

Graph Traversal Methods for Reasoning in Large Knowledge-Based

Systems

Abhishek Sharma
1
 Kenneth D. Forbus

2

1Cycorp, Inc. 7718 Wood Hollow Drive, Suite 250, Austin, TX 78731
2Northwestern University, 2133 Sheridan Road, Evanston, IL 60208

abhishek@cyc.com, forbus@northwestern.edu

Abstract

Commonsense reasoning at scale is a core problem for
cognitive systems. In this paper, we discuss two ways in
which heuristic graph traversal methods can be used to
generate plausible inference chains. First, we discuss how
Cyc’s predicate-type hierarchy can be used to get
reasonable answers to queries. Second, we explain how
connection graph-based techniques can be used to identify
script-like structures. Finally, we demonstrate through
experiments that these methods lead to significant
improvement in accuracy for both Q/A and script
construction.

 Introduction and Motivation

Commonsense reasoning is a fundamental problem for

cognitive systems. While information extraction-based

systems are often successful in finding answers to users’

queries, inference-based systems have the significant

advantages of general reasoning and answer explanation.

Unfortunately, constructing a knowledge base (KB) for

such systems remains a tedious task. One way to avoid this

task is to exploit learning strategies to populate a KB

automatically, and use feedback to teach reasoning. For

example, text-reading systems [Matuzek et al. 2005;

Forbus et al. 2007] have proven successful in providing

ground facts for use in KB, though they have shown little

success in gleaning correct, fully quantified logical axioms.

Being able to learn plausible patterns of inference over

ground facts would significantly improve the scalability of

KB construction, and they would help solve a second

problem in reasoning with large KBs: typically, the set of

logically quantified axioms has a miserably low coverage.

While prior work has explored plausible inference schemes

(e.g., [Collins 1978]) our work is more squarely focused on

Copyright © 2013, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

developing systems that can learn to reason. In the end,

human attention is a scarce resource, and our goal must be

to minimize the amount of feedback users need to provide.

 The problem of finding plausible chains between

concepts also arises when cognitive systems have to stitch

a given set of concepts into a coherent situation, such as

when a script-like explanation is needed for a given set of

input concepts. Since concepts can have arbitrary relations

between them, it is difficult to identify relevant queries for

such problems. What kinds of reasoning methods are

needed for solving such ill-defined problems?

In this paper, we propose that path-finding methods on a

graph representation of the contents of a commonsense KB

provide a unifying theme for solving these problems. The

amount of knowledge needed for filtering incorrect paths

varies with the task. While Q/A tasks are likely to need

heavily constrained, focused search, other problems (e.g.,

finding a script for a given set of concepts) can be

satisfactorily solved by weaker knowledge. Specifically,

this paper makes two contributions: (1) We show how to

integrate graph search, higher-order knowledge

representation, and reinforcement learning to discern

reliable patterns of plausible reasoning from ground facts.

Given a fully grounded query, we show how to

incrementally search the facts that mention the entities

therein, guided by a set of plausible inference patterns

(PIPs). We also show that the quality of inference chains of

PIPs can be learned through reinforcement learning. (2)

We argue that the problem of explaining a set of concepts

by linking them in a situation should be seen as a

connection graph finding problem. We discuss the types of

representations needed to address this problem.

 This paper is organized as follows: we begin by

discussing related work. We then cover the basics of PIPs

and how they are used. Next, we show how reinforcement

learning is used to learn the quality of PIPs. We then

describe our connection graph-based algorithm for

identifying scripts. Next, we present experimental results.

We conclude by discussing future work.

Related Work

A number of researchers from the fields of information

retrieval, natural language processing, databases and
logical inference have contributed to the advancement of

QA technologies [Brill et al. 2002] [Prager et al. 2004].

Overviews of QA techniques can be found in [Belduccinni

et al. 2008, Molla and Vicedo 2007], and a comparison of

challenging problems and approaches has been discussed

in a recent IBM report [Ferrucci et al. 2009]. Learning

surface patterns from natural language text has also been

discussed in [Molla 2006]. Our work differs from this in

that we are trying to improve the performance of a

plausible inference-based Q/A system by learning to

reason. We note that other frameworks for learning to

reason have been explored in [Khardon 1999], but their

efficacy in improving Q/A performance is not known.

Reinforcement learning has been used for learning control

rules for guiding inference in ResearchCyc KB [Taylor et

al. 2007], but to the best of our knowledge, there has been

no prior work to develop a method for providing plausible

explanations for queries (without using logically quantified

axioms) using a learning framework. Similarly, although

there has been work on script identification [Miikkulainen

1990] and event detection [Moore & Essa 2002], we are

not aware of any system which uses a path-finding

approach for producing script-like explanations.

Representation and Reasoning

Our major source of KB contents is Cyc, and so we have

chosen to adopt key Cyc conventions in this paper. We

summarize those conventions here [Matuszek et al. 2006].

Cyc represents concepts as collections. Each collection

is a kind or type of thing whose instances share a certain

property, attribute, or feature. For example, Cat is the

collection of all and only cats. Collections are arranged

hierarchically by the genls relation. (genls <sub>

<super>) means that anything that is an instance of <sub>

is also an instance of <super>. Predicates are also arranged

in hierarchies. In Cyc terminology, (genlPreds <s> <g>)

means that <g> is a generalization of <s>. We make

extensive use of Cyc’s predicate type hierarchy.

PredicateType is a collection of collections and each

instance of PredicateType is a collection of predicates. The

predicates in a given predicate category represented in the

KB are typically those sharing some common feature(s)

considered significant enough that the collection of all such

predicates is useful to include. Instances of PredicateType

include TemporalPartPredicate, SpatialPredicate, and

PropositionalAttitudeSlot.

The task of answering questions without using logically

quantified axioms is difficult because it requires sifting

through any number of arbitrary relations between

predicates, any one of which could explain the query. To

avoid this, we have chosen the simpler approach of

building a small sub-graph of relations around the entities

in the query and then assessing the quality of inference

chains between them. This intuition is similar to

connection graphs [Faloutsos et al. 2004] and relational

pathfinding, where the domain is viewed as a (possibly

infinite) graph of constants linked by the relations that hold

between the constants [Richards & Mooney 1992]. More

formally, the KB can be seen as a graph G = (V, E) where

V is the set of nodes (or constants) and E is the set of

edges. An edge, e, exists between two nodes v1 and v2 if

e(v1, v2) or e(v2, v1) are true in the KB. A path from vertex

a to b is an ordered sequence a = v0.v1.v2…vm = b of

distinct vertices in which each adjacent pair (vj-1, vj) is

linked by an edge. Since prior knowledge is important for

biasing learning, we leverage existing axioms in the KB to

create PIPs that are used to keep only the more likely

inference chains. These PIPs are created by replacing

predicates in axioms by their predicate types. PIPs are

accepted if they are generated by more than N axioms. (In

this work, N = 5). We provide a concrete example for

illustration.

Let us assume that the system has been asked to provide

a plausible inference for the query (acquaintedWith

BillClinton HillaryClinton). A small section of the KB

relevant to answering this query is shown in Figure 1. For

simplicity, let us assume that we have just one PIP:

FamilyRelationSlot(?x,?y) AND FamilyRelationSlot(?y,?z) →

PersonalAssociationPredicate(?x,?z) [PIP1]

Figure 1: Plausible Inference Example.

This pattern represents the knowledge that two

predicates of type FamilyRelationSlot can plausibly

combine to infer assertions involving personal

associations. This representation has been chosen because

we believe that predicate types such as SubEventPredicate,

PhysicalPartPredicate, and CausalityPredicate provide a

meaningful level of abstraction for identifying PIPs. For

instance, all predicates of type SubEventPredicate can be

 father

 daughter

familyName familyName

ChelseaClinton

“Clinton”

BillClinton
HillaryClinton

used for proving eventPartiallyOccursAt queries
1
.

Similarly, all predicates of type PhysicalPartPredicate are

relevant for proving objectFoundInLocation queries
2
.

Therefore, learning knowledge in terms of predicate types

is easier and more natural.

Figure 2: Algorithm for finding plausible explanations

The relative tractability of this formulation can also be

seen when noting the difference between the sizes of

search spaces. Learning to distinguish between correct and

incorrect derivations of length k involves searching in a

space of size N
k
, where N is the size of vocabulary. In Cyc,

the number of predicates is 24 times larger than the number

of predicate types. Therefore, learning PIPs in terms of

predicate types is significantly easier. The algorithm find-

plausible-explanations is described in Figure 2. In the

example introduced above, r would be bound to PIP1 in

step 1. In step 2, type is bound to

PersonalAssociationPredicate. Since the predicate

acquaintedWith is an instance of this collection, the test in

step 4 succeeds, and we try to prove the antecedents of the

rule in steps 6–10. Essentially, this means that we are

looking for a path between the nodes labeled BillClinton

and HillaryClinton traversing two edges labeled with

predicates of type FamilyRelationSlot. In Figure 1, a small

section of the graph is shown. In step 7, we create a query

FamilyRelationSlot(?x, BillClinton). In step 8, solutions

1 Some examples of SubEventPredicate predicates are firstSubEvents,

cotemporalSubEvents, finalSubEvents etc.
2 Some examples of PhysicalPartPredicate are physicalParts, internalParts,

northernRegion etc.

for this query would be found by querying for (p ?x

BillClinton) where p is an instance of FamilyRelationSlot.

An assertion as (father ChelseaClinton BillClinton) would

be a solution for this query. This would lead to a query as

FamilyRelationSlot (ChelseaClinton , HillaryClinton),

which would be answered with the help of facts like

(mother ChelseaClinton HillaryClinton). In Figure 1, the

second path involving two edges labeled ‘familyName’

would not be selected because no PIPs use predicates of

type ProperNamePredicate-Strict to entail

PersonalAssociationPredicate predicates. Similarly, the

following PIP would help in proving

(objectFoundInLocation ArmyBase-Grounds-FtShafter-

Oahu HawaiianIslands) (see Figure 3):

SpatialPredicate(?x, ?y) AND Group-Topic(?z,?y) →

SpatialPredicate(?x, ?z) … [PIP2]

The pattern PIP2 shown above would lead to an incorrect

answer if we use bordersOn as an instance of

SpatialPredicate in the consequent. In the next section, we

discuss how reinforcement learning helps us in solving this

problem.

Figure 3: Another plausible inference example.

This inference scheme also simplifies inference by

condensing inference chains. For example, wife is a

PersonalAssociationPredicate, and so the inference from

wife to acquaintedWith is a one-step process. On the other

hand, using the normal predicate hierarchy involves multi-

step inferences. The inference chain from wife to

acquaintedWith, for example, is a four-step reasoning

chain
3
. Since the number of predicate types is less than the

number of predicates, the predicate type hierarchy maps

the predicates to a smaller space. This speeds up the search

because the average path length between two nodes in this

smaller space is less than what we encounter in a typical

predicate hierarchy. This plays an important role in

improving inference. The FPE algorithm can be easily

extended to handle queries with variables. This would

entail checking that the node at the search frontier satisfies

the argument constraint of the predicate.

 Learning to Reason

Many learning systems learn the correct level of

generalization by trial and error. Our approach gets initial

3
 The four steps are acquaintedWith → mutualAcquaintances → mate →

spouse → wife.

Algorithm: find-plausible-explanations: FPE(KB, query)

Input: query: A ground query

Local Variable: solutions initialized to {}.

Output: A set of facts which would justify query.

1. for all patterns r in KB, where r =

 {p1 ^ p2 ^ ...^ pn → q}

2. type ← predicate type in q.

3. pred ← predicate in query

4. if (isa pred type) then

5. θ´ ← unify the variables in q and query.
6. for j ← 1 to n

7. queryj ← substitute bindings from θ´ in pj.
8. Solutionj ← find solutions for queryj.

9. if bindings from Solutionsj are consistent then
 update θ´ else goto step 12.

10. end for

11. If Solutionj exists for all 1≤ j ≤ n then update

 solutions

12. end if

13. end for

14. return solutions.

groupMembers objectFoundInLocation

HawaiianIslands
ArmyBase-Grounds-FtShafter-Oahu

Oahu-Island-Hawaii

PIPs by replacing predicates in axioms with their predicate

types. These generalizations certainly increase the

deductive closure but can lead to incorrect answers.

The task of designing a system that could learn to

identify incorrect search steps from minimal user feedback

is complicated by the fact that a typical user may not be

able to identify the incorrect search choice(s) made during

a multistep reasoning process. Thus, the learner ought to be

able to work with delayed feedback about the correctness

of the final answer and learn to find plausible inferences

for queries. We believe that reinforcement learning is a

reasonable method for solving this problem. Formally, the

model consists of (a) a discrete set of states, S; (b) a

discrete set of agent actions, A; (c) a reward function R: S

× A → {-1, 1}; and (d) a state transition function T: S × A

→ ∏(S), where a member of ∏(S) is a probability

distribution over the set S [Kaelbling et al. 1996]. In this

context, a state is the list of predicate types already used

during the partially complete search process. At each step

of the reasoning process, the inference engine has choice

points at which it chooses or rejects different alternatives.

To do this, it must assess how useful a particular predicate

type is for completing the proof given the predicate types

already chosen in the current search path. The actions are

the selection of a particular predicate type for completing

the partial assignment of variables. The value function (or

V(s)) is the inference engine’s current mapping from the

set of possible states to its estimates of the long-term

reward to be expected after visiting a state and continuing

the search with the same policy. Q(s, a) represents the

value of taking the action a in state s. We use the value

iteration algorithm [Kaelbling et al. 1996] for learning the

plausibility of search paths, and a delayed reward model

with user-provided rewards of +1 and -1 for correct and

incorrect answers, respectively.

Connection Graph Methods for Identifying

Script-like Structures

In many AI applications, we need to find a small set of

assertions that best capture the relationships between a set

of concepts. The primary aim is to stitch the concepts

together in a script by adding missing relations between

them. Here we discuss the different knowledge

representation and reasoning challenges that must be

addressed to solve this problem. As discussed above, we

represent the contents of the KB as a graph, where

concepts are nodes and edges represent relations between

them. Given such a structure, the problem can be

formulated as:

Input: An edge-weighted undirected graph G, a set of

concepts S = {S1, …, SN}, and an integer budget n.

Output: A connected subgraph containing S and at most

n other nodes, that maximizes a goodness criterion.

Figure 4: A Sample Output

For example, given an input like {BlowingOutCandles,

Applauding-Clapping, EatingEvent}, we would like to

infer that the situation refers to a birthday party and explain

why these features are related to it (See Figure 4). Our

method for finding a connection graph is based on work in

the knowledge discovery community [Faloutsos et al.

2004, Ramakrishnan et al. 2005]. We describe their

approach in brief here. The algorithm has two central

components: (1) a candidate generation algorithm, and (2)

a display generation component. The candidate generation

component maintains a list of pending nodes and expands

the frontiers of the graph starting from a given set of nodes.

The display generation component [Faloutsos et al. 2004]

aims to identify a small subset of nodes and edges that

represent the most relevant relation between the input

nodes, using the model of an electrical circuit. A modified

version of this algorithm is shown in Figure 5. The input to
the algorithm is a set of concepts. It also uses a set of

useful predicates, P, and a set of inconsistent path patterns,

Q. The set P contains predicates that are more useful for

representing semantic information
4
. Consider the example

shown in Figure 4. In steps 1-6 of the algorithm shown in

Figure 5, we create a graph around the input concepts. For

example, the query in step 3 would look like

(properSubEventTypes ?x BlowingOutCandles). The

4 We used this set to exclude bookkeeping and NL predicates (e.g.,

nameString). properSubEventTypes, eventTypeOccursAtLocationType,
and typePrimaryFunction are some elements of P.

Input: [BlowingOutCandles, Applauding-Clapping,

EatingEvent]

Relevant Facts:
(properSubEventTypes

LightingTheCandlesOnABirthdayCake LightingACandle)

(preconditionFor-EventTypeEventType BlowingOutCandles

LightingACandle)

(properSubEventTypes BirthdayParty

LightingTheCandlesOnABirthdayCake)

(candidateProperSubSituationTypes BirthdayParty

ApplaudingTheBlowingOutOfBirthdayCakeCandles)

(properSubEventTypes

ApplaudingTheBlowingOutOfBirthdayCakeCandles

Applauding-Clapping)

(properSubEventTypes BirthdayParty

ServingTheCakeToGuests)

(superEventTypes ServingTheCakeToGuests

CelebratoryEatingOfTheCake)

(properSubEventTypes CelebratoryEatingOfTheCake

EatingEvent)

results from the query are added to the graph in step 4. In

step 7, we use the display generation algorithm for

extracting a small connection graph. This involves using

dynamic programming and a model of an electrical circuit

to identify most relevant paths between the input nodes

[Faloutsos et al. 2004]. This might be sufficient for lightly

constrained domains, but this approach becomes less useful

in a domain where more semantic processing is needed.

Therefore, we augment the algorithm with a post-

processing step (step 8) which prunes implausible paths in

the graph. A set of implausible path patterns, Q, is an input

to the algorithm. For example, a pattern of the type

(eventTypeOccursAtLocationType ?x ?y) AND

(eventTypeOccursAtLocationType ?z ?y) would represent

the fact that sharing a common location type is less useful

for finding connections between script constituents. This

would ensure that we do not hypothesize a link between

RoadConstructing and IceClimbing just because they occur

outdoors. If all concepts in the input are not in a connected

component of the pruned graph, then we repeat the step

with a relaxed size constraint (step 12).

Figure 5: Algorithm for identifying script-like structures

Experimental Method and Results

To show that these ideas generate more answers compared

to traditional deductive reasoning methods, we conducted a

set of experiments. Five sets of questions were selected

based on the availability of ground facts in KB and their

relevance in learning by reading [Forbus et al 2007]. These

questions’ templates were (1) Where did <Event> occur?

(2) Who is affected by <Event>? (3) Where is

<SpatialThing>? (4) Who performed the <Event>? and (5)

Where is <GeographicalRegion>? Each question template

expands to a disjunction of formal queries. Queries were

generated by randomly selecting facts for these questions

from the KB. For a baseline comparison, we included all

axioms for these predicates and their subgoals to a depth of

3. We used a simple backchainer working on an LTMS-

based inference engine [Forbus & de Kleer, 1993]. The

depth of backchaining was also limited to three and each

query was timed out after three minutes. All experiments

were performed on a 3.2 GHz Pentium Xeon processor

with 3GB of RAM. 25% of the queries were used as the

training set for learning the V(s) values. Answers whose

V(s) values were more than a threshold were accepted.

Table 1 compares the performance of the FPE algorithm

and reinforcement learning against the baseline for the test

set (i.e. the remaining 75% of queries). Each experiment

corresponds to queries from a particular template (i.e.,

Expt. 1 concerns the location of events). Column T is the

total number of queries, and AW is the number that could

be answered given the KB contents, as determined by hand

inspection. The columns P and R indicate precision and

recall, respectively. The user assessed 334 unique answers

(from the training set) and the feedback was used for

learning the V(s) values. The accuracy of answers provided

by the FPE algorithm was 73%. We then removed answers

whose V(s) values were below the threshold. The total

number of new answers at this stage was 1010 and the

accuracy improved from 73% to 94%. The FPE algorithm

mainly reduces false negatives, whereas reinforcement

learning reduces false positives. Together, they improve on

the baseline by a factor of 2.2 (i.e. by 120%) with an

average accuracy of 94%. The results shown in Table 1 are

statistically significant (p < 0.01).

Table 1: Summary of inference results. Experiment

numbers are the same as query numbers.

To evaluate the script recognition system, we used the

algorithm for comprehending events in videos. A computer

Exp.

No.

Query

sets

T AW P R

1

Baseline 833 412 1.00 0.51

FPE 833 412 0.95 0.87

2

Baseline 200 61 1.00 0.42

FPE 200 61 0.92 0.77

3 Baseline 1834 433 1.00 0.32

FPE 1834 433 0.92 0.88

4 Baseline 953 226 1.00 0.34

FPE 953 226 0.93 0.93

5. Baseline 1309 724 1.00 0.43

FPE 1309 724 0.97 0.94

Algorithm: find-plausible-script (FPS)

Input: A set of input concepts: S, A set of predicates: P, A

set of filtered paths: Q, An integer budget: N

1. for each concept c belonging to S

2. for each predicate p belonging to P

3. Retrieve all facts involving p and c

4. Add the nodes to the graph

5. end for

6. end for

7. OutputGraph ← Use display generation

algorithm to extract a connection graph of size N

8. PrunedGraph ← Remove all edges from

OutputGraph which are inconsistent with Q.

9. if all elements of S are in a component then

10. return PrunedGraph

11. else

12. set N ← N+1 and goto step 1.

vision and speech recognition system was used to generate

low-level features from 103 videos. These features are

mapped to the collections from the knowledge base, such

as the collections marked as input in Figure 4. These

features were fed to the algorithm shown in Figure 5. The

scripts in videos were roughly divided into following five

types: (1) wedding event, (2) skateboarding (3) making a

sandwich, (4) flash mob and (5) parkour. The sixth script

type includes all scripts which were different from five

types mentioned above. The first column in Table 2 shows

these script numbers. In the third column, we report the

proportion of facts in the output which were directly

relevant for understanding the script. Since we are

evaluating the efficacy of connection-graph methods for

this problem, we can establish our baseline by replacing

steps 7 and 8 in Figure 5 with an algorithm that finds the

shortest paths between the nodes in the input. The results

shown in Table 2 are statistically significant (p < 0.01).

Script

Type

Method %

correct

Improvement

w.r.t. baseline

1 Baseline 69.0 -

 FPS 96.0 39%

2 Baseline 67.4 -

 FPS 84.6 25%

3 Baseline 61.9 -

 FPS 89.0 44%

4 Baseline 50.0 -

 FPS 100.0 100%

5 Baseline 33.5 -

 FPS 93.0 177%

6 Baseline 25.6 -

 FPS 49.0 91%

Table 2: Evaluation of find-plausible-script (FPS) algorithm

 Conclusion

Plausible commonsense reasoning is a fundamental

problem for cognitive systems, and we believe that our

approach provides a promising solution. We have shown

how different graph traversal methods can be used to

alleviate the difficulties created by missing knowledge.

The use of predicate types for representing PIPs leads to a

succinct, easily learnable and tractable representation. With

the FPE algorithm mainly reducing false negatives, and

reinforcement learning reducing false positives, we get a

120% improvement over the baseline with an average

accuracy of 94%. The use of connection graph methods of

identifying script-like explanations produces good results.

 While these experiments used the contents of

ResearchCyc, we believe they are applicable to any large-

scale KB whose predicate types were classified sensibly.

Our technique is especially suitable for knowledge capture

because it exploits ground facts, which are much easier to

gather than logically quantified facts. We believe that this

technique can be used to help bootstrap intelligent systems

and reduce dependence on handcrafted axioms. Our results

suggest following further lines of work. For one, being

able to refine PIPs to use more specific predicate types

would improve accuracy and coverage. In addition, PIPs

could be used as an intermediate stage for postulating new

logically quantified statements, perhaps by using a

technique like relational reinforcement learning [Dzeroski

et al. 2001] to carry out the refinements.

 Our work on identifying scripts can be extended in at

least four ways. Firstly, scripts often have temporal

dependencies between their events, and we would like to

include temporal constraint processing in our model.

Secondly, though we have used a list of implausible

patterns to prune less useful paths, we believe this

approach can be improved by employing a grammar of

plausible paths [Navigli 2008]. Thirdly, we should try to

remove the stricture that all concepts be part of a connected

component. For example, concepts like Sun and Night

might be present in many video events. Although it is

possible to connect such concepts to different events in a

given video, we believe that we might need to prune those

input concepts that have low estimates of information gain.

Finally, we have found that correct paths might not be

available in the search space due to two reasons: (a) The

KB might not have relevant knowledge
5
 or (b) The system

is not considering relevant predicates due to resource

constraints. Due to the absence of correct paths, the

algorithm might connect concepts via overly general

nodes. We would like to detect and prune such incorrect

paths.

Acknowledgements

This work benefited from discussions with Doug Lenat.

This work was supported by the Office of Naval Research.

References

Belduccinni, M. Baral, C. and Lierler, Y. 2008. Knowledge
Representation and Question Answering. In Vladimir Lifschitz
and Frank van Harmelen and Bruce Porter, ed In Handbook of
Knowledge Representation.

Brill, E., Dumais, S. and Banko, M. 2002. An analysis of the
AskMSR question-answering system. Proceedings of ACL, pages
257-264.

Clark, P., Thompson, J. and Porter, B. 2000 Knowledge Patterns.
Proceedings of KR, page 591-600.

Collins, A. 1978. Human Plausible Reasoning. BBN Report No.
3810.

Dzeroski, S., de Raedt, L. and Driessens, K. 2001 Relational
Reinforcement Learning. Machine Learning, 43, pp. 7-52

5 Lack of relevant knowledge in KB is the primary reason

behind relatively low numbers for Script type 6 in Table 2.

Faloutsos, C., McCurley, K. S. and Tomkins, A. 2004 Fast
Discovery of Connection Subgraphs. Proceedings of KDD, pages
118-127.

Ferrucci, F. and Nyberg, E. et al 2009 Towards the Open
Advancement of Question Answering Systems. IBM Research
Report. RC24789 (W0904-093), IBM Research, New York.

Forbus, K. D. and de Kleer, J. 1993 Building Problem Solvers.
MIT Press

Forbus, K. D., Riesbeck, C., Birnbaum, L., Livingston, K.,
Sharma A., and Ureel, L. (2007). Integrating Natural Language,
Knowledge Representation and Reasoning, and Analogical
Processing to Learn by Reading. Proceedings of AAAI, pages
1542-1547

Khardon, R. 1999 Learning Function-Free Horn Expressions.
Machine Learning, 37, pp. 241-275.

Kaelbling, L. P., Littman, M. and Moore, A. 1996. Reinforcement
Learning: A Survey. Journal of AI Research, 4, pp. 237-285.

Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J., Schneider,
D., Shaw, P., and Lenat, D. 2005. Searching for common sense:
Populating Cyc from the web. Proceedings of AAAI, pages 1430-
1435.

Matuszek, C., Cabral, J., Witbrock, M. and De Olivieira, J. 2006.
An Introduction to the Syntax and Content of Cyc. AAAI Spring
Symposium, pages 44-49.

Miikkulainen, R. 1990. Script Recognition with Hierarchical
Feature Maps. Connection Science, pages 83-101

Molla, D. 2006 Learning of Graph-based Question Answering
Rules. Proceedings of HLT/NAACL Workshop on Graph
Algorithms for Natural Language Processing. pages 37-44.

Molla, D. and Vicedo, J. L. 2007. Question Answering in
Restricted Domains: An Overview. Computational Linguistics, 33
(1), pp. 41-61

Moore, D. and I. Essa. 2002. Recognizing Multitasked Activities
from Video Using Stochastic Context-Free Grammar,
Proceedings of AAAI, pages 770-776.

Navigli, R. 2008. A Structural Approach to the Automatic
Adjudication of Word-Sense Disagreements. Natural Language
Engineering. Vol. 14, 4, pp. 547-573

Prager, J., Chu-Carroll, J. and Czuba, K. 2004. Question
Answering Using Constraint Satisfaction: QA-by-Dossier-with-
Constraints. Proceedings of ACL, pages 60-65.

Ramakrishnan, S., Milnor, W. H., Perry, M. and Sheth, A. 2005.
Discovering Informative Connection Subgraphs in Muti-
relational Graphs. ACM SIGKDD Explorations Newsletter, 7(2),
pp. 56-63.

Richards, B. and Mooney, R. 1992. Learning Relations by
Pathfinding. Proceedings of AAAI, pages 50-55.

Taylor, M., Matuszek, C., Smith, P. and Witbrock, M. 2007.
Guiding Inference with Policy Search Reinforcement Learning.
Proceedings of FLAIRS, pages 146-151.

