

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

Automatic Extraction of Efficient Axiom Sets from Large Knowledge

Bases

Abhishek Sharma
1
 Kenneth D. Forbus

2

1Cycorp, Inc. 7718 Wood Hollow Drive, Suite 250, Austin, TX 78731
2Northwestern University, 2133 Sheridan Road, Evanston, IL 60208

abhishek@cyc.com, forbus@northwestern.edu

Abstract

Efficient reasoning in large knowledge bases is an important
problem for AI systems. Hand-optimization of reasoning
becomes impractical as KBs grow, and impossible as
knowledge is automatically added via knowledge capture or
machine learning. This paper describes a method for
automatic extraction of axioms for efficient inference over
large knowledge bases, given a set of query types and
information about the types of facts in the KB currently as
well as what might be learned. We use the highly right
skewed distribution of predicate connectivity in large
knowledge bases to prune intractable regions of the search
space. We show the efficacy of these techniques via
experiments using queries from a learning by reading
system. Results show that these methods lead to an order of
magnitude improvement in time with minimal loss in
coverage.

Introduction and Motivation

Deductive reasoning is an important component of many

AI systems. Efficient reasoning systems can be built today

only for fixed, small-to-medium sized knowledge bases

and by careful hand-tuning. There are two reasons to seek

more general solutions. First, hand-tuning does not scale

as the size of the knowledge base grows. For example,

queries that fail in large knowledge bases frequently take

hours to fail.
1
 There is still no evidence that general-

purpose reasoning in such knowledge bases can regularly

be performed in order of a few minutes per query. The

second problem is that knowledge bases are no longer

being built entirely by hand. Advances in machine reading

(cf. [Etzioni et al 2005]) provide the opportunity to

automatically construct large knowledge bases, but this is

useless if we cannot reason with them effectively.

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
1cf. www.projecthalo.com/content/docs/

 It is well-known that knowledge representation

choices play a crucial role in determining the hardness of

problems. Work in SAT solving is moving towards

understanding the structure of problem and using it for the

design of better heuristics. Logical knowledge bases,

though structured, are highly complex networks of

concepts. Concepts are connected through different types

of relationships, defining intricate networks.

Understanding KB structure is fundamental to many

important knowledge representation and reasoning

problems. These include evaluating inference engines and

assessing the effectiveness of heuristics and algorithms.

Here we exploit properties of the structure of a large

knowledge base to improve inference. We describe the

ExtractAxioms algorithm which identifies useful set of

axioms by pruning knowledge-poor regions of the KB. We

propose that for understanding reasoning performance, the

search space represented by the axioms in the knowledge

bases should be seen as a graph where the nodes are

predicates mentioned in axioms, and the edges connect the

predicates mentioned in the antecedents to the predicate of

the consequent. In such a network, most nodes have a few

neighbors, whereas a small number of nodes have very

high degree. We improve the performance of the

ExtractAxioms algorithm by using these topological

properties of predicate connectivity. We use the

distribution of ground facts and what might be learned to

identify difficult and less useful regions of the KB, and use

that information to prune inefficient axioms, which

improves performance. The maximum out-degree of nodes

in the search graph is a key parameter for controlling the

navigability of search spaces. Networks which have high

degree nodes, called hubs, are inherently unsuitable for

focused search. We study the family of search spaces, from

disconnected to scale-free, by varying this parameter and

show that it helps in identifying efficient sets of axioms.

This paper is organized as follows. We start by

discussing relevant previous work. Then we describe our

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

motivating tasks and overall approach. Our extraction

algorithm, KB analysis, and heuristics for improving

efficiency are discussed next. We conclude by discussing

our experimental results, and plans for future work.

Related Work

Research in computational complexity and knowledge

compilation [Selman et al 1996] has shown that Horn

clauses provide a good trade-off between expressiveness

and tractability. In SAT solving, fixed clause models of

hardness, where the ratio of clauses to variables is

considered to determine the hardness of the problem

[Mitchell et al 1992] have received attention. Recently,

heavy tails in randomized search costs have been

acknowledged as a serious problem [Gomes et al 2004].

Non-uniform distribution of search-costs points towards

the fact that not all variables are equally important. Such

behavior has frequently been explained in terms of

backdoors and backbones. The idea is that different groups

of variables in a problem encoding often play quite distinct

roles. We identify similar structure for logical KBs. Our

work is complementary to work on variable ordering

strategies, removal of redundant constraints and identifying

backtrack free graphs in CSP because we propose

heuristics for simplifying the problem structure and

quickly identifying where answers could be. Any inference

engine should be able to benefit from them. Our work is

closer to [Walsh 1999] who showed that graphs of real

world problems aren’t uniform but have a ‘small-world’

structure. To the best of our knowledge, there hasn’t been

any work in the AI community which has studied the

correlation between network structure and

time/performance tradeoffs in deductive reasoning.

Motivating Tasks and Approach

Our work is motivated by performing reasoning within

large-scale learning systems. In our particular case, the

system is designed to learn by reading simplified texts

[Forbus et al 2007]. The starting endowment for the

system is drawn from the ResearchCyc KB, with new

material added by a natural language system, which uses a

Direct Memory Access Parser [Martin et al 1986]. The

Question Answering module of this system uses the

background KB plus knowledge gained by reading to

answer questions, as a means of checking the accuracy of

what has been read. The overall system is designed to be

domain-independent. The texts so far have been about

world history, particularly the Middle East, including its

geography, history, and information about current events.

The current corpus consists of 62 stories (956 sentences).

Given this initial focus, we developed a set of

parameterized question templates [Cohen et al, 1998] for

testing the system’s knowledge. These templates are: (1)

Who is <Person>?, (2) Where did <Event> occur?, (3)

Where might <Person> be?, (4) What are the goals of

<Person>?, (5) What are the consequences of <Event>?,

(6) When did <Event> occur?, (7) Who is involved in

<Event>?, (8) Who is acquainted with (or knows)

<Person>? (9) Why did <Event> occur?, (10) Where is

<SpatialThing>? In each template, the parameter (e.g.,

<Person>) indicates the kind of thing for which the

question makes sense. For example, one of the queries for

question 8 where <Person> was given as BillClinton,

would be (acquaintedWith BillClinton ?x). Each template

expands into a disjunction of formal queries.

For many AI systems, reasoning directly with quantified

knowledge (i.e., at least first order) is essential. Brute-force

techniques like pre-computing all ground facts

(propositionalization) are infeasible. First, they lead to

combinatorial explosions and hence do not scale for large

knowledge bases. Second, the propositionalization of

axioms involving logical terms can lead to infinite sets of

statements. Third, propositionalization assumes that the

set of facts is static, i.e. that a set of facts is identified once,

in advance, and never changes. This does not match the

needs of many tasks, including systems that learn.

Our approach to tractable inference is to restrict

backchaining to small sets of axioms, automatically

extracted from the knowledge base, that are optimized for

particular tasks. Each such axiom set, called a chainer,

corresponds to a single partition in the sense of [Amir et al

2005]. Axioms in chainers are restricted to Horn clauses.

Using chainers sacrifices completeness for efficiency. In

most applications, it is better to fail quickly and try another

approach than to pursue a query for hours or days and then

fail.

Although large KBs like ResearchCyc contain non-Horn

axioms, we limit our attention to Horn axioms here. This

problem is still difficult: the problem of determining

whether a set of first-order Horn clauses entails an atom is

undecidable. As usual, finding reasonable

coverage/efficiency tradeoffs as the KB grows is the issue.

In the next section, we show how to construct chainers that

provide efficiency with little loss of coverage.

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

Extracting Efficient Sets of Axioms

We have observed that ground facts are not uniformly

distributed across predicates. Therefore while searching,

we should focus on regions of the search space that (i) are

rich in ground facts or (ii) involve facts that can be

produced by external systems (e.g., machine learning,

learning by reading, or knowledge capture systems). In this

algorithm, we represent the predicates used in statements

that can be produced by external systems by the set

LearnablePredicates. If a predicate P belongs to the set

LearnablePredicates then ExtractAxioms would include

axioms with P in the antecedent even if it is not currently

very frequent in the KB. We assume that the set of

LearnablePredicates can be constructed by examining the

structure of the system that is producing facts. We include

all predicates produced by learning systems in

LearnablePredicates because estimates of the distribution

of statements produced may not be known in advance. We

focus on a single query predicate, since constructing a

chainer for a set of queries can be done by taking the union

of axioms generated for each predicate. The essence of the

algorithm is a backward sweep from the query predicate

through Horn clauses extracted from KB axioms involving

that predicate. A depth cutoff is used as a parameter for

adjusting coverage versus efficiency for a chainer. Here,

KnownFacts(p) represents the number of ground facts

about the predicate p. We define InferredFacts(p) as the

sum of ground facts of all nodes below p in the genlPreds
2

hierarchy. Formally it is ∑X KnownFacts(x), where X is the

set of predicates reachable from p via genlPreds links

pointed downward. We define AllFacts(p) as

KnownFacts(p) + InferredFacts(p), i.e., the total number of

times a predicate p could be proved via ground facts and

genlPreds inference. In step 2 of Figure 1, we create an

AND/OR backward search graph from Horn clauses that

can conclude P. We introduce new nodes to transform the

graph into an equivalent structure such that (a) each node is

either an AND or an OR node, and (b) Each node has at

most one parent
3
. For each node p, Children(p) represents

the children of p in the search graph. We would like to

include all paths from knowledge-rich regions of the KB to

the root. To achieve this, we perform a topological sort of

the nodes (step 4) and begin from the leaves. A predicate is

chosen if it is in LearnablePredicates or if the number of

ground statements using it is higher than a given threshold.

Since this is a backward search graph, we include the

parents of selected nodes (steps 6.b.ii and 6.b.iii). In steps

6.a.ii and 6.b.iv, we prefer those regions of KB which are

2In Cyc terminology, (genlPreds<s> <g>) means that <g> is a
generalization of <s>. For example, (genlPreds touches near) means that
touching something implies being near to it.
3These changes simplify the description of algorithm ExtractAxioms.

Figure 1: Algorithm used to extract axioms from KB

rich in ground facts. The set SelectedNodes represents the

predicates which can be frequently proved. In step 7, a

Horn clause is included in SelectedRules if all predicates in

its antecedents are in SelectedNodes. The complexity of

ExtractAxioms is quite reasonable. Let K and N be the set

of axioms and predicates respectively. Moreover, let E be

the set of edges of the graph. Then the complexity of

computing InferredFacts(p) is O(|N|
2
). Step 2 requires

O(|N|.|K|) time. Topological sort requires O(|N|+|E|) which

is O(|N|
2
). Step 6 and 7 are O(|N|

2
) and O(|N|.|K|)

respectively. Therefore, the complexity of the pre-

processing step is O(|N|
2
)+O(|N|.|K|). Since the axiom

extraction process occurs off-line, and infrequently

compared to the number of times that the axioms are used,

this is a very reasonable cost. Next we use the structure of

the KB to further improve the chainer’s performance.

Knowledge Bases as Networks

Next we identify some heuristics based on topology and

distributions for detecting rules that are likely to fail. It is

useful to think about large knowledge bases as networks,

where the nodes are predicates and links exist from

predicates in the consequent of an axiom to those in the

antecedent. For concreteness, this analysis uses the

Algorithm ExtractAxioms:

Input: (a) pred: A predicate (b) depth: depth cutoff, typically 5 (c)

LearnedPredicates: A set of predicates which can be generated by the

input to the reasoning system. (d) A constant ɑ set to 0.001

Output: A set of axioms, SelectedRules, for proving the predicate pred.

1. SelectedPredicates ←Ø, SelectedRules←Ø

2. Make a backward search graph, T, until depth = depth, by

converting axioms mentioning pred into Horn clauses, and

recursing on their antecedents.

3. Threshold← ɑ* ∑X KnownFacts(x) where X is the set of all

predicates in the graph.

4. Convert T to a queue, by performing a topological sort to order

the nodes.

5. Repeat step 6 until T is empty.

6. Pop an element y, from the ordered list T

a. if Children(y) is empty then include y in SelectedNodes

if:

i. y ε LearnablePredicates or,

ii. AllFacts(y) >Threshold

b. else if Children(y) is non-empty then include y in

SelectedNodes if:

i. y ε LearnablePredicates or,

ii. y is an OR node and at least one element of

Children(y) is in SelectedNodes or,

iii. y is an AND node and Children(y) is a subset of

SelecteNodes or,

iv. AllFacts(y) >Threshold

7. SelectedRules← {r | r is a Horn clause in KB and all the

predicates in its antecedents are in SelectedNodes.}

8. Return SelectedRules

.

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

ResearchCyc KB, but we suspect that similar properties

will hold for any large, general-purpose KB. For

tractability, we focus on 4,864 concepts that are involved

in the kinds of queries described earlier. Given our notion

of connectivity, the degree distribution of nodes is shown

in Figure 2. It is clear that most nodes have very few

neighbors
4
, whereas a small number of nodes have

significantly high degree
5
. This distribution is highly right

skewed and resembles a power law distribution
6
.

Numerous studies have shown that such networks are

ubiquitous in natural phenomenon. In fact, it has been

found that many networks, including the world-wide web,

a cell’s metabolic systems, and Hollywood actors are

dominated by a small number of nodes that are connected

to many others [Mitchell 2006]. This distribution suggests

that the knowledge in ResearchCyc uses a small set of

predicates heavily. Our ability to infer useful facts hinges

on them. If these predicates are known, inference is

surprisingly easy. On the other hand, inferring them can be

difficult. Such non-uniform distributions are amenable to

targeted intervention or perturbation, which we can exploit

to improve inference.

Figure 2: Degree distribution of nodes in search graph.

Consider the connectivity of the network as we remove

the nodes. Clearly, the more nodes we remove, the more

likely it would be to fragment the network. Random

networks fall apart after a critical number of nodes have

been removed. However, since the connectivity of scale-

free networks depends on a small number of hubs, random

failures cannot disconnect them. This extreme robustness is

accompanied by fragility to attacks: the systematic removal

of a few hubs would disintegrate these networks, breaking

them into non-communicating islands. [Jeong et al 2001].

These properties have significant implications for

making reasoning more efficient. Our heuristics are based

on the fact that nodes with high degree are queried for

repeatedly and can be proved in many ways. This ensures

that these predicates take lot of time to fail. One option is

4 50% nodes have less than 8 neighbors.
5 For example, the out-degrees of isa, temporallyIntersects and genls are 854,
358 and 149 respectively.
6In its most general form, a power law distribution has the form p(x) α x-a,
where 2 < a < 3 although there are occasional exceptions [Clauset et al
2009].

to remove these nodes i.e. stop reasoning about them.

However, removing high-degree nodes disconnects the

network and coverage drops significantly. Therefore, we

need a subtle balance to keep a minimum number of such

nodes to ensure that we answer a reasonable number of

questions. To do this, we use the distribution of known and

inferred facts. If a predicate is frequently known, then the

search space below it is less relevant
7
. Moreover genlPreds

inference is typically easier than inference with normal

axioms. Therefore the function AllFacts(p), defined above,

provides a good measure for identifying predicates which

should be included. Our results below show that this

heuristic can help us to get an efficient set of axioms.

However, we can take another approach for solving the

same problem. Networks which have hubs have a diameter

which is bounded by a polynomial in log(N), where N is

the number of nodes. In other words, there is always a very

short path between any two nodes [Kleinberg 2000]. Once

the reasoning process reaches one of these hubs, most of

the remaining network is easily reachable. In our

experiments, we have observed that most of the predicates

are accessible during search through predicates like isa,

genls and holdsIn. This makes the search intractable and

queries are timed out. Therefore, one possible solution is to

prevent the network from having hubs
8
. We can do this by

limiting the maximum out degree of each node in the

search space. Let m be the maximum allowed out-degree of

each node. If V is the set of vertices in the resulting graph,

then by definition m = max v deg
-
(v). In other words, we do

not allow any node to have an out-degree greater than m.

When m is 0, the graph is a set of disconnected nodes. On

the other hand, when m is ∞, the out-degree is not limited

and we have the original graph. Between these two

extremes, we can study the ease of navigability of a family

of search spaces. When m is low, short paths between

nodes do not exist. As we increase m, the connectivity of

graph improves. After a particular threshold, there are too

many potential paths in the graph and relevant/short paths

are difficult to find. This threshold determines the optimal

complexity of the search space. In the next section, we use

AllFacts(p) to restrict m, and to determine its optimal

value. This is similar to Kleinberg’s notion that efficient

navigability is a fundamental property of only some

networks and after a critical threshold individuals (or

algorithms) cannot easily find paths in social networks

[Kleinberg 2000].

Experiments

7If the query can be answered by using ground facts then the need to
explore the search space below a given node does not arise.
8In this analysis, we consider a hub to be a node which has more than 50
children. Less than 1% of the nodes satisfy this condition.

0

100

200

300

400

500

600

700

800

900

1000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109115121

N
u

m
b

e
r
 o

f
n

o
d

e
s

Out Degree of Nodes

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

To illustrate the utility of these ideas, we describe a series

of experiments using three sets of questions. The first

corpus of questions (Q1 henceforth) was generated by

randomly selecting entities from the KB satisfying the

question templates discussed above, creating 100 questions

of each type, for 1000 questions total. The second corpus

of 970 questions (Q2 henceforth) was generated by

automatically generating all legal instantiations of the

parameterized questions for the entities constructed by the

overall system’s reading. We also wanted to check that our

methods worked for other predicates. To do this we sorted

all predicates by AllFacts(p). We then selected 61 top

predicates and replaced their first argument by 100

randomly sampled entities satisfying their argument

constraints. This led to a set of 6100 queries. Intuitively,

this set has most ground facts in the genlPreds tree below

it. This set of question is referred as Q3 in this section.

Each query was timed out after ninety seconds. We used a

simple backward-chainer working on a LTMS based

inference engine. We sought one instantiation of the

answer and searched until depth 3. All experiments were

done on a 3.2 GHz Pentium Xeon processor with 3GB of

RAM.

Notation Description

Baseline All horn rules for all predicates in the search tree.

E0 Output of algorithm ExtractAxioms

Px Sort the predicates on the basis of their out degree

and keep x% with the highest out degree

Qx Sort the predicates on the basis of AllFacts(x)

function and keep x% with the highest value.

Dx Begin with E0. Find the top x children of each node

by sorting the children via AllFacts(p), and keeping

top x children. Exclude all axioms in E0 whose

antecedents are not in the top x children of the

predicate in the consequent.

Ei E0\ All Rules which mention predicates in Pi, i>0

EQi E0\All Rules which mention predicates in (Pi \Qi),

i>0

 Table 1: Notation

For the sets Q1 and Q2, we begin with all predicates in

the question templates discussed above. For Q3, we begin

with a set of 61 predicates discussed earlier. We make a

search tree for all these predicates and use the algorithm

ExtractAxioms to get the set E0. The set E0 for Q1 and Q2

had 6,417 axioms while E0 for Q3 had 7,894 axioms. For a

baseline comparison, we use the set of all Horn clauses for

all predicates in the search tree. The description of other

rule sets is shown in Table 1. For example, to get P2, we

sort the predicates on the basis of their out degree and keep

the top 2%. Then E2 is obtained by removing all axioms

from E0 which mention predicates in P2. We see that as we

remove high degree predicates (see the performance of Ex

in Table 2), the network falls apart and virtually no

inference is possible. All questions answered at this stage

are obtained by database lookup and minimal

unification/chaining takes place. Moreover, the number of

questions answered remains roughly same for E6, E8 and

E10 which suggests that the search space had been

fragmented to a set of non-communicating islands for E6

and removing more predicates did not cause any change.

Table 2 shows that time required for E6, E8 and E10 is very

close to zero which provides additional evidence that the

search space is disconnected. Next we use the predicates in

Qx to keep some of high degree predicates which have

many ground facts in the genlPreds tree below them (see

the definition of AllFacts(x) above). By including these

predicates we get the set EQx, which helps us in recovering

the coverage lost by removing high-degree nodes (see

Table 2). This heuristic leads to a factor of 81, 4.90 and 2.2

improvement for the Q1, Q2 and Q3 sets respectively. The

maximum loss in coverage is 8.5%. These heuristics are

referred to as Heuristic 1 in Table 3.
 Q/A

(Q1)

Time

(Q1)

Q/A

(Q2)

Time

(Q2)

Q/A

(Q3)

Time

(Q3)

Baseline 60.0 51.83 43.05 52.22 25.49 64.44

E0 60.5 40.05 41.86 42.40 30.50 51.50

E6 27.3 0.03 17.02 0.02 6.70 0.02

E8 27.1 0.06 16.48 0.03 6.70 0.02

E10 26.8 0.06 16.16 0.02 6.70 0.02

EQ2 58.0 0.64 36.65 0.45 28.49 6.72

EQ4 57.4 8.97 39.37 10.64 43.78 30.06

EQ6 46.0 10.48 35.79 11.08 48.16 28.74

E0 60.5 40.05 41.86 42.40 30.50 51.50

D3 64.6 0.07 40.34 0.05 22.52 0.19

D5 66.2 0.76 45.11 0.68 34.18 2.61

D9 68.2 3.38 47.50 2.73 38.55 5.25

D18 67.4 14.45 48.04 15.01 50.63 15.68

Table 2: Effect of removal of nodes on Q/A performance and time

requirements. Q/A numbers are in %, whereas time requirements

are in minutes.

Next we show that maximum out degree is a reasonable

parameter for modeling efficient navigability of the

network. To remove bottlenecks, we would like to reduce

the variance in out-degree of nodes. When m is ∞, we have

the original rule set or E0. In Table 2, we report the

performance of Dx for different values of x. For example,

in the set D3, all nodes have at most 3 children. The

definition in Table 1 reflects our preference for those

regions of search space which are rich in ground facts. We

see that the performance improves in all cases. This

heuristic is referred to as Heuristic 2 in Table 3.

The final results are shown in Table 3. We note that

ExtractAxiom’s output, E0, significantly improves the

performance compared to the baseline. It improves the

performance by 22%, 18% and 20% for Q1, Q2 and Q3 set

respectively. The maximum loss of coverage is 2.7%.

Heuristic 1 and 2 further improve the performance of this

set. The set of axioms which led to best performance are

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

shown in parentheses. We see that in most cases we have

been able to improve the performance significantly.

Heuristic 1 might lead to some loss in coverage but in our

experience, the overall performance improvement is worth

it. Heuristic 2 always leads to improved performance

without any loss of coverage. The results shown in Table 3

are statistically significant (p < 0.01).

Query

Sets

Rule sets %

Answered

+/- % Time

(min)

Speedup

Q1

Baseline 60.00 0% 5183.70 1

E0 60.50 0.83% 4005.39 1.3

Heuristic

1 (EQ2)

58.00 -3.33% 64.00 81

Heuristic

2(D3)

64.60 7.67% 7.78 666

Q2

Baseline 43.05 0% 5222.96 1

E0 41.86 -2.76% 4240.55 1.2

Heuristic

1(EQ4)

39.37 -8.55% 1064.76 4.9

Heuristic

2 (D9)

47.50 10.34% 273.54 19.1

Q3 Baseline 25.49 0% 6444.21 1

E0 30.50 19.65% 5150.39 1.2

Heuristic

1 (EQ6)

48.16 88.94% 2874.02 2.2

Heuristic

2 (D18)

50.63 98.63% 1568.48 4.1

Table 3: Summary Comparison of performance

Rule Set E0 Q3(%) Q3(minutes)

Timeout:30 sec. 23.98 2076.65

Timeout: 60 sec. 27.91 3769.80

Timeout: 90 sec. 30.50 6444.21

Timeout: 120 sec 32.77 6496.51
Table 4: Performance tradeoff with timeout for Q3

 It might seem counterintuitive that by removing some

rules, we can answer more questions in less time. This is

because as we increase the number of rules, the inference

engine is “lost” in less useful regions of search space and

queries are timed out. We verified this hypothesis by

increasing the timeout for the E0 set for the Q3 set of

questions. The results are shown in table 4. We see that the

improvement is not encouraging. In fact, our heuristics

outperform it even though their queries are allowed less

than 120 seconds. In other words, allowing more time

simply increases failure time and doesn’t help in getting

answers. We show the scaling of ExtractAxioms with depth

in Table 5. We conclude that performance tapers off after a

threshold and providing more resources isn’t useful. We

also evaluated our techniques on several sets of problems

from the Thousands of Problems for Theorem Provers

(TPTP) data set version 3.5.0 [Sutcliffe 2009]. These

experiments were divided in two categories. Type 1

problems included 300 problems from the CSR

(commonsense reasoning) domain. The Type 2 problems

consisted of 50 satisfiable problems from the AGT, NLP

and MGT domains. We were able to solve 81% and 88%

problems from these sets successfully. The heuristics

discussed here led to speedups of 11.2 and 4.0 respectively.

Depth Q/A

Q1

Time

Q1

Q/A

Q2

Time

Q2

Q/A

Q3

Time

Q3

0 26.7 0.02 16.16 0.02 16.1 0.5

1 54.2 5.11 40.02 3.52 27.7 6.1

2 67.0 24.36 48.04 22.49 33.7 20.2

3 60.5 40.05 41.86 42.40 30.5 51.5

4 58.6 48.36 36.98 54.48 21.9 67.6

5 55.5 59.55 32.86 64.60 16.3 73.7
Table 5: Scaling of ExtractAxioms with depth.

 Conclusions

As knowledge bases grow, especially via machine learning

and knowledge capture, better ways to automatically use

such knowledge efficiently must be found. This paper

describes two techniques for this important problem. The

first is to automatically extract subsets of the KB targeted

at particular tasks; exploiting knowledge of what kinds of

statements are available already and what might be

supplied via other systems, such as learning systems. The

second uses an analysis of the connectivity of knowledge

bases to automatically identify nodes to prune which, while

losing a small amount of coverage, can yield over an order

of magnitude performance improvement. The average

speedup is a factor of 129. The worst case is a factor of 4

improvements in time with only 8.5% loss in

completeness. These results suggest three lines of future

work. First, we need to test these algorithms over a

broader range of problems, to ensure their generality.

Second, we think coupling a network-based analysis like

ours with other factors such as constraint patterns [Walsh

2003] could yield a more complete theoretical picture as to

what makes inference hard. Finally, the ability to identify

what makes inference hard potentially provides us with the

information as to what might make inference easier – in

other words, analyze the structure of knowledge bases to

ascertain what kinds of knowledge could be added to

improve inference, and thus help create cognitive systems

that generate and prioritize their own learning goals, so that

what they learn improves, instead of degrades, their

operation.

Acknowledgements

This paper benefited from discussions with Johan de Kleer,

Chris Riesbeck and Matt Klenk. This research was

supported by DARPA IPTO and the Office of Naval

Research.

Abhishek Sharma and Kenneth D. Forbus. (2013). Automatic Extraction of Efficient Axiom Sets from Large Knowledge Bases.

Proceedings of AAAI: Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA

References

 Amir, E. and McIlraith, S. 2005. Partition-Based Logical
Reasoning for First-Order and Propositional Theories, Artificial
Intelligence, 162(1-2), pages 49-98.

 Clauset, A., Shalizi, C. R. and Newman, M. 2009 Power-law
Distributions in Empirical Data, SIAM Review, 51, pp. 661-703.

 Cohen, P. Schrag, R., Jones, E., Pease, et al. 1998. The DARPA
High-Performance Knowledge Bases Project. AI Magazine,
19(4), Winter, pp. 25-49.

 Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T.,
Soderland, S., Weld, D., and Yates, A. 2005. Unsupervised
Named-Entity Extraction from the Web: An Experimental Study.
Artificial Intelligence, 165(1): pp. 91-134.

 Forbus, K. D., Riesbeck, C., Birnbaum, L., Livingston, K.,
Sharma, A. Ureel II, L. 2007. Integrating Natural Language,
Knowledge Representation and Reasoning, and Analogical
Processing to Learn by Reading. Proceedings of AAAI, pp. 1542-
1547

 Gomes, C., Fernandez, C., Selman, B. and Bessiere, C. 2004.
Statistical Regimes Across Constrainedness Regions,
Proceedings of CP, pp. 32-46.

 Jeong, H., Mason, S. P., Barabasi, A. L. and Oltavi, Z. N. 2001.
Lethality and Centrality in Protein Networks, Nature, Vol. 411,
pp. 41-42.

 Kilby, P., Slaney, J., Thiebaux, S. and Walsh, T. 2005.
Backbones and Backdoors in Satisfiability, Proceedings of AAAI,
pp. 1368-1373.

 Kleinberg, J. 2000. Navigation in a small world. Nature, 406,
page 845.

 Martin, C. E. and Riesbeck, C. K. 1986. Uniform Parsing and
Inferencing for Learning. Proceedings of AAAI, pp. 257-261.

 Mitchell, D., Selman, B. and Levesque, H. 1992. Hard and easy
distributions of SAT problems, Proceedings of AAAI, pp. 459-
465.

 Mitchell, M. 2006. Complex systems: Network thinking,
Artificial Intelligence, 170(1-2), pp. 1194-1212.

 Selman, B. and Kautz, H. 1996. Knowledge Compilation and
Theory Approximation, Journal of ACM, pages 193-224.

 Sutcliffe, S. 2009. The TPTP Problem Library and Associated
Infrastructure: The FOF and CNF Parts, v3.5.0, Journal of
Automated Reasoning, 43(4), pp. 337-362.

 Walsh, T. 1999. Search in a small world. Proceedings of IJCAI,
pp. 1172-1177.

 Walsh, T. 2003. Constraint Patterns, Proceedings of CP, pp. 53-
64.

