

fact that the important difference is consistently present in 

the input representations. Even though highly structured 

representations are still necessary for properly mapping 

and generalizing these examples, structural similarity alone 

may be insufficient for high-reliability classification. We 

have developed techniques for using near-misses to detect 

subtle distinguishing features during analogical learning 

(McLure, Friedman and Forbus 2010).  Applying that 

technique to this dataset would likely benefit continent-

based schemes (and subsequently the Selective Strategy).  

Interestingly, the Whole Terrain Blobs Scheme never 

confuses straits and isthmi because the land continent blobs 

are always decomposed into configurations of specific 

terrain types whereas the water continent blobs rarely are.  

Thus the distinction that separates this concept pair is 

highly structural for that scheme.  Instead, 

misclassifications for the Whole Terrain Blobs scheme are 

more uniformly distributed across concept pairs, and likely 

would not benefit as much from near-misses. We leave 

testing this hypothesis for future work. 

Related Work 

Qualitative representations of space have been used for 

learning spatial concepts in a number of tasks (Lovett, 

Dehghani and Forbus 2006; McLure, Friedman and Forbus 

2010; Veselova 2003).  Lovett et al. and McLure et al. used 

the same analogical models to learn from structured, 

qualitative representations of sketched input. In both cases, 

encoding schemes were held constant across the examples. 

Veselova created a system to learn and recognize 

qualitative descriptions of sketched symbols. The 

qualitative relationships and attributes were assigned 

adjustable relevance scores, with relevance being at least 

partially determined by global, psychologically inspired 

properties of the sketch. Veselova’s approach focused 

exclusively on edge-level representations, whereas we use 

multiple levels of abstraction. 

 Lovett and Forbus (2011) model perceptual organization 

(separation into entities and relationships between them at 

different levels of abstraction) as a bottom-up process, and 

encoding as a top-down process, by which results of 

comparison at higher levels of abstraction guide 

comparisons at lower levels.  In our case, blobs are 

likewise organized from the bottom-up, as terrain tiles are 

grouped into progressively more abstract clusters, and the 

encoding process begins at the top level and progresses 

downward as necessary. 

 Medial-axis transforms, while a widely used geometric 

technique for generating representative skeletons for closed 

shapes, often result in “hairy” skeletons for noisy contours 

as with any hand-drawn ink. Pruning methods for MATs 

have been an active research topic in the object recognition 



community for some time. MATs in CogSketch are pruned 

using a technique inspired by Bai, Latecki and Liu (2007), 

who use the exterior edge-decomposition of a shape to 

prune its MAT. They achieve impressive results by 

pruning any MAT branch whose generating points lie 

along the same exterior edge. While their exterior contours 

are segmented using Discrete Curvature Evolution, 

CogSketch uses a novel algorithm based on Curvature 

Scale Space methods. The pruning constraint is also 

loosened slightly; MAT edges are not pruned if the 

generating points lie on two different halves of the same 

exterior edge. 

 Our qualitative representations for MATs were heavily 

influenced by shock graphs (Siddiqi et al. 1993).  Shock 

graphs also carve a MAT into segments based on 

qualitative changes in the relationship between medial-axis 

points and their generating points.  Siddiqi et al. proposed a 

custom algorithm for matching shock graphs, whereas we 

generate a structured, propositional representation for input 

into SME.  One key difference is that shock graphs 

distinguished between segments that formed as a result of 

zero-points in the derivative of the radius function based 

on whether they were located at a local maximum, a local 

minimum, or an extended constant region. In all of these 

cases, we create an edge to delimit an extended constant 

region in the radius function, no matter how short the 

resulting edge is.  Preliminary trials revealed that this 

approach was more compatible with SME’s one-to-one 

mapping constraint. 

 The idea of using a selection process to guide encoding 

towards relevant features has precedents. The machine 

learning community has been researching feature selection 

for some time (Guyon and Elisseeff 2003). In fact, a 

decision tree approach was explored early on (Cardie 

1993). These endeavors have mostly dealt with feature-

vector based learning systems.  We believe we are the first 

to attempt something similar to feature selection for 

analogical learning in a spatial domain. 

Future Work 

As mentioned above, we may be able to improve our 

results by incorporating near-misses into the learning and 

classification processes.  However, many geographical 

concepts combine spatial and functional aspects, i.e. hubs 

in transportation networks and formations in military 

operations. Our analogical models should be able to work 

with such information easily. More difficult is using 

metaknowledge to do fine-grained tuning of encoding 

strategies. The probabilistic generalizations produced by 

SAGE might be used to reveal which encoding queries add 

noise to the representations. Similarly, a lack of 

discriminability between particular concepts may suggest 

when an encoding scheme must be elaborated or adjusted 

at a finer granularity.  We may also find that encoding 

schemes can be debugged via user interactions. 
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