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Abstract 

Efficient reasoning in large knowledge bases is an important 
problem for AI systems.  Hand-optimization of reasoning 
becomes impractical as KBs grow, and impossible as 
knowledge is automatically added via knowledge capture or 
machine learning. This paper describes a method for 
automatic extraction of axioms for efficient inference over 
large knowledge bases, given a set of query types and 
information about the types of facts in the KB currently as 
well as what might be learned.  We use the highly right 
skewed distribution of predicate connectivity in large 
knowledge bases to prune intractable regions of the search 
space. We show the efficacy of these techniques via 
experiments using queries from a learning by reading 
system.  Results show that these methods lead to an order of 
magnitude improvement in time with minimal loss in 
coverage.  

Introduction and Motivation   

Deductive reasoning is an important component of many 

AI systems.  Efficient reasoning systems can be built today 

only for fixed, small-to-medium sized knowledge bases 

and by careful hand-tuning.   There are two reasons to seek 

more general solutions.  First, hand-tuning does not scale 

as the size of the knowledge base grows.  For example, 

queries that fail in large knowledge bases frequently take 

hours to fail.
1
  There is still no evidence that general-

purpose reasoning in such knowledge bases can regularly 

be performed in order of a few minutes per query.  The 

second problem is that knowledge bases are no longer 

being built entirely by hand.  Advances in machine reading 

(cf. [Etzioni et al 2005]) provide the opportunity to 

automatically construct large knowledge bases, but this is 

useless if we cannot reason with them effectively. 
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 It is well-known that knowledge representation 

choices play a crucial role in determining the hardness of 

problems. Work in SAT solving is moving towards 

understanding the structure of problem and using it for the 

design of better heuristics. Logical knowledge bases, 

though structured, are highly complex networks of 

concepts. Concepts are connected through different types 

of relationships, defining intricate networks. 

Understanding KB structure is fundamental to many 

important knowledge representation and reasoning 

problems. These include evaluating inference engines and 

assessing the effectiveness of heuristics and algorithms.  

Here we exploit properties of the structure of a large 

knowledge base to improve inference. We describe the 

ExtractAxioms algorithm which identifies useful set of 

axioms by pruning knowledge-poor regions of the KB. We 

propose that for understanding reasoning performance, the 

search space represented by the axioms in the knowledge 

bases should be seen as a graph where the nodes are 

predicates mentioned in axioms, and the edges connect the 

predicates mentioned in the antecedents to the predicate of 

the consequent.  In such a network, most nodes have a few 

neighbors, whereas a small number of nodes have very 

high degree. We improve the performance of the 

ExtractAxioms algorithm by using these topological 

properties of predicate connectivity. We use the 

distribution of ground facts and what might be learned to 

identify difficult and less useful regions of the KB, and use 

that information to prune inefficient axioms, which 

improves performance. The maximum out-degree of nodes 

in the search graph is a key parameter for controlling the 

navigability of search spaces.  Networks which have high 

degree nodes, called hubs, are inherently unsuitable for 

focused search. We study the family of search spaces, from 

disconnected to scale-free, by varying this parameter and 

show that it helps in identifying efficient sets of axioms.    

This paper is organized as follows. We start by 

discussing relevant previous work. Then we describe our 
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motivating tasks and overall approach. Our extraction 

algorithm, KB analysis, and heuristics for improving 

efficiency are discussed next.  We conclude by discussing 

our experimental results, and plans for future work. 

Related Work 

Research in computational complexity and knowledge 

compilation [Selman et al 1996] has shown that Horn 

clauses provide a good trade-off between expressiveness 

and tractability. In SAT solving, fixed clause models of 

hardness, where the ratio of clauses to variables is 

considered to determine the hardness of the problem 

[Mitchell et al 1992] have received attention. Recently, 

heavy tails in randomized search costs have been 

acknowledged as a serious problem [Gomes et al 2004]. 

Non-uniform distribution of search-costs points towards 

the fact that not all variables are equally important. Such 

behavior has frequently been explained in terms of 

backdoors and backbones. The idea is that different groups 

of variables in a problem encoding often play quite distinct 

roles.  We identify similar structure for logical KBs. Our 

work is complementary to work on variable ordering 

strategies, removal of redundant constraints and identifying 

backtrack free graphs in CSP because we propose 

heuristics for simplifying the problem structure and 

quickly identifying where answers could be. Any inference 

engine should be able to benefit from them. Our work is 

closer to [Walsh 1999] who showed that graphs of real 

world problems aren’t uniform but have a ‘small-world’ 

structure. To the best of our knowledge, there hasn’t been 

any work in the AI community which has studied the 

correlation between network structure and 

time/performance tradeoffs in deductive reasoning. 

Motivating Tasks and Approach 

Our work is motivated by performing reasoning within 

large-scale learning systems.  In our particular case, the 

system is designed to learn by reading simplified texts 

[Forbus et al 2007].  The starting endowment for the 

system is drawn from the ResearchCyc KB, with new 

material added by a natural language system, which uses a 

Direct Memory Access Parser [Martin et al 1986].  The 

Question Answering module of this system uses the 

background KB plus knowledge gained by reading to 

answer questions, as a means of checking the accuracy of 

what has been read. The overall system is designed to be 

domain-independent. The texts so far have been about 

world history, particularly the Middle East, including its 

geography, history, and information about current events.  

The current corpus consists of 62 stories (956 sentences).  

Given this initial focus, we developed a set of 

parameterized question templates [Cohen et al, 1998] for 

testing the system’s knowledge.  These templates are: (1) 

Who is <Person>?, (2) Where did <Event> occur?, (3) 

Where might <Person> be?, (4) What are the goals of 

<Person>?, (5) What are the consequences of <Event>?, 

(6) When did <Event> occur?, (7) Who is involved in 

<Event>?, (8) Who is acquainted with (or knows) 

<Person>?  (9) Why did <Event> occur?, (10) Where is 

<SpatialThing>? In each template, the parameter (e.g., 

<Person>) indicates the kind of thing for which the 

question makes sense. For example, one of the queries for 

question 8 where <Person> was given as BillClinton, 

would be (acquaintedWith BillClinton ?x).   Each template 

expands into a disjunction of formal queries.  

For many AI systems, reasoning directly with quantified 

knowledge (i.e., at least first order) is essential. Brute-force 

techniques like pre-computing all ground facts 

(propositionalization) are infeasible.  First, they lead to 

combinatorial explosions and hence do not scale for large 

knowledge bases.  Second, the propositionalization of 

axioms involving logical terms can lead to infinite sets of 

statements.  Third, propositionalization assumes that the 

set of facts is static, i.e. that a set of facts is identified once, 

in advance, and never changes.  This does not match the 

needs of many tasks, including systems that learn.   

Our approach to tractable inference is to restrict 

backchaining to small sets of axioms, automatically 

extracted from the knowledge base, that are optimized for 

particular tasks.  Each such axiom set, called a chainer, 

corresponds to a single partition in the sense of [Amir et al 

2005].  Axioms in chainers are restricted to Horn clauses.   

Using chainers sacrifices completeness for efficiency.   In 

most applications, it is better to fail quickly and try another 

approach than to pursue a query for hours or days and then 

fail.   

Although large KBs like ResearchCyc contain non-Horn 

axioms, we limit our attention to Horn axioms here. This 

problem is still difficult: the problem of determining 

whether a set of first-order Horn clauses entails an atom is 

undecidable. As usual, finding reasonable 

coverage/efficiency tradeoffs as the KB grows is the issue. 

In the next section, we show how to construct chainers that 

provide efficiency with little loss of coverage.   
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Extracting Efficient Sets of Axioms 

 

We have observed that ground facts are not uniformly 

distributed across predicates. Therefore while searching, 

we should focus on regions of the search space that (i) are 

rich in ground facts or (ii) involve facts that can be 

produced by external systems (e.g., machine learning, 

learning by reading, or knowledge capture systems). In this 

algorithm, we represent the predicates used in statements 

that can be produced by external systems by the set 

LearnablePredicates. If a predicate P belongs to the set 

LearnablePredicates then ExtractAxioms would include 

axioms with P in the antecedent even if it is not currently 

very frequent in the KB.   We assume that the set of 

LearnablePredicates can be constructed by examining the 

structure of the system that is producing facts. We include 

all predicates produced by learning systems in 

LearnablePredicates because estimates of the distribution 

of statements produced may not be known in advance. We 

focus on a single query predicate, since constructing a 

chainer for a set of queries can be done by taking the union 

of axioms generated for each predicate.  The essence of the 

algorithm is a backward sweep from the query predicate 

through Horn clauses extracted from KB axioms involving 

that predicate.  A depth cutoff is used as a parameter for 

adjusting coverage versus efficiency for a chainer. Here, 

KnownFacts(p) represents the number of ground facts 

about the predicate p. We define InferredFacts(p) as the 

sum of ground facts of all nodes below p in the genlPreds
2
 

hierarchy. Formally it is ∑X KnownFacts(x), where X is the 

set of predicates reachable from p via genlPreds links 

pointed downward. We define AllFacts(p) as 

KnownFacts(p) + InferredFacts(p), i.e., the total number of 

times a predicate p could be proved via ground facts and 

genlPreds inference. In step 2 of Figure 1, we create an 

AND/OR backward search graph from Horn clauses that 

can conclude P. We introduce new nodes to transform the 

graph into an equivalent structure such that (a) each node is 

either an AND or an OR node, and (b) Each node has at 

most one parent
3
. For each node p, Children(p) represents 

the children of p in the search graph.  We would like to 

include all paths from knowledge-rich regions of the KB to 

the root. To achieve this, we perform a topological sort of 

the nodes (step 4) and begin from the leaves. A predicate is 

chosen if it is in LearnablePredicates or if the number of 

ground statements using it is higher than a given threshold. 

Since this is a backward search graph, we include the 

parents of selected nodes (steps 6.b.ii and 6.b.iii). In steps 

6.a.ii and 6.b.iv, we prefer those regions of KB which are  

                                                 
2In Cyc terminology, (genlPreds<s> <g>) means that <g> is a 
generalization of <s>. For example, (genlPreds touches near) means that 
touching something implies being near to it.  
3These changes simplify the description of algorithm ExtractAxioms. 

Figure 1: Algorithm used to extract axioms from KB 

rich in ground facts. The set SelectedNodes represents the 

predicates which can be frequently proved. In step 7, a 

Horn clause is included in SelectedRules if all predicates in 

its antecedents are in SelectedNodes. The complexity of 

ExtractAxioms is quite reasonable.  Let K and N be the set 

of axioms and predicates respectively. Moreover, let E be 

the set of edges of the graph. Then the complexity of 

computing InferredFacts(p) is O(|N|
2
). Step 2 requires 

O(|N|.|K|) time. Topological sort requires O(|N|+|E|) which 

is O(|N|
2
). Step 6 and 7 are O(|N|

2
) and O(|N|.|K|) 

respectively. Therefore, the complexity of the pre-

processing step is O(|N|
2
)+O(|N|.|K|). Since the axiom 

extraction process occurs off-line, and infrequently 

compared to the number of times that the axioms are used, 

this is a very reasonable cost.  Next we use the structure of 

the KB to further improve the chainer’s performance. 

Knowledge Bases as Networks 

Next we identify some heuristics based on topology and 

distributions for detecting rules that are likely to fail. It is 

useful to think about large knowledge bases as networks, 

where the nodes are predicates and links exist from 

predicates in the consequent of an axiom to those in the 

antecedent. For concreteness, this analysis uses the 

Algorithm ExtractAxioms:  

Input: (a) pred: A predicate (b) depth:  depth cutoff, typically 5 (c) 

LearnedPredicates: A set of predicates which can be generated by the 

input to the reasoning system. (d) A constant ɑ set to 0.001 

Output: A set of axioms, SelectedRules, for proving the predicate pred. 

1. SelectedPredicates ←Ø, SelectedRules←Ø 

2. Make a backward search graph, T, until depth = depth, by 

converting axioms mentioning pred into Horn clauses, and 

recursing on their antecedents. 

3. Threshold← ɑ* ∑X KnownFacts(x) where X is the set of all 

predicates in the graph. 

4. Convert T to a queue, by performing a topological sort to order 

the nodes.  

5. Repeat step 6 until T is empty. 

6. Pop an element y, from the ordered list T 

a. if Children(y) is empty then include y in SelectedNodes 

if: 

i. y ε LearnablePredicates or, 

ii. AllFacts(y) >Threshold 

b. else if Children(y) is non-empty then include y in 

SelectedNodes if: 

i. y ε LearnablePredicates or, 

ii. y is an OR node and at least one element of 

Children(y) is in SelectedNodes or, 

iii. y is an AND node and Children(y) is a subset of 

SelecteNodes or, 

iv. AllFacts(y) >Threshold 

7. SelectedRules← {r | r is a Horn clause in KB and all the 

predicates in its antecedents are in SelectedNodes.} 

8. Return SelectedRules 

. 
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ResearchCyc KB, but we suspect that similar properties 

will hold for any large, general-purpose KB.  For 

tractability, we focus on 4,864 concepts that are involved 

in the kinds of queries described earlier.  Given our notion 

of connectivity, the degree distribution of nodes is shown 

in Figure 2. It is clear that most nodes have very few 

neighbors
4
, whereas a small number of nodes have 

significantly high degree
5
. This distribution is highly right 

skewed and resembles a power law distribution
6
. 

Numerous studies have shown that such networks are 

ubiquitous in natural phenomenon. In fact, it has been 

found that many networks, including the world-wide web, 

a cell’s metabolic systems, and Hollywood actors are 

dominated by a small number of nodes that are connected 

to many others [Mitchell 2006]. This distribution suggests 

that the knowledge in ResearchCyc uses a small set of 

predicates heavily.  Our ability to infer useful facts hinges 

on them. If these predicates are known, inference is 

surprisingly easy. On the other hand, inferring them can be 

difficult. Such non-uniform distributions are amenable to 

targeted intervention or perturbation, which we can exploit 

to improve inference. 

 

 

 
 

 

 

 

 

 

 

 

Figure 2: Degree distribution of nodes in search graph. 

Consider the connectivity of the network as we remove 

the nodes. Clearly, the more nodes we remove, the more 

likely it would be to fragment the network. Random 

networks fall apart after a critical number of nodes have 

been removed. However, since the connectivity of scale-

free networks depends on a small number of hubs, random 

failures cannot disconnect them. This extreme robustness is 

accompanied by fragility to attacks: the systematic removal 

of a few hubs would disintegrate these networks, breaking 

them into non-communicating islands. [Jeong et al 2001].  

These properties have significant implications for 

making reasoning more efficient. Our heuristics are based 

on the fact that nodes with high degree are queried for 

repeatedly and can be proved in many ways. This ensures 

that these predicates take lot of time to fail. One option is 

                                                 
4 50% nodes have less than 8 neighbors. 
5 For example, the out-degrees of isa, temporallyIntersects and genls are 854, 
358 and 149 respectively.  
6In its most general form, a power law distribution has the form p(x) α x-a, 
where 2 < a < 3 although there are occasional exceptions [Clauset et al 
2009].  

to remove these nodes i.e. stop reasoning about them. 

However, removing high-degree nodes disconnects the 

network and coverage drops significantly. Therefore, we 

need a subtle balance to keep a minimum number of such 

nodes to ensure that we answer a reasonable number of 

questions. To do this, we use the distribution of known and 

inferred facts. If a predicate is frequently known, then the 

search space below it is less relevant
7
. Moreover genlPreds 

inference is typically easier than inference with normal 

axioms. Therefore the function AllFacts(p), defined above, 

provides a good measure for identifying predicates which 

should be included. Our results below show that this 

heuristic can help us to get an efficient set of axioms.   

However, we can take another approach for solving the 

same problem. Networks which have hubs have a diameter 

which is bounded by a polynomial in log(N), where N is 

the number of nodes. In other words, there is always a very 

short path between any two nodes [Kleinberg 2000]. Once 

the reasoning process reaches one of these hubs, most of 

the remaining network is easily reachable. In our 

experiments, we have observed that most of the predicates 

are accessible during search through predicates like isa, 

genls and holdsIn. This makes the search intractable and 

queries are timed out. Therefore, one possible solution is to 

prevent the network from having hubs
8
. We can do this by 

limiting the maximum out degree of each node in the 

search space. Let m be the maximum allowed out-degree of 

each node. If V is the set of vertices in the resulting graph, 

then by definition m = max v deg
-
(v). In other words, we do 

not allow any node to have an out-degree greater than m.  

When m is 0, the graph is a set of disconnected nodes. On 

the other hand, when m is ∞, the out-degree is not limited 

and we have the original graph. Between these two 

extremes, we can study the ease of navigability of a family 

of search spaces. When m is low, short paths between 

nodes do not exist. As we increase m, the connectivity of 

graph improves. After a particular threshold, there are too 

many potential paths in the graph and relevant/short paths 

are difficult to find. This threshold determines the optimal 

complexity of the search space.  In the next section, we use 

AllFacts(p) to restrict m, and to determine its optimal 

value. This is similar to Kleinberg’s notion that efficient 

navigability is a fundamental property of only some 

networks and after a critical threshold individuals (or 

algorithms) cannot easily find paths in social networks 

[Kleinberg 2000].     

 

Experiments 

                                                 
7If the query can be answered by using ground facts then the need to 
explore the search space below a given node does not arise. 
8In this analysis, we consider a hub to be a node which has more than 50 
children. Less than 1% of the nodes satisfy this condition. 
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To illustrate the utility of these ideas, we describe a series 

of experiments using three sets of questions. The first 

corpus of questions (Q1 henceforth) was generated by 

randomly selecting entities from the KB satisfying the 

question templates discussed above, creating 100 questions 

of each type, for 1000 questions total. The second corpus 

of 970 questions (Q2 henceforth) was generated by 

automatically generating all legal instantiations of the 

parameterized questions for the entities constructed by the 

overall system’s reading. We also wanted to check that our 

methods worked for other predicates. To do this we sorted 

all predicates by AllFacts(p). We then selected 61 top 

predicates and replaced their first argument by 100 

randomly sampled entities satisfying their argument 

constraints. This led to a set of 6100 queries. Intuitively, 

this set has most ground facts in the genlPreds tree below 

it. This set of question is referred as Q3 in this section. 

Each query was timed out after ninety seconds. We used a 

simple backward-chainer working on a LTMS based 

inference engine. We sought one instantiation of the 

answer and searched until depth 3. All experiments were 

done on a 3.2 GHz Pentium Xeon processor with 3GB of 

RAM. 

 
Notation Description 

Baseline All horn rules for all predicates in the search tree. 

E0 Output of algorithm ExtractAxioms 

Px Sort the predicates on the basis of their out degree 

and keep x% with the highest out degree 

Qx Sort the predicates on the basis of AllFacts(x) 

function and keep x% with the highest value. 

Dx Begin with E0. Find the top x children of each node 

by sorting the children via AllFacts(p), and keeping 

top x children. Exclude all axioms in E0 whose 

antecedents are not in the top x children of the 

predicate in the consequent.  

Ei E0\ All Rules which mention predicates in Pi, i>0 

EQi E0\All Rules which mention predicates in (Pi \Qi), 

i>0 

                                 Table 1: Notation 

For the sets Q1 and Q2, we begin with all predicates in 

the question templates discussed above. For Q3, we begin 

with a set of 61 predicates discussed earlier. We make a 

search tree for all these predicates and use the algorithm 

ExtractAxioms to get the set E0. The set E0 for Q1 and Q2 

had 6,417 axioms while E0 for Q3 had 7,894 axioms. For a 

baseline comparison, we use the set of all Horn clauses for 

all predicates in the search tree. The description of other 

rule sets is shown in Table 1. For example, to get P2, we 

sort the predicates on the basis of their out degree and keep 

the top 2%. Then E2 is obtained by removing all axioms 

from E0 which mention predicates in P2. We see that as we 

remove high degree predicates (see the performance of Ex 

in Table 2), the network falls apart and virtually no 

inference is possible. All questions answered at this stage 

are obtained by database lookup and minimal 

unification/chaining takes place. Moreover, the number of 

questions answered remains roughly same for E6, E8 and 

E10 which suggests that the search space had been 

fragmented to a set of non-communicating islands for E6 

and removing more predicates did not cause any change. 

Table 2 shows that time required for E6, E8 and E10 is very 

close to zero which provides additional evidence that the 

search space is disconnected. Next we use the predicates in 

Qx to keep some of high degree predicates which have 

many ground facts in the genlPreds tree below them (see 

the definition of AllFacts(x) above). By including these 

predicates we get the set EQx, which helps us in recovering 

the coverage lost by removing high-degree nodes (see 

Table 2). This heuristic leads to a factor of 81, 4.90 and 2.2 

improvement for the Q1, Q2 and Q3 sets respectively. The 

maximum loss in coverage is 8.5%. These heuristics are 

referred to as Heuristic 1 in Table 3.  
 Q/A 

(Q1) 

Time 

(Q1) 

Q/A 

(Q2) 

Time 

(Q2) 

Q/A 

(Q3) 

Time 

(Q3) 

Baseline 60.0 51.83 43.05 52.22 25.49 64.44 

E0 60.5 40.05 41.86 42.40 30.50 51.50 

E6 27.3 0.03 17.02 0.02 6.70 0.02 

E8 27.1 0.06 16.48 0.03 6.70 0.02 

E10 26.8 0.06 16.16 0.02 6.70 0.02 

       

EQ2 58.0 0.64 36.65 0.45 28.49 6.72 

EQ4 57.4 8.97 39.37 10.64 43.78 30.06 

EQ6 46.0 10.48 35.79 11.08 48.16 28.74 

       

E0 60.5 40.05 41.86 42.40 30.50 51.50 

D3 64.6 0.07 40.34 0.05 22.52 0.19 

D5 66.2 0.76 45.11 0.68 34.18 2.61 

D9 68.2 3.38 47.50 2.73 38.55 5.25 

D18 67.4 14.45 48.04 15.01 50.63 15.68 

Table 2: Effect of removal of nodes on Q/A performance and time 

requirements. Q/A numbers are in %, whereas time requirements 

are in minutes. 

 

Next we show that maximum out degree is a reasonable 

parameter for modeling efficient navigability of the 

network. To remove bottlenecks, we would like to reduce 

the variance in out-degree of nodes. When m is ∞, we have 

the original rule set or E0. In Table 2, we report the 

performance of Dx for different values of x. For example, 

in the set D3, all nodes have at most 3 children. The 

definition in Table 1 reflects our preference for those 

regions of search space which are rich in ground facts. We 

see that the performance improves in all cases. This 

heuristic is referred to as Heuristic 2 in Table 3.  

The final results are shown in Table 3. We note that 

ExtractAxiom’s output, E0, significantly improves the 

performance compared to the baseline. It improves the 

performance by 22%, 18% and 20% for Q1, Q2 and Q3 set 

respectively. The maximum loss of coverage is 2.7%. 

Heuristic 1 and 2 further improve the performance of this 

set. The set of axioms which led to best performance are 
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shown in parentheses.  We see that in most cases we have 

been able to improve the performance significantly. 

Heuristic 1 might lead to some loss in coverage but in our 

experience, the overall performance improvement is worth 

it. Heuristic 2 always leads to improved performance 

without any loss of coverage. The results shown in Table 3 

are statistically significant (p < 0.01).  

 
Query 

Sets 

Rule sets  %  

Answered 

+/- % Time 

(min) 

Speedup 

Q1 

 

Baseline 60.00 0% 5183.70 1 

E0 60.50 0.83% 4005.39 1.3 

Heuristic 

1 (EQ2) 

58.00 -3.33% 64.00 81 

Heuristic 

2(D3) 

64.60 7.67% 7.78 666 

Q2 

 

Baseline 43.05 0% 5222.96 1 

E0 41.86 -2.76% 4240.55 1.2 

Heuristic 

1(EQ4) 

39.37 -8.55% 1064.76 4.9 

Heuristic 

2 (D9) 

47.50 10.34% 273.54 19.1 

Q3 Baseline 25.49 0% 6444.21 1 

E0 30.50 19.65% 5150.39 1.2 

Heuristic 

1 (EQ6) 

48.16 88.94% 2874.02 2.2 

Heuristic 

2 (D18) 

50.63 98.63% 1568.48 4.1 

Table 3:  Summary Comparison of performance 

 

Rule Set E0 Q3(%) Q3(minutes) 

Timeout:30 sec. 23.98 2076.65 

Timeout: 60 sec. 27.91 3769.80 

Timeout: 90 sec. 30.50 6444.21 

Timeout: 120 sec 32.77 6496.51 
Table 4: Performance tradeoff with timeout for Q3 

 It might seem counterintuitive that by removing some 

rules, we can answer more questions in less time. This is 

because as we increase the number of rules, the inference 

engine is “lost” in less useful regions of search space and 

queries are timed out. We verified this hypothesis by 

increasing the timeout for the E0 set for the Q3 set of 

questions. The results are shown in table 4. We see that the 

improvement is not encouraging. In fact, our heuristics 

outperform it even though their queries are allowed less 

than 120 seconds. In other words, allowing more time 

simply increases failure time and doesn’t help in getting 

answers. We show the scaling of ExtractAxioms with depth 

in Table 5. We conclude that performance tapers off after a 

threshold and providing more resources isn’t useful. We 

also evaluated our techniques on several sets of problems 

from the Thousands of Problems for Theorem Provers 

(TPTP) data set version 3.5.0 [Sutcliffe 2009]. These 

experiments were divided in two categories. Type 1 

problems included 300 problems from the CSR 

(commonsense reasoning) domain. The Type 2 problems 

consisted of 50 satisfiable problems from the AGT, NLP 

and MGT domains.  We were able to solve 81% and 88% 

problems from these sets successfully. The heuristics 

discussed here led to speedups of 11.2 and 4.0 respectively.   

Depth Q/A 

Q1 

Time 

Q1 

Q/A 

Q2 

Time

Q2 

Q/A 

Q3 

Time 

Q3 

0 26.7 0.02 16.16 0.02 16.1 0.5 

1 54.2 5.11 40.02 3.52 27.7 6.1 

2 67.0 24.36 48.04 22.49 33.7 20.2 

3 60.5 40.05 41.86 42.40 30.5 51.5 

4 58.6 48.36 36.98 54.48 21.9 67.6 

5 55.5 59.55 32.86 64.60 16.3 73.7 
Table 5: Scaling of ExtractAxioms with depth. 

 

                    Conclusions 

 

As knowledge bases grow, especially via machine learning 

and knowledge capture, better ways to automatically use 

such knowledge efficiently must be found.  This paper 

describes two techniques for this important problem.  The 

first is to automatically extract subsets of the KB targeted 

at particular tasks; exploiting knowledge of what kinds of 

statements are available already and what might be 

supplied via other systems, such as learning systems.  The 

second uses an analysis of the connectivity of knowledge 

bases to automatically identify nodes to prune which, while 

losing a small amount of coverage, can yield over an order 

of magnitude performance improvement. The average 

speedup is a factor of 129. The worst case is a factor of 4 

improvements in time with only 8.5% loss in 

completeness.  These results suggest three lines of future 

work.  First, we need to test these algorithms over a 

broader range of problems, to ensure their generality.  

Second, we think coupling a network-based analysis like 

ours with other factors such as constraint patterns [Walsh 

2003] could yield a more complete theoretical picture as to 

what makes inference hard.  Finally, the ability to identify 

what makes inference hard potentially provides us with the 

information as to what might make inference easier – in 

other words, analyze the structure of knowledge bases to 

ascertain what kinds of knowledge could be added to 

improve inference, and thus help create cognitive systems 

that generate and prioritize their own learning goals, so that 

what they learn improves, instead of degrades, their 

operation. 
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