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Abstract 

Commonsense reasoning at scale is a core problem for 
cognitive systems.  In this paper, we discuss two ways in 
which heuristic graph traversal methods can be used to 
generate plausible inference chains. First, we discuss how 
Cyc’s predicate-type hierarchy can be used to get 
reasonable answers to queries. Second, we explain how 
connection graph-based techniques can be used to identify 
script-like structures. Finally, we demonstrate through 
experiments that these methods lead to significant 
improvement in accuracy for both Q/A and script 
construction.   

 Introduction and Motivation   

Commonsense reasoning is a fundamental problem for 

cognitive systems.  While information extraction-based 

systems are often successful in finding answers to users’ 

queries, inference-based systems have the significant 

advantages of general reasoning and answer explanation. 

Unfortunately, constructing a knowledge base (KB) for 

such systems remains a tedious task. One way to avoid this 

task is to exploit learning strategies to populate a KB 

automatically, and use feedback to teach reasoning. For 

example, text-reading systems [Matuzek et al. 2005; 

Forbus et al. 2007] have proven successful in providing 

ground facts for use in KB, though they have shown little 

success in gleaning correct, fully quantified logical axioms. 

Being able to learn plausible patterns of inference over 

ground facts would significantly improve the scalability of 

KB construction, and they would help solve a second 

problem in reasoning with large KBs: typically, the set of 

logically quantified axioms has a miserably low coverage. 

While prior work has explored plausible inference schemes 

(e.g., [Collins 1978]) our work is more squarely focused on 
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developing systems that can learn to reason. In the end, 

human attention is a scarce resource, and our goal must be 

to minimize the amount of feedback users need to provide. 

 The problem of finding plausible chains between 

concepts also arises when cognitive systems have to stitch 

a given set of concepts into a coherent situation, such as 

when a script-like explanation is needed for a given set of 

input concepts. Since concepts can have arbitrary relations 

between them, it is difficult to identify relevant queries for 

such problems. What kinds of reasoning methods are 

needed for solving such ill-defined problems? 

In this paper, we propose that path-finding methods on a 

graph representation of the contents of a commonsense KB 

provide a unifying theme for solving these problems. The 

amount of knowledge needed for filtering incorrect paths 

varies with the task. While Q/A tasks are likely to need 

heavily constrained, focused search, other problems (e.g., 

finding a script for a given set of concepts) can be 

satisfactorily solved by weaker knowledge. Specifically, 

this paper makes two contributions: (1) We show how to 

integrate graph search, higher-order knowledge 

representation, and reinforcement learning to discern 

reliable patterns of plausible reasoning from ground facts. 

Given a fully grounded query, we show how to 

incrementally search the facts that mention the entities 

therein, guided by a set of plausible inference patterns 

(PIPs). We also show that the quality of inference chains of 

PIPs can be learned through reinforcement learning. (2) 

We argue that the problem of explaining a set of concepts 

by linking them in a situation should be seen as a 

connection graph finding problem. We discuss the types of 

representations needed to address this problem. 

 This paper is organized as follows: we begin by 

discussing related work. We then cover the basics of PIPs 

and how they are used. Next, we show how reinforcement 

learning is used to learn the quality of PIPs. We then 



describe our connection graph-based algorithm for 

identifying scripts. Next, we present experimental results. 

We conclude by discussing future work. 

 

Related Work 

A number of researchers from the fields of information 

retrieval, natural language processing, databases and 
logical inference have contributed to the advancement of 

QA technologies [Brill et al. 2002] [Prager et al. 2004]. 

Overviews of QA techniques can be found in [Belduccinni 

et al. 2008, Molla and Vicedo 2007], and a comparison of 

challenging problems and approaches has been discussed 

in a recent IBM report [Ferrucci et al. 2009]. Learning 

surface patterns from natural language text has also been 

discussed in [Molla 2006]. Our work differs from this in 

that we are trying to improve the performance of a 

plausible inference-based Q/A system by learning to 

reason. We note that other frameworks for learning to 

reason have been explored in [Khardon 1999], but their 

efficacy in improving Q/A performance is not known. 

Reinforcement learning has been used for learning control 

rules for guiding inference in ResearchCyc KB [Taylor et 

al. 2007], but to the best of our knowledge, there has been 

no prior work to develop a method for providing plausible 

explanations for queries (without using logically quantified 

axioms) using a learning framework. Similarly, although 

there has been work on script identification [Miikkulainen 

1990] and event detection [Moore & Essa 2002], we are 

not aware of any system which uses a path-finding 

approach for producing script-like explanations.  

Representation and Reasoning 

Our major source of KB contents is Cyc, and so we have 

chosen to adopt key Cyc conventions in this paper. We 

summarize those conventions here [Matuszek et al. 2006]. 

Cyc represents concepts as collections. Each collection 

is a kind or type of thing whose instances share a certain 

property, attribute, or feature. For example, Cat is the 

collection of all and only cats. Collections are arranged 

hierarchically by the genls relation. (genls <sub> 

<super>) means that anything that is an instance of <sub> 

is also an instance of <super>. Predicates are also arranged 

in hierarchies. In Cyc terminology, (genlPreds <s> <g>) 

means that <g> is a generalization of <s>.  We make 

extensive use of Cyc’s predicate type hierarchy. 

PredicateType is a collection of collections and each 

instance of PredicateType is a collection of predicates. The 

predicates in a given predicate category represented in the 

KB are typically those sharing some common feature(s) 

considered significant enough that the collection of all such 

predicates is useful to include. Instances of PredicateType 

include TemporalPartPredicate, SpatialPredicate, and 

PropositionalAttitudeSlot.  

The task of answering questions without using logically 

quantified axioms is difficult because it requires sifting 

through any number of arbitrary relations between 

predicates, any one of which could explain the query. To 

avoid this, we have chosen the simpler approach of 

building a small sub-graph of relations around the entities 

in the query and then assessing the quality of inference 

chains between them. This intuition is similar to 

connection graphs [Faloutsos et al. 2004] and relational 

pathfinding, where the domain is viewed as a (possibly 

infinite) graph of constants linked by the relations that hold 

between the constants [Richards & Mooney 1992]. More 

formally, the KB can be seen as a graph G = (V, E) where 

V is the set of nodes (or constants) and E is the set of 

edges. An edge, e, exists between two nodes v1 and v2 if 

e(v1, v2) or e(v2, v1) are true in the KB. A path from vertex 

a to b is an ordered sequence a = v0.v1.v2…vm = b of 

distinct vertices in which each adjacent pair (vj-1, vj) is 

linked by an edge. Since prior knowledge is important for 

biasing learning, we leverage existing axioms in the KB to 

create PIPs that are used to keep only the more likely 

inference chains. These PIPs are created by replacing 

predicates in axioms by their predicate types. PIPs are 

accepted if they are generated by more than N axioms. (In 

this work, N = 5). We provide a concrete example for 

illustration. 

Let us assume that the system has been asked to provide 

a plausible inference for the query (acquaintedWith 

BillClinton HillaryClinton). A small section of the KB 

relevant to answering this query is shown in Figure 1. For 

simplicity, let us assume that we have just one PIP:  

FamilyRelationSlot(?x,?y) AND FamilyRelationSlot(?y,?z)  → 

PersonalAssociationPredicate(?x,?z) [PIP1] 

 

 

 

 

 

 

 

Figure 1: Plausible Inference Example. 

 

This pattern represents the knowledge that two 

predicates of type FamilyRelationSlot can plausibly 

combine to infer assertions involving personal 

associations. This representation has been chosen because 

we believe that predicate types such as SubEventPredicate, 

PhysicalPartPredicate, and CausalityPredicate provide a 

meaningful level of abstraction for identifying PIPs. For 

instance, all predicates of type SubEventPredicate can be 
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used for proving eventPartiallyOccursAt queries
1
. 

Similarly, all predicates of type PhysicalPartPredicate are 

relevant for proving objectFoundInLocation queries
2
. 

Therefore, learning knowledge in terms of predicate types 

is easier and more natural. 

Figure 2: Algorithm for finding plausible explanations 

 

The relative tractability of this formulation can also be 

seen when noting the difference between the sizes of 

search spaces. Learning to distinguish between correct and 

incorrect derivations of length k involves searching in a 

space of size N
k
, where N is the size of vocabulary. In Cyc, 

the number of predicates is 24 times larger than the number 

of predicate types. Therefore, learning PIPs in terms of 

predicate types is significantly easier. The algorithm find-

plausible-explanations is described in Figure 2. In the 

example introduced above, r would be bound to PIP1 in 

step 1. In step 2, type is bound to 

PersonalAssociationPredicate. Since the predicate 

acquaintedWith is an instance of this collection, the test in 

step 4 succeeds, and we try to prove the antecedents of the 

rule in steps 6–10. Essentially, this means that we are 

looking for a path between the nodes labeled BillClinton 

and HillaryClinton traversing two edges labeled with 

predicates of type FamilyRelationSlot. In Figure 1, a small 

section of the graph is shown. In step 7, we create a query 

FamilyRelationSlot(?x, BillClinton). In step 8, solutions 
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cotemporalSubEvents, finalSubEvents etc.  
2 Some examples of PhysicalPartPredicate are physicalParts, internalParts, 

northernRegion etc.  

for this query would be found by querying for (p ?x 

BillClinton) where p is an instance of FamilyRelationSlot. 

An assertion as (father ChelseaClinton BillClinton) would 

be a solution for this query. This would lead to a query as 

FamilyRelationSlot (ChelseaClinton , HillaryClinton), 

which would be answered with the help of facts like 

(mother ChelseaClinton HillaryClinton). In Figure 1, the 

second path involving two edges labeled ‘familyName’ 

would not be selected because no PIPs use predicates of 

type ProperNamePredicate-Strict to entail 

PersonalAssociationPredicate predicates. Similarly, the 

following PIP would help in proving 

(objectFoundInLocation ArmyBase-Grounds-FtShafter-

Oahu HawaiianIslands) (see Figure 3): 

SpatialPredicate(?x, ?y) AND Group-Topic(?z,?y) → 

SpatialPredicate(?x, ?z)        … [PIP2] 

The pattern PIP2 shown above would lead to an incorrect 

answer if we use bordersOn as an instance of 

SpatialPredicate in the consequent.  In the next section, we 

discuss how reinforcement learning helps us in solving this 

problem. 

 

 

 

 

 

 

 

Figure 3: Another plausible inference example. 

This inference scheme also simplifies inference by 

condensing inference chains. For example, wife is a 

PersonalAssociationPredicate, and so the inference from 

wife to acquaintedWith is a one-step process. On the other 

hand, using the normal predicate hierarchy involves multi-

step inferences. The inference chain from wife to 

acquaintedWith, for example, is a four-step reasoning 

chain
3
. Since the number of predicate types is less than the 

number of predicates, the predicate type hierarchy maps 

the predicates to a smaller space. This speeds up the search 

because the average path length between two nodes in this 

smaller space is less than what we encounter in a typical 

predicate hierarchy. This plays an important role in 

improving inference. The FPE algorithm can be easily 

extended to handle queries with variables. This would 

entail checking that the node at the search frontier satisfies 

the argument constraint of the predicate.  

 

                    Learning to Reason 
 

Many learning systems learn the correct level of 

generalization by trial and error. Our approach gets initial 

                                                 
3
 The four steps are acquaintedWith → mutualAcquaintances → mate → 

spouse → wife.  

Algorithm: find-plausible-explanations: FPE(KB, query) 

Input:   query: A ground query       

Local Variable: solutions initialized to {}.       

Output:  A set of facts which would justify query. 

 

1. for all patterns r in KB,  where r = 

        {p1 ^ p2 ^ ...^ pn → q}  

2.     type ← predicate type in q. 

3.     pred ← predicate in query 

4.     if (isa pred type) then   

5.         θ´ ← unify the variables in q and query.  
6.         for j ← 1 to n  

7.            queryj ← substitute bindings from θ´ in pj. 
8.            Solutionj ← find solutions for queryj.  

9.            if bindings from Solutionsj are consistent then  
              update θ´ else goto step 12. 

10.         end for 

11.         If Solutionj exists for all 1≤ j ≤ n then update      

           solutions 

12.     end if   

13.    end for 

14. return solutions.  
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PIPs by replacing predicates in axioms with their predicate 

types. These generalizations certainly increase the 

deductive closure but can lead to incorrect answers. 

The task of designing a system that could learn to 

identify incorrect search steps from minimal user feedback 

is complicated by the fact that a typical user may not be 

able to identify the incorrect search choice(s) made during 

a multistep reasoning process. Thus, the learner ought to be 

able to work with delayed feedback about the correctness 

of the final answer and learn to find plausible inferences 

for queries. We believe that reinforcement learning is a 

reasonable method for solving this problem. Formally, the 

model consists of (a) a discrete set of states, S; (b) a 

discrete set of agent actions, A; (c) a reward function R: S 

× A → {-1, 1}; and (d) a state transition function T: S × A 

→ ∏(S), where a member of ∏(S) is a probability 

distribution over the set S [Kaelbling et al. 1996]. In this 

context, a state is the list of predicate types already used 

during the partially complete search process. At each step 

of the reasoning process, the inference engine has choice 

points at which it chooses or rejects different alternatives. 

To do this, it must assess how useful a particular predicate 

type is for completing the proof given the predicate types 

already chosen in the current search path. The actions are 

the selection of a particular predicate type for completing 

the partial assignment of variables. The value function (or 

V(s)) is the inference engine’s current mapping from the 

set of possible states to its estimates of the long-term 

reward to be expected after visiting a state and continuing 

the search with the same policy. Q(s, a) represents the 

value of taking the action a in state s. We use the value 

iteration algorithm [Kaelbling et al. 1996] for learning the 

plausibility of search paths, and a delayed reward model 

with user-provided rewards of +1 and -1 for correct and 

incorrect answers, respectively. 

Connection Graph Methods for Identifying 

Script-like Structures 

In many AI applications, we need to find a small set of 

assertions that best capture the relationships between a set 

of concepts. The primary aim is to stitch the concepts 

together in a script by adding missing relations between 

them. Here we discuss the different knowledge 

representation and reasoning challenges that must be 

addressed to solve this problem. As discussed above, we 

represent the contents of the KB as a graph, where 

concepts are nodes and edges represent relations between 

them. Given such a structure, the problem can be 

formulated as:  

Input: An edge-weighted undirected graph G, a set of 

concepts S = {S1, …, SN}, and an integer budget n. 

Output: A connected subgraph containing S and at most 

n other nodes, that maximizes a goodness criterion. 

Figure 4: A Sample Output 

For example, given an input like {BlowingOutCandles, 

Applauding-Clapping, EatingEvent}, we would like to 

infer that the situation refers to a birthday party and explain 

why these features are related to it (See Figure 4). Our 

method for finding a connection graph is based on work in 

the knowledge discovery community [Faloutsos et al. 

2004, Ramakrishnan et al. 2005]. We describe their 

approach in brief here. The algorithm has two central 

components: (1) a candidate generation algorithm, and (2) 

a display generation component. The candidate generation 

component maintains a list of pending nodes and expands 

the frontiers of the graph starting from a given set of nodes. 

The display generation component [Faloutsos et al. 2004] 

aims to identify a small subset of nodes and edges that 

represent the most relevant relation between the input 

nodes, using the model of an electrical circuit. A modified 

version of this algorithm is shown in Figure 5. The input to 
the algorithm is a set of concepts. It also uses a set of 

useful predicates, P, and a set of inconsistent path patterns, 

Q. The set P contains predicates that are more useful for 

representing semantic information
4
. Consider the example 

shown in Figure 4. In steps 1-6 of the algorithm shown in 

Figure 5, we create a graph around the input concepts. For 

example, the query in step 3 would look like 

(properSubEventTypes ?x BlowingOutCandles). The 

                                                 
4 We used this set to exclude bookkeeping and NL predicates (e.g., 

nameString). properSubEventTypes, eventTypeOccursAtLocationType, 
and typePrimaryFunction are some elements of P. 

Input: [BlowingOutCandles, Applauding-Clapping, 

EatingEvent] 

Relevant Facts: 
(properSubEventTypes 

LightingTheCandlesOnABirthdayCake LightingACandle) 

(preconditionFor-EventTypeEventType BlowingOutCandles 

LightingACandle) 

(properSubEventTypes BirthdayParty 

LightingTheCandlesOnABirthdayCake) 

(candidateProperSubSituationTypes BirthdayParty  

ApplaudingTheBlowingOutOfBirthdayCakeCandles)  

(properSubEventTypes 

ApplaudingTheBlowingOutOfBirthdayCakeCandles 

Applauding-Clapping)  

(properSubEventTypes BirthdayParty 

ServingTheCakeToGuests) 

(superEventTypes ServingTheCakeToGuests 

CelebratoryEatingOfTheCake) 

(properSubEventTypes CelebratoryEatingOfTheCake       

EatingEvent)  
                    



results from the query are added to the graph in step 4. In 

step 7, we use the display generation algorithm for 

extracting a small connection graph. This involves using 

dynamic programming and a model of an electrical circuit 

to identify most relevant paths between the input nodes 

[Faloutsos et al. 2004]. This might be sufficient for lightly 

constrained domains, but this approach becomes less useful 

in a domain where more semantic processing is needed. 

Therefore, we augment the algorithm with a post-

processing step (step 8) which prunes implausible paths in 

the graph. A set of implausible path patterns, Q, is an input 

to the algorithm. For example, a pattern of the type 

(eventTypeOccursAtLocationType ?x ?y) AND 

(eventTypeOccursAtLocationType ?z ?y) would represent 

the fact that sharing a common location type is less useful 

for finding connections between script constituents. This 

would ensure that we do not hypothesize a link between 

RoadConstructing and IceClimbing just because they occur 

outdoors. If all concepts in the input are not in a connected 

component of the pruned graph, then we repeat the step 

with a relaxed size constraint (step 12). 

 

Figure 5: Algorithm for identifying script-like structures 

Experimental Method and Results 

To show that these ideas generate more answers compared 

to traditional deductive reasoning methods, we conducted a 

set of experiments. Five sets of questions were selected 

based on the availability of ground facts in KB and their 

relevance in learning by reading [Forbus et al 2007]. These 

questions’ templates were (1) Where did <Event> occur? 

(2) Who is affected by <Event>? (3) Where is 

<SpatialThing>? (4) Who performed the <Event>? and (5) 

Where is <GeographicalRegion>? Each question template 

expands to a disjunction of formal queries. Queries were 

generated by randomly selecting facts for these questions 

from the KB. For a baseline comparison, we included all 

axioms for these predicates and their subgoals to a depth of 

3. We used a simple backchainer working on an LTMS-

based inference engine [Forbus & de Kleer, 1993]. The 

depth of backchaining was also limited to three and each 

query was timed out after three minutes. All experiments 

were performed on a 3.2 GHz Pentium Xeon processor 

with 3GB of RAM. 25% of the queries were used as the 

training set for learning the V(s) values. Answers whose 

V(s) values were more than a threshold were accepted. 

Table 1 compares the performance of the FPE algorithm 

and reinforcement learning against the baseline for the test 

set (i.e. the remaining 75% of queries). Each experiment 

corresponds to queries from a particular template (i.e., 

Expt. 1 concerns the location of events). Column T is the 

total number of queries, and AW is the number that could 

be answered given the KB contents, as determined by hand 

inspection. The columns P and R indicate precision and 

recall, respectively. The user assessed 334 unique answers 

(from the training set) and the feedback was used for 

learning the V(s) values. The accuracy of answers provided 

by the FPE algorithm was 73%. We then removed answers 

whose V(s) values were below the threshold. The total 

number of new answers at this stage was 1010 and the 

accuracy improved from 73% to 94%. The FPE algorithm 

mainly reduces false negatives, whereas reinforcement 

learning reduces false positives. Together, they improve on 

the baseline by a factor of 2.2 (i.e. by 120%) with an 

average accuracy of 94%. The results shown in Table 1 are 

statistically significant (p < 0.01).  

Table 1: Summary of inference results. Experiment 

numbers are the same as query numbers. 

To evaluate the script recognition system, we used the 

algorithm for comprehending events in videos. A computer 

Exp. 

No. 

 

Query 

sets 

T AW P R 

1 

 

Baseline 833 412 1.00 0.51 

FPE 833 412 0.95 0.87 

2 

 

Baseline 200 61 1.00 0.42 

FPE 200 61 0.92 0.77 

3 Baseline 1834 433 1.00 0.32 

FPE 1834 433 0.92 0.88 

4 Baseline 953 226 1.00 0.34 

FPE 953 226 0.93 0.93 

5. Baseline 1309 724 1.00 0.43 

FPE 1309 724 0.97 0.94 

 

Algorithm: find-plausible-script (FPS) 

Input: A set of input concepts: S, A set of predicates: P, A 

set of filtered paths: Q, An integer budget: N 

1. for each concept c belonging to S 

2.     for each predicate p belonging to P 

3.          Retrieve all facts involving p and c 

4.          Add the nodes to the graph 

5.      end for 

6. end for 

7. OutputGraph ← Use display generation 

algorithm to extract a connection graph of size N 

8. PrunedGraph ← Remove all edges from 

OutputGraph which are inconsistent with Q. 

9. if  all elements of S are in a component then  

10.         return PrunedGraph 

11. else 

12.        set N ← N+1 and goto step 1. 

 

 

            



vision and speech recognition system was used to generate 

low-level features from 103 videos. These features are 

mapped to the collections from the knowledge base, such 

as the collections marked as input in Figure 4. These 

features were fed to the algorithm shown in Figure 5. The 

scripts in videos were roughly divided into following five 

types: (1) wedding event, (2) skateboarding (3) making a 

sandwich, (4) flash mob and (5) parkour. The sixth script 

type includes all scripts which were different from five 

types mentioned above. The first column in Table 2 shows 

these script numbers. In the third column, we report the 

proportion of facts in the output which were directly 

relevant for understanding the script. Since we are 

evaluating the efficacy of connection-graph methods for 

this problem, we can establish our baseline by replacing 

steps 7 and 8 in Figure 5 with an algorithm that finds the 

shortest paths between the nodes in the input. The results 

shown in Table 2 are statistically significant (p < 0.01).   

Script 

Type 

Method % 

correct 

Improvement 

w.r.t. baseline 

1 Baseline 69.0 - 

 FPS 96.0 39% 

2 Baseline 67.4 - 

 FPS 84.6 25% 

3 Baseline 61.9 - 

 FPS 89.0 44% 

4 Baseline 50.0 - 

 FPS 100.0 100% 

5 Baseline 33.5 - 

 FPS 93.0 177% 

6 Baseline 25.6 - 

 FPS 49.0 91% 

 

Table 2: Evaluation of find-plausible-script (FPS) algorithm 

 Conclusion 

Plausible commonsense reasoning is a fundamental 

problem for cognitive systems, and we believe that our 

approach provides a promising solution. We have shown 

how different graph traversal methods can be used to 

alleviate the difficulties created by missing knowledge. 

The use of predicate types for representing PIPs leads to a 

succinct, easily learnable and tractable representation. With 

the FPE algorithm mainly reducing false negatives, and 

reinforcement learning reducing false positives, we get a 

120% improvement over the baseline with an average 

accuracy of 94%. The use of connection graph methods of 

identifying script-like explanations produces good results. 

 While these experiments used the contents of 

ResearchCyc, we believe they are applicable to any large-

scale KB whose predicate types were classified sensibly. 

Our technique is especially suitable for knowledge capture 

because it exploits ground facts, which are much easier to 

gather than logically quantified facts. We believe that this 

technique can be used to help bootstrap intelligent systems 

and reduce dependence on handcrafted axioms. Our results 

suggest following further lines of work. For one, being 

able to refine PIPs to use more specific predicate types 

would improve accuracy and coverage. In addition, PIPs 

could be used as an intermediate stage for postulating new 

logically quantified statements, perhaps by using a 

technique like relational reinforcement learning [Dzeroski 

et al. 2001] to carry out the refinements.  

 Our work on identifying scripts can be extended in at 

least four ways. Firstly, scripts often have temporal 

dependencies between their events, and we would like to 

include temporal constraint processing in our model. 

Secondly, though we have used a list of implausible 

patterns to prune less useful paths, we believe this 

approach can be improved by employing a grammar of 

plausible paths [Navigli 2008]. Thirdly, we should try to 

remove the stricture that all concepts be part of a connected 

component. For example, concepts like Sun and Night 

might be present in many video events. Although it is 

possible to connect such concepts to different events in a 

given video, we believe that we might need to prune those 

input concepts that have low estimates of information gain. 

Finally, we have found that correct paths might not be 

available in the search space due to two reasons: (a) The 

KB might not have relevant knowledge
5
 or (b) The system 

is not considering relevant predicates due to resource 

constraints. Due to the absence of correct paths, the 

algorithm might connect concepts via overly general 

nodes. We would like to detect and prune such incorrect 

paths. 
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