
 

 

Clustering Hand-Drawn Sketches  

via Analogical Generalization  

Maria D. Chang, Kenneth D. Forbus 

Qualitative Reasoning Group, Northwestern University 

2133 Sheridan Road, Evanston, IL 60208 

maria.chang@u.northwestern.edu, forbus@northwestern.edu 
 

 

 

 

Abstract 

One of the major challenges to building intelligent 
educational software is determining what kinds of feedback 
to give learners.  Useful feedback makes use of models of 
domain-specific knowledge, especially models that are 
commonly held by potential students.  To empirically 
determine what these models are, student data can be 
clustered to reveal common misconceptions or common 
problem-solving strategies.  This paper describes how 
analogical retrieval and generalization can be used to cluster 
automatically analyzed hand-drawn sketches incorporating 
both spatial and conceptual information.  We use this 
approach to cluster a corpus of hand-drawn student sketches 
to discover common answers.  Common answer clusters can 
be used for the design of targeted feedback and for 
assessment. 

 Introduction   

Sketching and drawing are valuable tools for reasoning 

about space.  Creating visualizations and diagrams lightens 

working memory load and makes spatial inference easier 

(Larkin & Simon, 1987).  Sketching is especially useful for 

learning and instruction in spatially rich subjects, like 

science, technology, engineering and mathematics (i.e. 

STEM fields).  Indeed, spatial skills have been identified 

as a predictor of STEM success (Wai, Lubinski & Benbow, 

2009).  For science education, sketching can be used to 

increase engagement, improve learning and encourage 

encoding across different representations (Ainsworth, Prain 

& Tytler, 2011).   

 Advances in intelligent tutoring systems have opened 

the possibility of creating educational software than can 

support sketching and take advantage of the many benefits 

it has to offer (Valentine et al. 2012).  However, building 
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intelligent sketching software is challenging.  The noisy 

nature of sketches makes them difficult to interpret.  

Consequently, assessing the quality of a student’s sketch 

requires a considerable amount of spatial and conceptual 

reasoning.  With the exception of advanced design 

sketches, most sketches are rough approximations of 

spatial information.  They are rarely drawn to scale and 

often require multimodal cues (e.g. gestures, speech) to 

facilitate understanding.  For example, a sketch of a map 

might contain various shapes that represent different 

landmarks.  The shapes may look nothing like the actual 

landmarks, but may be denoted as landmarks by labels.  No 

one has trouble understanding that a blob can represent 

something that looks physically different; such visual 

information is processed with a grain of salt.  Somehow, 

people are able to focus on the spatially and conceptually 

important information in the sketch and, for the most part, 

ignore irrelevant information.   

 Qualitative representations are a good match for 

sketched data because they carve continuous visual 

information (e.g. 2D location) into discrete categories and 

relationships (e.g. round, right of, etc).  These 

representations enable software systems to reason about 

sketches using the same structured representations that are 

hypothesized to be salient for humans. 

 Since sketches are not always understood in isolation, a 

model of visual comparison that also incorporates 

conceptual information is also important for sketch 

understanding.  Analogical comparison using structure-

mapping (Gentner 1983) allows structured descriptions to 

be compared to each other to evaluate how similar the two 

descriptions are.  The structure-mapping model of analogy 

has built in constraints and biases that are supported by 

psychological research.  Computational models of structure 

mapping have been used in cognitive simulation (Gentner 

& Forbus, 2011; Lovett & Forbus, 2011), physics problems 



solving (Klenk & Forbus, 2009; Lockwood & Forbus 

2009), and question answering (Murdock, 2011).  

Structure-mapping enabled these systems to make more 

human-like comparisons.  In educational software, such as 

Sketch Worksheets (Yin et al. 2010) structure-mapping 

generates comparisons that can be used to assess a 

student’s sketch by comparing it to a pre-defined solution. 

 A major challenge in any intelligent tutoring system is 

determining how to coach students.  When designing 

feedback, instructors must hypothesize what will be hard 

for students.  Such hypotheses are not always data driven 

and can be inaccurate (Nathan, Koedinger & Alibali, 

2001).  Consequently, most successful intelligent tutoring 

systems incorporate detailed cognitive models of the task 

being taught.  Building cognitive models requires research 

on novice misconceptions and strategies (Anderson et al. 

1995).  Some systems also model the strategies of human 

tutors, such as intervention techniques and tutoring 

dialogue (VanLehn et al. 2007).  However, creating 

cognitive models for both correct knowledge and common 

misconceptions for an entire domain is difficult.  On the 

other hand, specific exercises can have easily defined 

misconceptions that can be identified without a full 

analysis of the domain.  By analyzing the work of multiple 

students on an example, common models (some of which 

may be misconceptions) can be mined from the data.  

Although there has been work devoted to assessing student 

knowledge through sketches (Jee et al. 2009; Kindfield, 

1992) and mining information about students from learning 

data (e.g. from hand-coded sketches, Worsley & 

Bliknstein, 2011) we are unaware of any efforts to combine 

automatic sketch understanding and educational data 

mining.  This paper describes an approach for using 

analogical reasoning over hand-drawn sketches to detect 

common student answers. 

 Our hypothesis is that analogical generalization can be 

used to generate meaningful clusters of hand-drawn 

sketches.  We compare analogical generalization to a k-

means clustering algorithm and evaluate its performance 

on a set of labeled (i.e. clustered by hand) student sketches.  

The resulting clusters from the experiments can be 

inspected to identify the key characteristics of each cluster.  

These characteristics can be used to identify student 

misconceptions and to design targeted feedback for 

students.  

Background 

Structure-mapping is the comparison mechanism of our 

clustering approach.  Here we summarize the 

computational models for analogical matching, retrieval 

and generalization that we use.  We then describe Sketch 

Worksheets, which is our sketch-based educational 

software system used to collect and encode hand-drawn 

sketches. 

Structure Mapping 

The structure-mapping engine (SME) (Faulkenhainer, 

Forbus & Gentner, 1989) is a computational model of 

analogy that compares two structured descriptions, a base 

and a target, and computes one or more analogical 

mappings between them.  Each mapping contains a set of 

correspondences, which indicate which items in the base 

correspond to which items in the target, a structural 

evaluation score, which is a measure of match quality, and 

a set of candidate inferences, which are statements that are 

true in the base and hypothesized to be true in the target.  

Several constraints are imposed on the mapping process to 

prevent all potential mappings from being computed and to 

account for certain psychological phenomena.  

Importantly, SME has a bias for mappings with greater 

systematicity, which means that it prefers mappings with 

systems of shared relations. 

 To create sketch clusters, we use SAGE (sequential 

analogical generalization engine), an extension of SEQL 

(Kuenhe et al 2000) which computes probabilities for 

expressions during generalization and retrieves structured 

descriptions using analogical retrieval.  Generalizations are 

created by incrementally introducing exemplars into a 

generalization context.  Each generalization context 

consists of a case library that includes both exemplars and 

generalizations.  For each new exemplar, the most similar 

exemplar or generalization in the generalization context is 

retrieved by an analogical reminding via MAC/FAC 

(Forbus, Gentner & Law, 1995). MAC/FAC computes 

content vectors that measure the relative frequency of 

occurrence of relations and attributes in structured 

representations.  It finds the maximum dot product of the 

vector for the probe with the vectors of everything in the 

generalization context. This step may retrieve up to three 

items and is analogous to a bag of words approach to 

similarity, albeit with predicates.  These items are then 

compared to the probe using SME and the item with the 

highest structural evaluation score is returned.  

 The reminding returned by MAC/FAC (either an 

exemplar or an existing generalization) is merged with the 

new exemplar if their similarity is above a pre-defined 

assimilation threshold.  If the best match is a 

generalization, the new exemplar is added to it.  If the best 

match is another exemplar, then the two are combined into 

a new generalization.  If there is no best match above the 

assimilation threshold, then the new exemplar is added 

directly to the case library for that generalization context.  

It will remain an exemplar in the generalization context 

until it is joined with a new exemplar or until there are no 

more exemplars to add. 



 The resulting generalizations contain generalized facts 

and entities.  Each fact in a generalization is assigned a 

probability, which is based on its frequency of occurrence 

in the exemplars included in the generalization.  For 

example, a fact that is true in only half of the exemplars 

would be assigned a probability of 0.5.  Thus entities 

become more abstract, in that facts about them “fade” as 

their probability becomes lower. 

 

Sketch Worksheets 

Sketch Worksheets are built within CogSketch (Forbus et 

al 2011), our open-domain sketch understanding system.  

Each sketch worksheet includes a problem statement, a 

pre-defined solution sketch and a workspace where the 

student sketches his or her candidate answer.  As part of 

the authoring process, the worksheet author describes the 

problem and sketches an ideal solution.  CogSketch 

analyzes the solution sketch by computing qualitative 

spatial and conceptual relations between items in the 

sketch.  The worksheet author can then peruse these 

representations and identify which facts are important for 

capturing the correctness of the sketch.  The author can 

also identify which drawn elements have quantitative 

location criteria by defining quantitative ink constraints, 

which define a tolerance region for a particular drawn 

element.  If the student’s drawn element falls outside of the 

tolerance region, it is considered incorrect.  If it falls within 

the tolerance region, it is considered correct.   

 The difference between these two criteria types can be 

illustrated by two different worksheet exercises.  Consider 

a worksheet that asks a student to draw the solar system.  

The exact location of the sun does not matter, as long as it 

is contained by the orbit rings of other planets.  In other 

words, its location is constrained by its location relative to 

other drawn entities.  Alternatively, consider a worksheet 

that asks a student to identify the temporal lobe on a 

diagram of the human brain.  The absolute location of the 

drawing denoting the temporal lobe would be important.  

For an element whose location is constrained relative to an 

absolute frame of reference (e.g. a background image), 

quantitative ink constraints are necessary. 

 Sketch Worksheets have been used in experiments on 

spatial reasoning as well as classroom activities in 

geoscience and elementary school biology.  The sketches 

used in the experiments described in this paper were 

collected using sketch worksheets. 

Clustering via Analogical Generalization 

Clustering is achieved by performing analogical 

generalization over student sketches.  The clustering 

algorithm adds the sketches in random order, using the 

SAGE algorithm described above.  A single generalization 

context is used, i.e. it operates unsupervised, because the 

goal is to see what clusters emerge.   

Encoding 

A major challenge to clustering sketches is choosing how 

to encode the information depicted in each sketch.  Each 

sketch contains a wealth of spatial information, not all of it 

relevant for any particular situation.
1
 In order to highlight 

visually and conceptually salient attributes and 

relationships, we harness information explicitly entered by 

the student and the worksheet author.  More specifically, 

we filter the underlying representations in each sketch 

based on the following principles: conceptual information 

is critical, quantitative ink constraints must constrain 

analogical mappings, and worksheet authoring should 

guide spatial and conceptual elaboration. 

Conceptual Information 

Every sketch worksheet comes equipped with a subset of 

concepts from an OpenCyc-derived knowledge base.  This 

subset contains the concepts that may be used in the 

worksheet and are selected by the worksheet author to limit 

the conceptual scope of the exercise.  These concepts are 

applied by students to elements of their drawing via 

CogSketch’s conceptual labeling interface.  This is useful 

for education because the mapping between shapes and 

entities is often one to many.  While visual relationships 

are computed automatically by CogSketch, conceptual 

relationships are entered by sketching arrows or 
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Figure 1: Four example student sketches.  The bottom 

two are grouped together and considered nearly correct.  

The top two occupy their own single-member clusters. 



annotations and labeling them appropriately, via the same 

interface.  Thus the conceptual labels constitute the 

student’s expression of their model of what is depicted.  

Consequently, conceptual information is always encoded 

for generalization. 

Quantitative Ink Constraints Limit Matches 

Another type of information that is entered explicitly by 

the worksheet author are quantitative ink constraints.  

Recall that quantitative ink constraints define a tolerance 

region relative to an absolute frame of reference (e.g. a 

background image).  Quantitative ink constraints are 

defined for entities whose absolute position matters. 

 When encoding information about entities for which 

there are quantitative ink constraints, the encoding 

algorithm computes their position with respect to the 

tolerance regions, to determine if the entity’s location 

meets the constraint or not.  If it does not, we further 

encode how the constraint was violated (e.g. too wide, too 

narrow, etc.) and include that information in the encoding. 

 Furthermore, each entity that is evaluated with respect to 

a quantitative ink constraint is associated with that 

constraint as a location-specific landmark.  This 

association limits the possible analogical mappings by 

ensuring that entities associated with one landmark cannot 

map to entities that are associated with a different 

landmark.  This also ensures that entities cannot be 

generalized across different location-specific landmarks.  

This approach for using quantitative constraints to limit the 

analogical mappings has been shown to lead to sketch 

comparisons that provide more accurate feedback to 

students (Chang & Forbus, 2012). 

Spatial and Conceptual Elaboration 

Worksheet authors can also specify a subset of the visual 

relationships computed by CogSketch as important.  For 

example, the core of the Earth must be inside its mantle. 

Some conceptual information can also be marked as 

important, e.g. a sketch of a fault must include marker 

beds.  All facts marked as important by the worksheet 

author, whether spatial or conceptual, are always included 

in the encoding for generalization.  

Evaluation 

To evaluate our clustering algorithm we used a set of fault 

identification worksheets (e.g. Figure 1) submitted by 

students taking an undergraduate geoscience course at 

Northwestern University.  There were 28 sketches in total, 

spanning three different fault identification exercises.  A 

gold standard was created by hand-clustering the sketches 

for each exercise separately.  We then ran our 

generalization algorithm on the unlabeled data for each 

exercise, to evaluate how well the clusters it produced 

match the gold standard.  Because clusters may differ 

depending on the order in which sketches are selected, we 

repeated the clustering over 10 iterations.  We collected 

three measures from the resulting clusters: purity, precision 

and recall.  

K-Means Clustering 

To explore the impact of relational structure on 

generalization behavior, we also compared our approach to 

a non-structural way of ascertaining similarity.  

Specifically, we used the MAC/FAC content vectors 

(described above) as a cruder, non-relational form of 

similarity.  While content vectors are still sensitive to the 

presence of relationships, since those predicates are 

included in them, it only contains relative frequency 

information.  In other words, “man bites dog” is the same 

as “dog bites man.”  We used k-means clustering on the 

same data, where each mean was the content vector of a 

sketch and the distance measure between means was the 

inverse dot product of the content vectors being compared.  

The more overlap between the content vectors, the greater 

the similarity and the smaller the distance.  For each k-

means clustering process we supplied k by counting the 

number of labeled clusters.  In this sense, the k-means 

clustering approach had a slight advantage over analogical 

generalization.  The k-means clustering algorithm was also 

repeated 10 times, since the initial k means can impact the 

makeup of clusters. 

Results 

Table 1 shows the average purity, precision and recall for 

each approach across the 3 worksheet groups, averaged 

over 10 iterations of each approach. Analogical 

generalization outperformed k-means without analogy for 

clustering in all measures.  Since purity is often high when 

there are many clusters, it is important to consider the 

precision and recall measures as well.  

 We used independent samples t-tests to test for 

significant differences between purity, precision and recall 

for each sketch group separately (for a total of 9 

comparisons).  Each measure was significantly higher for 

analogical generalization than for k-means clustering (p < 

0.005, Bonferroni corrected for 9 comparisons).  



Figure 2 shows two sketches that were frequently 

generalized together.  This cluster indicates a common 

sketching behavior exhibited by students.  The high 

probability facts in the generalization indicate the defining 

criteria for the cluster.  Most of the high probability facts in 

this generalization are concept membership attributes.  

Other facts refer to the direction of the sketched diagonal 

arrows in the sketch.  These facts were already considered 

in the feedback design of this worksheet.  However, the 

three high probability facts shown in Figure 2 indicate the 

potential for more targeted feedback.  These facts indicate 

that three of the four marker beds failed quantitative ink 

constraints in specific ways.  The bold horizontal arrows 

imposed on the figure point to two marker beds that map to 

each other in an analogical mapping.  Both of these marker 

beds fall short of the left bounds of their quantitative ink 

constraints (see first fact in Figure 2).  Similarly, two other 

marker beds (unmarked) fall short of the right bounds of 

the quantitative ink constraints.  Without knowing that 

multiple students would exhibit this common behavior, a 

worksheet author would have no reason to include targeted 

feedback about it.  However, given that multiple students 

commit this error, targeted feedback about the horizontal 

extent of marker beds would have been helpful, e.g. 

“Marker bed regions are not just near the fault; they can 

extend to the edges of the image.”   

 

 SAGE k-means 

Sketch Group #1   

Number of Clusters 6.7 6 

Purity** 0.90 0.72 

Precision** 0.86 0.56 

Recall* 0.85 0.56 

Sketch Group #2   

Number of Clusters 5.5 4 

Purity** 0.94 0.74 

Precision** 0.98 0.61 

Recall** 0.82 0.59 

Sketch Group #3   

Number of Clusters 6.1 4 

Purity** 0.96 0.83 

Precision** 0.99 0.67 

Recall* 0.80 0.68 

 

Table 1: Clustering measures for analogical generalization 

(SAGE) and k-means clustering (without analogy).  All 

measures are averaged over 10 random restart iterations of 

the clustering procedure.  Asterisks indicate the probability 

associated with independent samples t-tests between SAGE 

and k-means measures: ** p < 0.001, * p < 0.005. 

Related Work 

Many researchers have explored misconceptions in 

domains like algebra, geometry (Anderson et al. 1995) and 

physics (VanLehn et al. 2007).  Each of these research 

programs answers important questions about the structure 

of knowledge during leaning.  These answers have shaped 

the coaching strategies of various tutoring systems.   

 Many sketch understanding systems exist but most stick 

to a single domain because they use sketch recognition 

(Lee et al. 2007; de Silva et al. 2007; Valentine et al. 

2012). No other sketch understanding systems use 

structure-mapping as a model for comparison.  Despite 

this, it may still be possible to apply similar clustering 

techniques to those systems. 

Discussion and Future Work 

This paper describes a method for clustering sketches to 

detect common answer patterns.  We used models of 

human analogical processing to cluster hand-drawn 

sketches completed by undergraduate geoscience students.  

The analogical clustering approach significantly 

outperformed a k-means clustering algorithm.   

 This technique can be used to mine common answer 

patterns from sketches so that they can be used for 

assessment or for designing targeted feedback.  Instructors 

may use this technique to discover the distribution of 

answer patterns in their classrooms, some of which may be 

prevalent misconceptions.  This approach enables common 

answer detection in a data-driven (but tightly scoped) 
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Figure 2: Two sketches that are frequently clustered 

together and three high-probability facts from their 

generalization.  The horizontal block arrows point to 

the drawn entity that is referenced in the first fact.  

That entity falls short of the left bound of its 

quantitative ink constraint. 



manner, without requiring a cognitive analysis of the entire 

domain or even the entire task. 

 One of the limitations to this approach is the 

understandability of the facts used to describe 

generalizations.  As discussed above, high-probability facts 

can be used to understand the defining criteria of a cluster.  

For an instructor to easily interpret these facts would 

require familiarity with the knowledge representations used 

there.  However, it can be argued that the instructor may 

not need those explicit facts.  Instead, they can simply view 

a prototypical member of the cluster and decide on the 

defining criteria for themselves.  With this technique, 

rather than looking at all the sketches submitted by 

students, an instructor can inspect only as many sketches as 

there are clusters. 

 In the future we plan to continue refining encoding 

procedures of sketches.  The procedures used in this 

experiment are domain general, but there are likely cases 

where tighter filters on conceptual information will be 

needed.  We also have not yet integrated shape and edge 

level representations into this encoding procedure (Lovett 

et al. 2012), as these are only now starting to be integrated 

into our sketch worksheets.  We also plan to add clustering 

to the grading utilities built into sketch worksheets. 
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