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Abstract Capturing the nature of students’ mental representations and how they change with
learning is a primary goal in science education research. This can be challenging in spatially
intense domains, such as geoscience, architecture, and engineering. In this research, we test
whether sketching can be used to gauge level of expertise in geoscience, using new technology
designed to facilitate this process. We asked participants with differing levels of geoscience
experience to copy two kinds of geoscience images—photographs of rock formations and
causal diagrams. To permit studying the process of sketching as well as the structure and
content of the sketches, we used the CogSketch system (Forbus et al. 2011, Topics in
Cognitive Science 3:648–666) to record the time course of sketching and analyze the sketches
themselves. Relative to novices, geoscience students included more geological structures and
relational symbols in their sketches of geoscience materials and were more likely to construct
their sketches in a sequence consistent with the order of causal events. These differences
appear to stem from differences in domain knowledge, because they did not show up in
participants’ sketches of materials from other fields. The findings and methods of this research
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suggest new ways to promote and assess science learning, which are well suited to the visual–
spatial demands of many domains.

Keywords Spatial knowledge . Causal knowledge . Science education . Sketching . Sketching
software . STEM

A crucial concern for researchers and educators alike is how to study the development of
people’s mental representations as they acquire domain knowledge. This challenge can be
particularly great for domains that are intensely spatial, such as geoscience, engineering, and
other STEM disciplines. Much of the content in these domains is expressed through diagrams,
maps, and other visual representations. Traditional written assessments, including multiple-
choice tests, are of limited value for highly spatial topics because of the difficulty of conveying
complex spatial relations through speech or writing alone (e.g., Larkin and Simon 1987).
Sketches, by contrast, readily capture spatial information (Goel 1995; Heiser and Tversky
2002; Suwa and Tversky 1997; Vosniadou and Brewer 1992). Sketches can also reveal
students’ conceptual representations, a point that is amplified below. All this suggests that
sketching is crucial to capturing and assessing students’ knowledge in STEM disciplines, such
as geoscience.

Indeed, in a recent Science article, Ainsworth et al. (2011) go further, stating that sketching
is vital to science learning. They maintain that sketching helps students learn to represent and
reason about scientific phenomena, and that “Unlike other constructive strategies, such as
writing summaries or providing oral self-explanations, visual representations have distinct
attributes that match the visual-spatial demands of much of science learning” (p. 1097). Based
on a survey of the literature on drawing during learning, Van Meter and Garner (2005) argued
that learner-generated drawing shows particularly strong effects in higher-order assessments,
such as transfer. Schwanborn et al. (2010), for example, provide evidence that drawing during
learning leads 9th-grade students to improve on tests of transfer in chemistry. Recent work by
Gagnier et al. (2014, accepted for publication) suggests that sketching improves a learner’s
comprehension of diagrams, including inferences about the internal structure of a 3D object.
These findings tell us that sketching can be important in learning and assessment, but they do
not focus on what properties of sketches might be measured to aid in assessment. This paper
provides evidence relevant to that question.

Ainsworth et al. (2011) also point out that sketching is currently underutilized in science
instruction. It is not hard to see why—grading sketches from a large class can be extremely
time-consuming. It is also a challenge to score drawings reliably, because they are often quite
variable (e.g., White and Gunstone 1992). This not only places a burden on the instructor but also
results in delayed (and therefore less useful) feedback to the student (Dihoff et al. 2004; Kulik and
Kulik 1988). Recent innovations in computer-based sketching havemade the task of collecting and
assessing sketches substantially easier (de Silva et al. 2007; Do 2005; Forbus et al. 2011; Pargas
et al. 2007; Valentine et al. 2012). These developments could have great impact on science
education research and practice. In this paper, we describe findings from research using
CogSketch, a computer-based sketching platform (Forbus et al. 2008, 2011), to investigate the
effects of spatial scientific knowledge on sketching. Our focus here is on geoscience—an intensely
spatial domain in which visualization, modeling, and sketching are fundamental to instruction (Jee
et al. 2010; Kastens et al. 2009; Libarkin andBrick 2002; Liben and Titus 2012; Piburn et al. 2011).
However, we believe our findings are relevant to spatially intensive fields in general.

This research has two linked goals. First, we aim to discover whether and how geoscience
understanding is reflected in sketches and in the process through which sketches are
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constructed. This is especially relevant to theories that aim to capture and explain changes in
knowledge that result from science learning. To this end, we elicited students’ sketches of two
distinct kinds of geoscience materials—photographs of geological formations, and causal
diagrams. We collected sketches from both novices (psychology students) and geoscience
students. Our second goal is methodological: to explore the utility of CogSketch software
(Forbus et al. 2008, 2011) for collecting and analyzing people’s sketches and the time course of
their construction. These two goals are interconnected. At present, evaluating sketches is very
laborious and often inaccurate, and thus their use in classroom evaluation as well as in research
is limited. If we find that certain properties of a sketch reveal a person’s level of domain
knowledge, then having a less effortful, more reliable, and more sensitive way to analyze
sketches will be of great value both to instructors and to researchers in science learning. In this
paper, our focus is on possible differences between novice and advanced geoscience students
that may be revealed through analyzing their sketches with the CogSketch system. We will
discuss CogSketch’s methodological utility more broadly in the “General Discussion.”

Spatial and Causal Knowledge in Geoscience

Geoscience students learn about the spatial structures that characterize the Earth, such as faults,
folds, and fractures (Marshak 2005). They also learn about the causal processes that create
these structures—both local deformation processes that create faults and folds, and large-scale
global processes such as tectonic movements. All these topics are intensely spatial (Jee et al.
2010; Jee et al. 2013; Kastens et al. 2009; Libarkin and Brick 2002). Consider, for example,
the geologic concept of a fault—a fracture in rock along which movement has occurred
(Fig. 1). A fault is defined by specific spatial relationships between sections of rock, and these
structures provide evidence of the effects of causal forces. For the fault in Fig. 1, a geoscientist
would discern that the block of rock above the fault plane has moved downward relative to the
block of rock below the plane. This pattern indicates that extensional forces acted on the rock
until it fractured and was displaced along the plane. Thus, spatial and causal knowledge are
tightly connected in this field.

Fig. 1 Photo of a fault (the fault plane runs diagonally from top left to bottom right)

Res Sci Educ



How might the content and active construction of a sketch change as students gain
knowledge of geologic structures and the causal forces underlying them? We consider this
question with regard to two common types of images that geoscience students encounter:
photographs of geological structures and causal diagrams of geologic processes.

Sketching from Photographs An important aspect of geological expertise is the ability to
accurately characterize geological formations, such as outcrops of rock, and to be able to sketch
such formations (either from photographs or from real-world scenes). Therefore, in experiment 1,
we asked our participants to sketch rock outcrops. To ensure that participants had adequate
opportunity to view the materials, the photographs remained present until they finished sketching.

What differences might we expect between novices and geoscience students? A number of
studies suggest that expertise involves conceptualizing domain-related objects in terms of their
deeper causal and goal-relevant structure, deemphasizing superficial details (e.g., Chi et al. 1981;
Gentner and Rattermann 1991; Hay et al. 2013; Jee and Wiley 2007; Lowe 1993). As students
acquire domain knowledge, their drawings emphasize domain-relevant causal structure (Gobert
2000; Gobert and Clement 1999). Kindfield (1992), for example, found that more expert biology
students tended to create more schematized representations of the entities involved in mitosis.
Sketches by less expert participants were more detailed, often including irrelevant physical
dimensions and omitting relevant structural characteristics. This result is consistent with recent
research by Hay et al. (2013), which explored expertise-related differences in drawings of brain
cells. Experts in neuroscience created schematized sketches, biased toward the conventions and
features relevant to their subfield. Undergraduate neuroscience students made drawings that were
similar to textbook images of neurons. Similar patterns have been found in studies that ask
participants to sort visual depictions. For example, in a well-known study, Chi et al. (1981) found
that physics experts sorted diagrams of physics problems on the basis of common underlying
principles, whereas novices relied on superficial commonalities, such as the presence of common
objects such as ramps and pulleys. Likewise, when asked to group together elements of a diagram,
experts tend to group together objects that are causally related, even if they are visually dissimilar
and spatially distant (Lowe 1993). Based on findings from expertise studies, we could expect
people with a background in geoscience to emphasize features related to domain-relevant spatial
structures, such as faults and folds, in their sketches of geological photos. By contrast, novices are
likely to include geologically irrelevant but perceptually salient details, such as vegetation.

Sketching Diagrams of Causal Processes The second kind of image we asked our participants
to sketch was diagrams of large-scale causal processes. Causal diagrams are commonly used in
geoscience to convey complex processes such as subduction, the process through which one
tectonic plate moves under another. In geoscience instruction, these processes are often
conveyed through causal diagrams like the one shown in Fig. 2. Understanding the process
of subduction involves identifying both the spatial structure—that one plate is moving
underneath another—as well as the causal structure. The student needs to understand that
subduction is causally related to the process of seafloor spreading, which creates new ocean
crust at divergent spreading zones, and is influenced by differences in crustal density between
the converging plates, which determine which plate moves below the other. Thus, knowledge
of both the kinematics (the displacements and deformation—both heavily spatial) and the
dynamics (the causal forces at work) is needed to understand subduction.

We hypothesized that as students gain knowledge of spatially complex scientific material,
such as plate tectonics, their diagrammatic sketches will become more focused on domain-
relevant structures and more similar to standard geoscience depictions (Gobert and Clement
1999). The inclusion of relational and causal symbols in a sketch (e.g., directed arrows and
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other connectors) also reflects a person’s causal understanding of the system they are
sketching. When people are provided with a functional description of a system, they tend to
include more of these symbols in their drawings (Heiser and Tversky 2006). As functional and
causal knowledge increases with expertise (e.g., Chi et al. 1988; Hmelo-Silver and Pfeffer
2004; Proffitt et al. 2000), we predict that knowledgeable participants will include more
relational symbols in their sketches than novices will.

An advantage of using a computer-based sketching program is that it can record
the real-time process by which a sketch is drawn. Such timing information could
reveal knowledge of key causal and spatial relations (Chase and Simon 1973; Gobet
et al. 2001; Moss et al. 2006; Taylor and Tversky 1992; Tversky 2002). Taylor and
Tversky (1992) found that people tend to sketch large features of a scene, such as
mountains, before smaller-scale features, such as houses, suggesting that people
organize their knowledge of the scene in terms of a hierarchical structure. A different
kind of organization may be revealed when people sketch diagrams that depict a set
of interrelated causal processes. Moss et al. (2006) found that senior engineering
students recreated a diagram of a device starting with its input and moving to its
output. Knowledge of how the device works influenced how they assembled it later. If
people with geoscience knowledge actively interpret a causal diagram in terms of the
sequence of causal events, they may construct their sketch in line with this sequence.
They may draw an antecedent causal event before the resulting event, and a primary
causal event before secondary causes.

Overview of the Experiments

In summary, our goals are, first, to discover whether and how patterns of sketching
reveal differences in geoscience expertise, and, second, to test the efficacy of a
computer-based sketching platform, CogSketch, for collecting and analyzing such
sketches.

Fig. 2 Causal diagram showing the subduction process. Image source: U.S. Geological Survey (http://www.usgs.gov/)
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To ensure that the novices had access to the same visual information as the geoscience
students, including causal symbols that could support diagram interpretation, each source image
was available for the entire time that the participant sketched. The participants’ task was simply to
copy the image onto the computer screen. The question was whether differences in spatial and
causal knowledge would affect the relational content and temporal construction of a sketch even
in this copying task, where there was no inherent need to go beyond the information in the images.
We tested this possibility across three experiments. Experiment 1 provides an initial test of the
effects of geoscience knowledge on sketching. Experiments 2 and 3 further explore sketching of
geological formations and causal diagrams, respectively, and explore whether differences be-
tween novices and geoscience students are specific to geoscience-related materials (suggesting an
effect of domain-specific knowledge) or if they generalize to nongeoscience materials. In each
experiment, we collected sketches on a tablet computer running CogSketch software, which
tracks the spatial and temporal properties of the digital ink strokes that a person uses to create a
sketch (using a stylus, mouse, or other input device). The software also records the conceptual
labels and descriptions that the participant assigns to different parts within a sketch, as described
below. By using Cogsketch as a research tool, we can examine not only the drawings and
conceptual labels that comprise a sketch, but also the order in which different parts were created.

Experiment 1

Participants with differing levels of geoscience experience used CogSketch to sketch two
photographs containing geological formations, and a diagram of a geoscience-related causal
process. The participants copied a photograph or diagram onto the screen of a tablet computer
using a stylus. For the geologic formations, the main question was whether geoscience
students included more features related to geologically relevant structures, such as rock layers
and folds. For the causal diagram, the main questions were whether geoscience students
included more causal and relational information in their sketches, and whether the ordering
of their sketches reflects the sequence of causal events depicted in the diagram.

Method

Participants

Twenty students from Northwestern University participated: ten geoscience students (six
graduate students and four advanced undergraduates) and ten undergraduate psychology
students who had no prior course experience in geoscience. The geoscience students received
$12 for their participation, and the psychology students received course credit. All students
participated individually.

Materials

Images We asked participants to sketch three geoscience-related images: two photographs of
geological formations—one that showed a number of horizontal rock layers and one that showed
folded rock—and one causal diagram illustrating subduction. The images are listed in the Appendix.

Tablet Computer An HP tablet computer with a 12-in. screen and a stylus was used for data
collection.

Res Sci Educ



CogSketch Software CogSketch is an open-domain, general-purpose sketch understanding
system (see Forbus et al. 2011 for a more detailed description). CogSketch allows users to
tell it what entities they are sketching via a specialized interface. Every sketch drawn in
CogSketch is made up of glyphs. A glyph is a shape, an object, or a relationship that has been
drawn by the user. The user presses a button to indicate that they are about to start drawing a
glyph; they then draw as many ink strokes as they want, and end the glyph by pressing the
button again1. As a separate step, users describe what they intend a glyph to represent by
labeling it with either a concept from the knowledge base associated with CogSketch or with a
word or phrase. Each glyph is represented internally as digital ink—essentially the lines drawn
by the user when creating the glyph—and content—a conceptual entity representing what the
glyph depicts. A video demonstration of CogSketch can be viewed at http://www.youtube.
com/watch?v=o6f1udbIkrI.

CogSketch offers several features relevant to data gathering and interpretation. First,
CogSketch records a time stamp along with every ink point (sampled at a rate of 4 points/s).
These data can be exported to common formats, such as Microsoft Excel. Second, because the
user has manually segmented the digital ink into glyphs, there is no ambiguity about which
parts belong to which depicted entity. Third, there is no need to analyze video and audio
transcripts to ascertain what labels should be used for the parts of a sketch, making CogSketch
data simpler and cheaper to analyze.

Procedures

The tablet computer was folded flat and placed on a desktop in front of the participant. The
experimenter first gave the participant a brief tutorial and practice using the software and
hardware, followed by an overview of the task and procedure. Participants were asked to try to
copy the experimental images to the best of their ability, to use the glyph function in
CogSketch to divide their sketch into the parts that seemed natural to them, and to label the
parts as they saw fit, using words or phrases. They were given up to 3 min/sketch, with a
warning given 1 min before the time limit. For the duration of each trial, a color printout of the
image was presented next to the computer screen. The participant sketched directly on the
computer screen using the stylus. The images were sketched in the same order for all
participants: subduction 1, rock layers, and then folded rock. Each session took under
30 min to complete.

Results

Two raters coded each sketch independently with high overall inter-rater reliability (Cohen’s
Kappa=0.89). Sketches were scored blind to any participant identification information.
Coding disagreements were settled through discussion.

Geological Formation Sketches

A geoscience expert identified two or three features in each photograph that captured the
geologic structure of the image. For example, the expert identified three key features in the
photograph of folded rock (Fig. 3): the three large folds. For each fold, the participant had to

1 This accurately describes the interface used in these experiments; since then, the interface has been streamlined
so that pressing a “start glyph” button is unnecessary, and users can merge or split their ink as they desire.
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include its approximate location and apex in their sketch, as well as the angle and length of
the folded parts of rock. Figure 3 displays representative examples of sketches from novice
and experienced participants for this photograph. The novice student’s sketch did not
distinguish the layers of folded rock—depicted as crisscrossing lines—and clearly failed
to capture the rightmost fold. The geoscience student’s sketch, however, captured all three
folds.

Participants’ sketches were coded for the presence of the key features from the two photos.
We computed the mean proportion of key features in each sketch. Overall, geoscience
students’ sketches contained a higher proportion of the geological features (M=0.78, SD=
0.26) than novices’ sketches (M=0.49, SD=0.19), t(18)=2.95, p<.05, d=1.27.

Causal Diagram Sketches

Relational Content Each part/glyph in each sketch was coded as either an object—a part that
depicted some tangible entity—or a relation—a part that depicted the behavior or connectivity
of either a tangible or intangible entity, e.g., a force. The information in both the sketch and
label was used for this classification. A part was scored as a relation if (a) it contained a
relational symbol, such as an arrow indicating movement, or (b) its label described the part in
terms of its relation to other entities (e.g., “subducting slab”). Figure 4 displays parts that were
coded as objects and relations.

Fig. 3 Example sketches of a photograph of a geological formation, folded rock (original image in top row) by a
novice (middle row) and geoscience student (bottom row)
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Figure 5 displays sample sketches of the causal diagram from geoscience students
and novices. The figure reveals that the novice sketch contains no relational symbols,
whereas the geoscience student’s sketch contains several (the directed arrows2 that we
have highlighted in red). The mean proportion of relations was compared between the
two groups. Geoscience students’ sketches contained a higher proportion of relations
(M=0.53, SD=0.30) than novices’ sketches (M=0.11, SD=0.17), t(18)=3.90, p<.05,
d=1.72.

Sketch Ordering This analysis investigated whether the sketch displayed particular
geologically significant events, and in what order these events were drawn. A
geoscience expert identified a set of geologically significant events in the diagram—
e.g., seafloor spreading and plate convergence—and specified their causal order. These
events were conveyed by one or more directed arrows in the diagram, which were a
subset of the total number of arrows in the diagram. The presence of these arrows in
a sketch was taken as evidence that the participant represented the corresponding
causal event. We scored the participants’ sketches for the presence of these causal events,
and used the timing data recorded by CogSketch to determine the order in which they were
sketched.

On average, the geoscience students (M=0.72, SD=0.23) included a higher proportion
of the causal events than the novices (M=0.15, SD=0.32), t(18)=4.45, p<.05, d=2.05.
As the novices rarely included causal events, we were unable to analyze the ordering of
events in their sketches. For the geoscience student sketches, we computed the mean
ordering for each of the four events, including only the sketches that contained at least
two causal events. This left us with useable data from seven of the geoscience student
sketches. Mean ordering for the geoscience students was compared with the ordering of

Fig. 4 Examples of parts coded as objects and relations. Note: The participant’s label appears in quotes below
the part. Our coding took these labels into account

2 In our coding scheme, each part of the sketch that contained an arrow was coded as a relational part. Although
there are five arrows in the geoscience student’s sketch, the participant grouped the arrows into three spatially
separated parts; thus, only three relational parts were counted. (Coding also took into account the labels given to
the parts, so additional relational parts may be present in Fig. 5 in addition to those indicated in red.)
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the expert by computing Kendall’s coefficient of concordance (Kendall’s W). This
statistic provides an index of the similarity between distinct orderings—ranging from 0
(minimum similarity) to 1 (maximum similarity)—and can be tested for statistical
significance using a chi-square distribution (see Taylor and Tverky (1992) for a similar
analysis). The value of Kendall’s W was .70, suggesting a relation between the mean3

geoscience student ordering and the expert ordering; however, this statistic did not
approach significance, χ2(3)=4.20, p=.24.

Discussion

The results of experiment 1 support the hypothesis that differences in geoscience knowledge
lead to systematically different patterns of sketching. The results also are encouraging for our
goal of capturing differences in scientific knowledge using CogSketch. The results revealed
that even in a simple copying task, geoscience students and novices differed both in terms of
what information they included and the order in which they drew the elements in the sketch.
When sketching photographs of geological formations, geoscience students were more likely
than novices to include spatial features that reflected key geologic structures. When sketching
the causal diagram, geoscience students emphasized causal relations and processes, and their
sketches often reflected the causal ordering of geologic events. Novices sketched fewer
relations overall and often omitted the events that a geoscience expert considered important.

The finding that geoscience students differ systematically from novices in sketching
geoscience materials supports the hypothesis that sketching reveals domain understanding.
The results are consistent with the previous findings that knowledgeable individuals emphasize
domain-relevant structures in their sketches (Gobert 2000; Hay et al. 2013; Kindfield 1992).
Yet, the generality of this result is unclear. We do not know whether geoscience students would
show similar effects when drawing images from different domains, because only geoscience-
related materials were included in experiment 1. If our findings are attributable to differences
in domain knowledge—and not some other factor, such as drawing ability or spatial skill—
then the between-group differences we observed in experiment 1 should not carry over to
nongeoscience materials, even those that overlap in their features and causal complexity. This
is a critical issue. Prior work has found that experts often rely on domain-general knowledge
for thinking and reasoning (e.g., Schunn and Anderson 1999).

3 The coefficient of agreement for mean ordering was lower than the median and modal values because one
student sketched the events in perfect reverse order (Kendall’s W=0). The median value of Kendall’s W was .75
and the mode was 1.0 for geoscience students who drew at least two causal events.

Fig. 5 Example sketches of a geoscience-related causal diagram (subduction 1) from experiment 1. Relational
symbols are indicated in red
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To determine whether the differences between geoscience students and novices are
specific to geoscience, we asked participants in experiments 2 and 3 to sketch control
images in addition to geoscience images. We chose spatially intricate pictures from domains
unrelated to geoscience, such as a cross-section of a fruit and an artificial heart valve. The
goal was to find images that were about equally familiar to both groups. For the control
photographs, we sought images that contained similar features (folds, layers, etc.) to the
geoscience images; for the control causal diagrams, we sought images similar in causal
complexity. If geoscience students construct sketches differently to novices regardless of
the domain, then we should find similar patterns for both the geoscience and nongeoscience
materials. However, if geoscience students are utilizing domain-specific knowledge during
sketching, then we should observe differences for the geoscience-related images but not for
the control images.

A further goal of experiments 2 and 3 was to generalize our findings to a broader range of
materials. Experiment 2 tested additional geoscience formations and experiment 3 tested
additional causal diagrams. Both of these experiments included a greater number of images
than did experiment 1 to gain experimental power. Finally, to explore how sketching effects
relate to prior knowledge of the particular topics shown in the images, at the end of the study
we asked people to rate their prior knowledge of the content of each image.

Experiment 2

This experiment focused on sketches of geological formations. As in experiment 1, partici-
pants were given the simple task of copying photographs: three photographs of geological
formations (not used in experiment 1) and three control (non-geological) photographs. The
geological and control photos contained similar surface features, such as curves, layers, and
complex lines, and were comparably intricate. If geoscience students are simply better at
detecting and depicting the spatial features of objects in a sketch, then they should sketch both
the geoscience images and the control images differently than novices do. However, if the
differences between novices and geoscience students reflect domain understanding, then
differences should emerge only for the geoscience-related sketches. Furthermore, such
expertise-related differences should be most pronounced for images on which the geoscience
students rate themselves as having greater prior knowledge.

Method

Participants

Sixteen participants from Northwestern University took part: eight geoscience students (five
graduate students and there advanced undergraduates) who were paid for participating, and
eight undergraduates with no prior course experience in geosciences, who received course
credit in an introductory psychology course. None of the participants took part in experiment 1.
All participated individually.

Materials

There were three geoscience images and three nongeoscience images, all listed in the
Appendix. The geoscience images were selected to be novel, unfamiliar examples of the kinds
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of structures that geoscience students would be likely to encounter in a geoscience course.
Sketches were again collected on a tablet PC running CogSketch software.

Procedures

The procedures for the pre-task tutorial on CogSketch and the sketching task were the same as
in experiment 1. Each participant received the images in a different random order. At the end
of the study, we asked participants to rate their level of prior knowledge of the object or
structure depicted in each photo on a scale from 1 (poor prior knowledge) to 7 (excellent prior
knowledge). Each session lasted less than 45 min.

Results

Two raters coded each sketch independently with high overall inter-rater reliability (Cohen’s
Kappa=0.88). Coders were blind to any participant identification information. Coding dis-
agreements were settled through discussion.

Self-ratings of Prior Knowledge for the Objects and Structures in the Images

The mean prior knowledge ratings for the geoscience and control photographs are shown in
Table 1. The knowledge level×image type interaction was significant F(1, 14)=6.60, p<.05,
ηp

2=.32. Geoscience students rated their prior knowledge for the objects and structures in the
geoscience photographs higher than the novices did, t(14)=2.66, p<.05, d=1.33. However, the
two groups rated their prior knowledge at roughly the same level for the control photos, t<1,
ns. There were no significant main effects.

Presence of Key Features

As in experiment 1, a geoscience expert analyzed the geoscience photos for their key features.
He identified an average of about five features (M=4.67) in each photo. For the control
images, we asked two judges who were unaffiliated with the research to identify the key
features in each photograph—i.e., those they considered most central to the overall structure.

Table 1 Mean ratings of prior knowledge (out of seven) and mean proportion of key features in participants’
sketches for experiment 2 photographs

Experience level Image type

Geoscience Control

Mean ratings of prior knowledge

Geoscience student 5.13 (1.61) 4.79 (1.02)

Novice 2.88 (1.76) 4.86 (1.28)

Mean proportion of key features

Geoscience student .89 (.12) .91 (.10)

Novice .62 (.16) .86 (.16)

Note. Ratings of prior knowledge were made on a 7-point scale, where 1=poor prior knowledge of the object or
structure in the image, and 7=excellent prior knowledge. SDs in parentheses
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The judges agreed entirely for two of the photos, and reached agreement on the third after a
short discussion. They identified an average of about four features (M=3.67) in each control
photo. Participants’ sketches were coded for the presence of these key features. Table 1 shows
the mean proportion of key features for novices and geoscience students for both kinds of
images.

We found that geoscience students drew more key features than novices, but only for the
geoscience images. For the control images, both groups drew a high proportion of key
features. This finding was revealed in a 2 (experience level)×2 (image type) ANOVA; the
interaction between experience level and image type, F(1,14)=10.24, p<.05, ηp

2=.42. As
predicted, geoscience students sketched a higher proportion of key features in geoscience
images than did novices, t(14)=4.07, p<.05, d=2.07. No such difference was found for the
control images, t<1, ns. This interaction relates two main effects: (1) Geoscience students
drew more key features overall than novices, F(1, 14)=7.96, p<.05, ηp

2=.36, and (2)
Combining both groups, the sketches of the control images contained more key features
than those of the geoscience images, F(1, 14)=3.37, p=.09, ηp

2=.19. Another way to
describe this pattern is to note that both groups captured a fairly high level of structural
detail for the control photos, but only the geoscience students maintained this level on the
geoscience photos. Figure 6 shows examples of geoscience student and novice sketches of
each type of image.

Figure 6 also reveals another interesting trend. Several geoscience students added
relational symbols (which were not present in the original photos) to their sketches. The
half arrows in the geoscience student’s sketch are conventionally used to indicate movement
on a fault plane, as determined using “offset markers” (evidence that the previously adjacent
beds of rock have been displaced). These arrows were not present in the original image (and
in our scoring, were not counted as key features). Nevertheless, several geoscience students
drew them, usually after the key features had been sketched. In a technical sense, adding
these arrows is an error, as subjects were instructed to copy the photographs. This result

Fig. 6 Example sketches of a geoscience-related (cross-cutting faults; top row) and a nongeoscience photograph
(fruit cross-section; bottom row) from experiment 2
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strongly demonstrates that the geoscience students brought domain knowledge to bear on
their construal of the materials.

Knowledge Ratings and Sketching Performance

If the differences between novices and geoscience students are driven by domain knowledge,
then the differences should be greatest for those items on which geoscience students rated
themselves as having high prior knowledge. We therefore conducted a regression analysis to
predict the proportion of key features in a sketch from three factors: the participant’s rating of
knowledge for the content the image, the type of image (geoscience vs. control), and the
interaction between these variables. Geoscience experience level (experienced vs. novice) was
entered as a covariate and the variables were centered for the analysis. The model accounted
for a significant amount of the variance in the proportion of key features, F(4, 89)=7.68,
p<.05, R2=.26; however, only the prior knowledge rating x image type interaction term was a
significant predictor, β=.40, t(93)=2.92, p<.05, partial r2=.27. This interaction reveals that
prior knowledge ratings were a better predictor of the proportion of key features for the
geoscience-related sketches than for the control sketches. Thus, a participant’s self-rating of
understanding of a particular geological structure was an important predictor of whether they
included key geologic features in their sketch. By contrast, the key features of the control
photos were sketched by nearly all of the participants, regardless of their self-assessed prior
knowledge of the material in those images.

Discussion

The results of experiment 2 further bear out the predicted difference between novices and
experienced students. As in experiment 1, geoscience students sketched a higher proportion of
features that reflected geologic activity, such as fault lines and folds, for photos of geologic
formations. When given photos of non-geologic structures, however, geoscience students drew
sketches that were highly similar to those of novices (geoscience students included .91 key
features vs. .86 for novices, a nonsignificant difference). Only when the images were related to
geoscience was there a significant difference between geoscience students and novices. In fact,
participants’ self-assessed understanding predicted the presence of geologic features in their
sketches of geological photos. These findings suggest that the difference between the groups
stemmed chiefly from differences in domain knowledge, as opposed to some more general
factor. Geoscience students appear to rely on domain-specific spatial and conceptual knowl-
edge in order to capture the geologically relevant features of an image. Indeed, geoscience
students occasionally added causal symbols to their drawings, a strong indication that causal
knowledge was activated during the sketching process.

Experiment 3

This study focuses on sketching of causal diagrams. We sought to generalize the pattern found
in experiment 1 (in which one causal diagram was drawn): that geoscience students differ from
novices both in what they include in their sketches, and in the order in which they construct
each sketch. As in experiment 2, we included control (nongeoscience) diagrams as well as
geoscience diagrams to assess whether any differences between groups could be attributed to
domain-general knowledge or skill vs. domain-specific knowledge of the causal processes
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depicted. Our intention was to select control diagrams that were similar in causal complexity to
the geoscience diagrams, and about equally familiar to the geoscience students and novices.
Also as in experiment 2, we asked participants to rate their prior knowledge of the system or
process displayed in each diagram at the end of the session. If geoscience students invoke
knowledge of the causal processes depicted in the geoscience diagrams, then relative to
novices (1) they should emphasize more relational information in their sketches of geoscience
diagrams, and (2) the order in which they draw parts of the sketch should more closely reflect
the sequence of causal events depicted in the diagrams. Further, if this predicted pattern stems
from understanding of geoscience, then it should hold only for the geoscience diagrams, not
for the control diagrams; and it should be most pronounced for diagrams on which geoscience
students rate themselves as having most knowledge.

Method

Participants

Sixteen participants from Northwestern University took part: eight geoscience students (five
graduate students and three advanced undergraduates) who were paid and eight undergradu-
ates with no prior course experience in geosciences, who received course credit in introductory
psychology. None of these participants took part in either experiment 1 or 2. All participated
individually.

Materials

We used four geoscience-related diagrams and four nongeoscience (control) diagrams. The
images are listed in the Appendix.

Procedures

The procedure for the sketching task was as in the other experiments, except that the
participants were given 4 min per sketch. Each participant received the images in a different
random order. At the end of the study we asked participants to rate their level of prior
knowledge about the system or process displayed in each diagram on a scale from 1 (poor
prior knowledge) to 7 (excellent prior knowledge).

Results

For the relational content and ordering analyses below, two raters coded each sketch indepen-
dently with high overall inter-rater reliability (Cohen’s Kappa=0.92). Sketches were scored
blind to any participant identification information. Coding disagreements were resolved
through discussion between the raters.

Relational Content Each part/glyph in each sketch was coded as either an object or a relation
following the method used in Experiment 1. The mean proportion of relations for the
geoscience and control causal diagrams is shown in Table 2. There was a statistically
significant experience level x image type interaction, F(1, 14)=6.17, p<.05, ηp

2=.31. As
predicted, for the geoscience-related images, geoscience students sketched a higher proportion
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of relations than the novice group, t(14)=3.45, p<.05, d=1.18. For the control images,
however, there was no significant difference between the geoscience students and novices4,
t<1, ns. There were no significant main effects. Figure 7 shows a representative sample of
sketches from experienced and novice participants, with relational symbols indicated in red.

As our coding took into account the written labels as well as the nature of the glyphs
(relational symbols, such as arrows), the difference in relational content for the geoscience-
related images could be due to only one of these components or both. There was inadequate
statistical power to test the experience level x image type interaction using either relational
labels or relational symbols alone as a dependent variable, but trends in the data suggest that
the geoscience students used more of each in their sketches of the geoscience-related
images.

Geoscience students included a higher proportion of relational labels in their geoscience-
related sketches (M=.23, SD=.18) than novices (M=.09, SD=.13), as well as a higher
proportion of relational symbols (M=.38, SD=.14 vs. M=.23, SD=.15). (Note that the sum
of the relational labels and symbols does not equal the number of relational parts in Table 2,
because several parts included both a relational label and symbol, and these counted as a single
relation in our coding.) For the control sketches, which did not show a difference in overall
relational content between geoscience students and novices, the proportion of relational labels
was similar for the geoscience students (M=.08, SD=.14) and novices (M=.04, SD=.05), as
was the proportion of relational symbols (M=.33, SD=.14 and M=.30, SD=.15, respectively).
In summary, relational labels were relatively uncommon, except for the geoscience students’
use of them in their geoscience-related sketches. The effect of experience level on the overall
number of relational parts in the geoscience-related sketches appears to be due to an increased
use of both relational labels and symbols by the geoscience students.

Self-ratings of Prior Knowledge of the Systems and Processes in the Images

Table 2 shows each group’s mean prior knowledge ratings for the system or process in the
geoscience and control causal diagrams. A 2 (experience level)× 2(image type) ANOVA

4 Experiments 2 and 3 both showed a similar statistical interaction, i.e., an advantage for geoscience students on
the geoscience images, but no difference between the groups on the control images. However, whereas in
experiment 2 both groups produced a high proportion of relations on the control images, in experiment 3 both
groups produced a low proportion of relations on the control images.

Table 2 Mean ratings of prior knowledge (out of seven) and mean proportion of relations in participants’
sketches for experiment 3 diagrams

Experience level Image type

Geoscience Control

Mean ratings of prior knowledge

Geoscience student 4.97 (0.94) 2.38 (0.63)

Novice 3.03 (1.14) 2.45 (0.86)

Mean proportion of relations

Geoscience student .48 (.15) .35 (.15)

Novice .27 (.16) .33 (.15)

Note. Ratings were made on a 7-point scale, where 1=poor prior knowledge of the process or system in the
diagram, and 7=excellent prior knowledge. SDs in parentheses
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revealed a significant experience level x image type interaction,F(1,14)=8.28, p<.05, ηp
2=.37.

As expected, the geoscience students rated their prior knowledge higher on the geoscience
images than did the novices, t(14)=6.14, p<.05, d=1.86. By contrast, both groups rated their
prior knowledge for the control images as about the same, t<1, ns. Two main effects are
subsumed by this interaction: geoscience students rated their knowledge higher than novices,
F(1, 14)=10.19, p<.05, ηp

2=.42, and the geoscience diagrams were given higher ratings than
the control diagrams, F(1,14)=20.68, p<.05, ηp

2=.60. We also note that the prior knowledge
ratings were lower for the control causal diagrams than the control photos from experiment 2.
One reason is that participants rated their knowledge for the systems displayed in the diagrams,
not the objects that were present. The diagram on water conservation in the home included
many objects that were likely familiar, such as a shower, toilet, and garden hose. The system
that connected these different objects was probably less familiar. Most important for our
purposes is that the control images were about equally familiar to both groups.

Knowledge Ratings and Sketching Performance

As in experiment 2, we conducted a multiple regression analysis to predict the mean propor-
tion of relations in a sketch from the participant’s rating of prior knowledge, the type of image,
and the interaction between these variables. Geoscience experience level (experienced vs.
novice) was entered as a covariate and the variables were centered for the analysis. This model
failed to account for a significant proportion of the variance in the proportion of relations,
F(4,117)=1.24, ns, R2=.04, and no variable accounted for more than 1 % of the unique
variance (βs<.16, ts≤1.0). Yet, as is evident from the results in Table 2, there was a strong
relation between mean prior knowledge ratings for the geoscience images and the mean
proportion of relations in sketches. Participants who gave higher mean prior knowledge ratings

Original images Geo Student sketchesNovice sketches

Fig. 7 Example sketches of a geoscience-related (water cycle; top row) and a nongeoscience causal diagram
(blood pump for artificial heart; bottom row) from experiment 3. Relational symbols are indicated in red. In the
materials presented to participants, all captions were legible. From left to right across the top of the water cycle
diagram, the captions are storage in glaciers, surface runoff, precipitation (meteoric water), evaporation from
lakes and vegetation, and evaporation from oceans. Across the bottom, from left to right, the captions are ascent in
magma rising from mantle and water descends within subducting ocean plates
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for the geoscience images had a higher mean proportion of relations in their sketches,
r(16)=.58, p<.05. However, there was no such relation for the control images, r(16)=.08, ns.

Sketch Ordering

Geoscience Diagrams For each diagram, a geoscience expert identified two to four key causal
events (depicted by one or more directed arrows) and specified their causal order. These were a
subset of the total number of arrows in the diagram.We scored the participants’ sketches for the
presence of these causal events, and found that geoscience students (M=0.51, SD=0.17) drew a
higher proportion of key causal events than novices (M=0.26, SD=0.22), t(14)=2.63, p<.05,
d=1.27.When key events were sketched, we used the timing data fromCogSketch to determine
their ordering.We compared the order in which geoscience students sketched the causal events
to those of other participants and to the causal ordering identified by the expert.

Our main finding was that, unlike novices, geoscience students tended to sketch causal
events in line with causal order. This finding emerged from an analysis of the relation between
drawing order and the causal order of events in the diagrams. For geoscience sketches that
contained at least two causal events (63 % of the geoscience student sketches and 34 % of the
novice sketches), we scored the causal events according to the order in which they were drawn5,
assigning the first key event sketched a score of 1, the second a 2, and so on. These scores were
organized into a single array that included the participant’s scores for all four sketches. We then
derived an average array for the geoscience students and novices, and compared each of these to
the array representing an expert’s ordering of causal events for the four diagrams, using
Kendall’s coefficient of concordance to compare the similarity between the arrays (see Table 3).

The geoscience students’ ordering was highly similar to the expert’s ordering, Kendall’sW=
0.98, χ2(11)=21.64, p<.05, implying that geoscience students sketched the events in causal
order. In contrast, neither the similarity between the novices’ ordering and the expert ordering,
Kendall’s W=0.39, χ2(11)=7.72, ns, nor the similarity between the geoscience students’ and
novices’ orderings, Kendall’s W=0.43, χ2(11)=8.51, ns, reached significance. Mean ordering
was representative of ordering at the individual level. The median value of Kendall’sWwas 1.0
between the expert and the geoscience students and 0.38 between the expert and the novices.

Control Diagrams The control diagrams were from different domains, so two experienced
individuals were recruited to identify the causal events. An engineer with over 20 years of
experience identified four key causal events in each of the mechanical diagrams (carburetor,
blood pump, and water conservation system). An advanced biology student identified five key
causal events in the photosynthesis diagram. Each causal event was represented by one or
more directed arrows in the diagram, and the experienced individuals specified the order of
these events. We scored participants’ sketches for the presence of the causal events. Although
there was a suggestion of a higher proportion of key causal events for geoscience students,M=
0.55 (SD=0.12), than for novices, M=0.44 (SD=0.15), this difference was not statistically
significant, t(14)=1.34, p=.20.

We followed the procedure described above for analyzing the control diagrams, using the
timing data from CogSketch to analyze the order in which participants sketched the causal
events. We again included only the sketches that contained at least two causal events for a
given diagram, leaving us with useable data from 100 % of the geoscience student sketches
and 79 % of the novice sketches. As shown in Table 3, none of the similarity comparisons
reached statistical significance, Kendall’sWs<0.58, ps>.05. Thus, in contrast to the finding for

5 We used CogSketch’s ordering of events but omitted events not considered to be key events.
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the geoscience diagrams, we saw no evidence that either group followed causal order when
sketching the control diagrams.

Discussion

These findings again bear out the prediction that geoscience expertise would be reflected in
participants’ sketches of geoscience materials. As in experiment 1, geoscience students
included more relational content in their sketches of geoscience-related causal diagrams.
Additional analyses suggest that this difference was due to increased use of both relational
labels and relational symbols, such as arrows indicating movement or causality, by the
geoscience students. The difference was found only for geoscience diagrams. For causal
diagrams from other fields, there was no significant difference in the amount of relational
information included by the two groups. This is consistent with the idea that the differences in
geoscience sketching stem from greater domain knowledge on the part of the geoscience
students. Further evidence for the role of domain knowledge comes from the finding that
participants’ self-ratings of knowledge of the systems and processes in the geoscience dia-
grams correlated with their sketching performance. However, unlike our finding for sketches
of geological formations (experiment 2), knowledge ratings for individual geoscience dia-
grams were not a significant predictor.

Geoscience students also differed from novices in terms of how they sketched, and again,
this difference was specific to geoscience materials. Geoscience students sketched causal
events in the geoscience diagrams in an order consistent with the causal order identified by
an expert. Novices, when they did sketch causal events from the geoscience diagrams, did not
order them in terms of their causal sequence. Likewise, neither geoscience students nor novices
tended to draw the causal events from the control diagrams in sequence. Again, this suggests
an effect of domain-specific knowledge.

General Discussion

These studies show that people’s sketching patterns can reveal differences in their understand-
ing of geoscience. When sketching photographs of geological formations, geoscience students
were more likely than novices to include spatial structures that reflected geologic activity, such
as faults and folds. When sketching diagrams of geologic processes, geoscience students
included more relational information in their sketches, and often drew causal events in
sequential order. Strikingly, these effects of domain knowledge occurred despite the fact that
the task was simply to copy the photograph or diagram. Our participants could view the photos

Table 3 Agreement in mean event
ordering (Kendall’s coefficient of
concordance) for sketches of ex-
periment 3 diagrams

*p<.05, significance

Geoscience students Expert coder

Geoscience diagrams

Novices 0.43 0.39

Geoscience students 0.98*

Control diagrams

Novices 0.61 0.51

Geoscience students 0.58
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and diagrams for the entire time that they sketched; yet there were still sizable differences in
what and how they sketched.

We also asked whether these group differences could have stemmed from some general
skill or knowledge that the geoscience students possessed, rather than from greater domain
understanding. The pattern of evidence suggests that the effects were due largely to domain-
specific knowledge. For both photographs and causal diagrams, the differences between
geoscience students and novices in what was sketched, and in the order in which it was
sketched, held only for geoscience materials, not for control materials. Further, these patterns
aligned with participants’ self-ratings of knowledge for the content of the images. Of course, it
is possible that effects of general knowledge or skill will emerge in studies involving different
sketching tasks and materials. Further research is needed to address this issue, and to explicitly
test the influence of general skills—such as spatial thinking and visualization—that have been
associated with attainment in science (Black 2005; Kali, and Orion 1996; Kastens et al. 2009;
Shea et al. 2001; Uttal and Cohen 2012; Wai et al. 2009).

Effects of Conceptual Knowledge on Sketching Our results suggest that the geoscience
students relied on conceptual knowledge even when simply copying photographs of geological
formations. Their construals were not solely based on the visual information present; they were
influenced by participants’ mental models, including knowledge of the forces that could
produce a given structure (Forbus 2011; Gentner and Stevens 1983; Hay et al. 2013;
Tversky 1991). This is underscored by the finding that geoscience students often added arrows
depicting the direction of forces to their sketches of geological formations. Expertise-related
exaggerations in spatial depiction have also been found in other arenas. For example, Landy
and Goldstone (2007) found that when knowledgeable students copy math equations, they
tend to group the elements of operations that must be done earlier in the equation more closely
in space. Likewise, acquired categorical knowledge can lead to underestimating distances
between same-category items (Holden et al. 2010; Tversky 1981; Uttal et al. 2010).
Knowledge of forces and causal relations might lead to similar distortions in sketches of
scientific phenomena. For example, understanding of the forces that caused displacement may
lead the sketcher to exaggerate this displacement in the direction of the forces. Such findings
would shed further light onto the ways that learning affects the organization of domain
knowledge (Forbus 2011).

Effects of domain knowledge were also evident for causal diagrams. Geoscience students
were more likely than novices to include causally relevant parts for diagrams depicting
geoscience processes, but not for control diagrams. This fits with evidence that knowledge
of the identity and causal role of the objects in a diagram affects diagram construction. For
example, Heiser and Tversky (2006) found that novices who are provided with a functional
description of the parts of a diagram were more likely to include relational symbols when
sketching the diagram than those provided with a merely physical description.

A particularly intriguing finding was that when copying causal diagrams, geoscience
students tended to sketch following the causal order of events. These results align with findings
on expertise in engineering and design6. Moss et al. (2006) had freshmen and senior engi-
neering students recreate diagrams of devices using a specialized computer interface that
allowed them to drag and drop component parts into a diagram space. Moss et al. found that
seniors tended to assemble the parts based on functionality, whereas freshman tended to chunk
together the same types of components. More to the point, seniors were also more likely to

6 This pattern has also been observed in biology. Louis Gomez (personal communication, May 2012) reports that
students who understand the photosynthesis process tend to copy diagrams of photosynthesis in causal order.
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follow the flow of energy as they recreated the diagrams, as with the geoscience students in the
present research. If this pattern of causal ordering holds up in other domains, then students’
order of sketching may provide an unobtrusive measure of their domain understanding.

In sum, this work advances our understanding of science learning by identifying markers of
domain understanding that appear in students’ sketches. The findings suggest that, whereas
novices tended to focus on depicting the objects in the scene, experienced students activated
causal knowledge as they copied images, affecting both what and how they sketched. It is
intriguing that similar signs of domain knowledge have been found in other tasks, such as
recreating a machine diagram, and with materials that are less intensely spatial, such as math
equations. This raises the possibility that identifying certain properties of a sketch—such as its
relational content, spatial layout, and temporal construction—may be generally indicative of a
student’s level of understanding.

Using Sketching Software to Assess and Enhance Science Learning We also aimed to make a
methodological contribution, by testing whether data gathered by CogSketch can be used to
detect markers of domain understanding. We found that it can. Two features were particularly
useful. First, CogSketch automatically records the order in which objects are drawn. As our
results show, such ordering information can be diagnostic of differences in knowledge. In the
past, such timing data has been onerous to obtain. For example, in the Rey–Osterreith
Complex Figure test, a widely used assessment of neurological disorder (e.g., Duley et al.
1993; Shin et al. 2006), timing data for participants’ sketches are obtained by giving partic-
ipants colored pencils. After each time segment, they are asked to switch to a new color.
Clearly, this kind of task would be prohibitive in classroom settings. Timing data can also be
obtained by analyzing audio and video transcripts, but this is time-consuming and unsuitable
for most instructional purposes. Although more analysis are needed to discover when time-
course data is most useful, our findings suggest that automatic tracking of the time course of
drawing can be highly informative.

A second useful feature of CogSketch is that it requires participants to segment their
drawing into objects and label them with words or phrases7. While people could be instructed
to label the parts of their drawing in a paper-and-pencil drawing task, it is likely that without
close supervision they would sometimes fail to do so, complicating the analysis. Furthermore,
the fact that participants distinguished objects from relations using labels (in addition to
symbols) was extremely useful in our analyses. In this study, some aspects of the coding—
including some of the identification of key events—were done by human coders, but this work
was facilitated by the fact that segmentation, labeling, and ordering of events was provided by
CogSketch.

CogSketch’s use of participant labeling distinguishes it from most other sketch understand-
ing systems, which are recognition-based (e.g., de Silva et al. 2007; Pargas et al. 2007;
Plimmer and Freeman 2007; Plimmer and Hammond 2008; Valentine et al. 2012).
Recognition-based systems require that there is a one-to-one mapping between a shape and
its intended meaning. This works well when a domain has a graphical symbol vocabulary (e.g.,
electronics, organic chemistry, and free body diagrams). However, this requirement does not fit
many kinds of scientific diagrams. For example, in geoscience, a line can represent a fault, a
bedding layer, a horizon line, and many other objects. Moreover, many entities in scientific
diagrams are not graphical symbols. When annotating a photograph to show faults and marker
beds, the shape of these entities is determined by the structure shown in the photograph, not by

7 CogSketch normally requires the user to categorize their glyphs as objects or relations, but to allow for more
spontaneity, this feature was not used in this research.
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a set of domain conventions, as they are in electronics, for instance. Labeling removes any
ambiguity about the meaning of a sketch object and dispenses with the need for perfect
depiction of the objects in a scene. Although providing labels could be seen as burdensome
compared with free sketching, it has the advantage of making the drawing task less forbidding
for participants, since they do not need to rely on their drawing skills alone to communicate.

Sketch understanding software could eventually have a profound impact on educational
assessment and instruction. Automated recording and analysis of sketches could facilitate the
assessment of spatial scientific knowledge and the scoring of standardized tests that involve
drawing, greatly reducing the burden on instructors and allowing more rapid feedback to the
students. Sketch understanding software could also help improve student learning directly.
CogSketch has been used to develop worksheets that are being used in classroom experiments
(Yin et al. 2010) to attempt to provide such benefits. Furthermore, these benefits extend
beyond geoscience. CogSketch has been used to support learning in fifth-grade biology
classrooms (Miller et al. 2014) and in college engineering classes (Wetzel and Forbus 2012).
Additional research is needed to explore the connections between sketching and learning, and
new technologies are sure to play an important role in this endeavor (Ainsworth et al. 2011).

Conclusions

Our findings suggest that differences in domain-specific knowledge are reflected in both the
products and the process of sketching. These differences were apparent even when participants
were simply asked to copy the materials in front of them. Our results further suggest that the
differences between novices and geoscience students were largely domain-specific. We sug-
gest that the techniques used here could be applied in other spatially intense domains to
explore students’ knowledge and to support their learning. Ultimately, work on sketching will
not only inform our understanding of STEM learning but will contribute to our understanding
of the nature of scientific expertise and how it develops.

Appendix

Table 4 Image lists for the experiments

Experiment Image type

Geoscience Control

Experiment 1 Folded rock

Rock layers

Subduction 1

Experiment 2 (geoformations) Fold and unconformity Deck of cards folded in a hand

Cross-cutting faults Fruit cross-section

Cross-cutting dike with faults Slice of layer cake

Experiment 3 (causal diagrams) Subduction 2 Carburetor

Water cycle Blood pump for artificial heart

Phosphorus cycle Home water conservation system

Sand budget Photosynthesis
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