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Abstract 
For more effective collaboration, users and autonomous sys-
tems should interact naturally. We propose that sketch-based 
interaction coupled with qualitative representations and anal-
ogy provides a natural interface for users and systems. We 
introduce comic graphs that capture tasks in terms of the tem-
poral dynamics of the spatial configurations of relevant ob-
jects. This paper demonstrates, through a strategy simulation 
example, how these models could be learned by demonstra-
tion, transferred to new situations, and enable explanations. 

Introduction   
While there have been tremendous achievements in machine 
learning (e.g., AlphaGo [10]), significant challenges remain 
for the widespread adoption of autonomous agents in open 
world mission critical applications. First, while games ena-
ble straightforward definitions of goals and rewards, many 
applications require complex tradeoffs over varying time-
scales. Second, in open worlds, the training and deployment 
environments frequently differ. Third, autonomous systems 
do not work in isolation, but as teams; therefore, they must 
be able to explain their actions to facilitate trust and improve 
team performance. 
 As observed by inverse reinforcement learning [9], agent 
designers may only have a rough idea of task reward func-
tions. Natural collaboration cannot start with users provid-
ing reward functions. Instead, our approach learns inspecta-
ble models from example executions. Inspectable models 
use relational representations that provide human-like simi-
larity inferences, via analogy, ensuring that the agent’s de-
cisions make sense to users. Example task executions could 
be abstracted into an inspectable model that captures the 
spatial temporal relationships between relevant objects and 
regions as indicated through a sketch-based interface. We 
call this model a comic graph, and, in this paper, we describe 
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how comic graphs could be used to learn new tasks, to trans-
fer acquired knowledge to new situations, and to collaborate 
with users by explaining the agent’s decisions. 
 Comic graphs are qualitative representations of spatial 
configurations through time that describe events and tasks. 
Execution histories are segmented into snapshots, like pan-
els in a comic strip, where each panel represents a distinct 
state with temporal relations between them (e.g., Fred exit-
ing a room would have three panels: (1) Fred walking to-
ward the door, (2) Fred in the doorway, and (3) Fred outside 
the door). This sequence of comic panels both explains the 
exiting room task as well as providing guidance for an au-
tonomous agent performing the task. Many tasks are per-
formed in multiple ways (e.g., Fred may stop to pick up his 
backpack before walking out the door), therefore each panel 
may have multiple successors in the comic graph. Previous 
research has shown these qualitative relational representa-
tions enable event detection and explanation in video [2]. 
Here we show how these representations support training, 
performance and explanation in an unmanned aircraft 
(UAV) attack mission. 
 Our approach is built on the Companion cognitive archi-
tecture [5], which is aimed at reaching human-level AI by 
creating software social agents (i.e., systems that interact 
with people using natural modalities, working and learning 
over extended periods of time as apprentices rather than 
tools). The two central hypotheses of the architecture and 
our approach are (1) analogical reasoning and learning are 
central to cognition, and (2) relational representations, espe-
cially qualitative representations, are key to human intelli-
gence. The architecture is built on three computational mod-
els of analogical processes: matching (SME [4]), retrieval 
(MAC/FAC [3]), and generalization (SAGE [7]). For this 
paper, it is necessary to know that these processes operate 
over relational representations and have been used as cogni-
tive models to account for experimental results.  
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Learn Comic Graph by Example 
Consider training an agent to pilot a UAV on an attack mis-
sion. The UAV can move and fire its weapons. The target is 
a Surface to Air Missile site (SAM) that could shoot down 
the UAV. Users train a Companion by performing the mis-
sions and highlighting task relevant regions. The attack mis-
sion could be described in terms of four tasks: ingress, 
strike, egress and abort. While interacting with a simulator 
to control the UAV, the user communicates which task they 
are executing using natural language, and then through a 
sketching interface (CogSketch [6]), the trainer annotates 
the task-relevant objects and regions. This type of training 
requires considerably less expertise than fine tuning reward 
functions and can be potentially distributed across multiple 
trainers. 

 Figure 1 illustrates a training episode for the strike task of 
an attack mission where the user takes 17 actions in the sim-
ulator and indicates three task relevant regions (the units’ 
weapons ranges and cover) by sketching. After the SAM is 
destroyed, the user states that they have completed the strike 
task successfully and that the next task is to egress. 
 The Companion will abstract the spatial temporal config-
uration of these regions and objects into a sequence of comic 
panels that capture the changes in the qualitative relation-
ships over time. In this case, there are four comic panels 
(summarized here in natural language): (CP11) the UAV is 
approaching cover and target; (CP12) the UAV continues ap-
proaching the target while moving through cover; (CP13) the 
UAV and SAM are within weapons range of one another; 
(CP14) the SAM is destroyed. As indicated above, the qual-
itative representations determine how the task execution is 
segmented temporally. This single sequence is a comic 
graph which serves as an inspectable model of how to exe-
cute a strike task during an attack mission. As the trainer 
performs additional strike missions, each resulting sequence 
of comic panels is merged into the comic graph via analog-
ical generalization. Figure 2 illustrates how two additional 
examples are incorporated.  

Note that each training episode could occur not only over 
different configurations, but also different sets of relevant 
objects and regions. For example, in one of the episodes 
there is no cover region. The resulting comic graph (shown 
in Figure 2) captures different ways in which the strike task 
could be performed. From the initial state (a generalization 
of all three initial comic panels) where the UAV moves to-
ward the target, it can either enter the UAV’s weapon range 
(CP22), fly parallel to cover (CP32), or enter cover directly 
(CPg2). After exiting cover, the UAV and SAM are in range 
of each other (CPg3). In the final state (CPg4), the SAM has 
been destroyed. The generalization panels (CPg1, CPg2, CPg3, 
CPg4) are generalizations created by SAGE capturing the 
commonalities between the examples while still maintaining 
links to the specific comic panels. Here there is only a single 
initial and terminal panel, but this representation allows 
multiple initial and terminal conditions. For example, if in a 
later training exercise, an opposing aircraft engaged the 
UAV, the trainer may elect to terminate the strike task and 
begin an abort task, flying away from the attack. This would 
create a terminal comic panel with a different next task tran-
sition than CPg4. 
 To capture the fact that some ways of performing the task 
are better than others, we learn a value function over the 
comic panels. The value function captures how likely it is 
that the task will be executed correctly given the current 
comic panel. Successful execution is defined by arriving in 
a state that corresponds to a successful terminal comic pan-
els. In the case of the training example without cover, the 

Figure 1: Training episode where the user specifies that they are 
demonstrating a strike task and indicates that the weapon ranges 
of the SAM and UAV are important as well as the fact that moun-
tains provide cover. 
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Figure 2: Comic graph (lower right) from multiple training in-
stances. Orange comic panels correspond to initial task states 
and green panels represent terminal states. 



UAV may be shot down before striking the target resulting 
in a failed task execution. Consequently, CP21 and CP22 have 
lower value functions. 

Ground Comic Graph into a Policy 
Because the comic graph captures the spatial dynamics of 
successful task execution, it guides action selection in new 
environments. This is done in three steps: (1) using analogy, 
we ground the most similar initial comic panel to identify 
the objects and regions relevant to task execution; (2) 
through directed policy search, we identify a value function 
over the state action space; (3) using the learned policy, we 
select actions until a comic panel transition occurs. These 
steps repeat until the Companion enters a terminal comic 
panel that specifies the next task, and if there is a terminal 
panel with no next task, the mission is complete.  
 Figure 3 illustrates these three steps for the first comic 
panel transition of the learned strike task model. In the first 
step, using symbolic descriptions of spatial concepts [7], we 
identify the task relevant regions in the current state through 
analogical inferences from the initial task comic panel, CPg1. 
Next, we ground the reward function and perform directed 
policy search to identify the policy that leads to the best 
comic panel transition. Using the simulator as a transition 
function T(s,a) → s′, we perform Monte Carlo Policy Search 
[11] from the initial state, s0. After each action, we deter-
mine the comic panel corresponding to the transition. 

 Consider the move left action, T(s0,aleft) → s1, the state 
pair (s0,s1) corresponds to the comic panel CPg1 because they 
contain the same qualitative spatial relationships (the UAV 
is moving toward cover as well as the target and none of the 
regions are overlapping). Therefore, this reward is neutral. 
Now consider the move right action, T(s0,aright) → s2,. While 
the regions are still not overlapping, the objects are all mov-
ing further away. These relationships do not correspond to 
any comic panels of the current comic graph transitions. 
Therefore, we impose costs on these actions through a neg-
ative reward value. This process continues until we reach 
transitions that correspond to the successor comic panels 
{CPg2, CP22, CP32} or a finite horizon. By only looking 
ahead to single panel transition, this is an orders of magni-
tude smaller search space than performing a Monte Carlo 
Search for the entire task or mission. The transitions that re-
sult in the next comic panels are assigned positive reward 
and are marked as terminal reinforcement learning states. 
 We set the rewards for each comic panel by scaling its 
value function with the analogical similarity between the 
panel and the current situation. While the comic panels CP32 
and CPg2 have the same value, they are scaled differently in 
the current situation because the current situation is more 
similar, as defined by SME, to the CP32. 
 The directed search results in a policy tree that the Com-
panion follows until the transition to CP32. From the result-
ing state, the entire process iterates with the comic graph 

Figure 3: Comic graphs could enable robust autonomous action by (1) grounding relevant regions through analogy, (2) transferring the 
reward function from the comic panels to state transitions, and (3) directing policy search. 



transitions consisting of only CP32→CPg2. This process con-
tinues until either there are no applicable actions (e.g., the 
UAV is destroyed) or the Companion reaches a terminal 
state in the comic graph. In this case, once the UAV destroys 
the SAM, the Companion enters the terminal panel, CPg4, 
indicating the next task is egress. Next, the Companion ex-
ecutes the comic graph model of the egress task in the same 
way, and completes the mission when there are no more 
tasks to execute. 

Breadth of Explanations 
By capturing task relevant qualitative distinctions, comic 
graphs support a broad range of explanations. Through 
multi-modal interaction, the user should immediately recog-
nize if the Companion is not considering task relevant ob-
jects or regions. Due to the user’s understanding of the sce-
nario, they should be able to quickly identify if an action is 
consistent with the Companion’s expected comic panel tran-
sition. By showing the sequence of comic panels the Com-
panion expects to satisfy the current task, the user could de-
termine if that is a realistic plan for the current environment. 
Due the structure of comic graphs, the Companion can an-
swer questions about the relationships between tasks and 
missions. 
 Comic graphs support the following types of questions. 
“What is the mission?” can be explained in terms of the task 
labels provided by the user during training. For example, the 
attack mission was learned in terms of four tasks with tem-
poral relationships between them: ingress, strike, egress and 
abort. One level down, the user can ask “why is the current 
task ‘strike?” Here the Companion will display the ground-
ing of the terminal comic panel of the ingress task at the ap-
propriate point in the execution history. Next, the user can 
ask, “what is the strike task?” which the Companion answers 
by displaying the comic graph of spatial configurations of 
relevant objects demonstrating the temporal sequence. User 
can also ask “why did you just take the move-left action?” 
Instead of trying to explain this in terms of the underlying 
value function, the comic graph highlights the qualitative 
transitions that the Companion is pursuing. 
 Another advantage of the comic graph structure is that it 
maintains example training and execution sessions. This al-
lows for the following types of queries. The user can also 
ask “what is cover? And why is it relevant?” Here the system 
would produce previous examples where cover was used in 
destroy-target missions. Or when asking one of the above 
questions about the mission, task or spatial configurations, 
the Companion could produce previous examples that 
demonstrate the concept. 
 Explanations not only support joint execution perfor-
mance, but also provide an opportunity for corrective feed-
back. This could be in terms of what parts of the scenario 
are relevant (e.g., “This is not cover”) or about which action 

should have been taken (e.g., “You should move left here”). 
We use model based diagnosis [1] to scan back through the 
audit trails to determine which inference, analogy, actions, 
or representational choices contributed to the poor perfor-
mance. The diagnoser can identify multiple possible correc-
tive action sets to can repair the model (yet preserve prior 
learning). The diagnoser can determine the likelihood of 
each such set, and, if multiple alternative sets are equal 
likely to propose a question to the user. 

Discussion 
This paper introduces comic graphs as an inspectable mod-
els based on qualitative relations and analogy supporting hu-
man machine collaboration. Our approach uses comic 
graphs to address three autonomy challenges. Instead of 
hand authoring reward functions, comic graphs are learned 
by example through natural interaction. Second, comic 
graphs support flexible execution in new environments and 
open worlds through a combination of analogy and rein-
forcement learning. Finally, comic graphs enable explana-
tions that improve individual and joint performance. 
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