
 

 

Abstract 

Natural language descriptions are commonly used 
to communicate situations where qualitative 
reasoning is relevant, but automatic construction of 
scenario models from language remains a 
challenging problem.  This paper describes an 
approach for learning how to construct scenario 
models from natural language text, using small 
amounts of language-only training data.  Evidence 
Expressions (EEs), which bridge between the 
general-purpose outputs of a semantic parser and 
the formal constructs of a qualitative domain 
theory, are learned from training examples.  These 
EEs are then retrieved and combined by analogy to 
create scenarios for more complex problems. We 
demonstrate the effectiveness of our technique on a 
set of 4th and 5th grade science test questions. 
 

1 Introduction 

Understanding how to extract qualitative models in the pro-

cess of natural language understanding is an important prob-

lem for learning by reading (e.g. [Kuehne & Forbus, 2004; 

McFate et al. 2016b]) and for using that knowledge in an-

swering questions.  For example, Crouse & Forbus [2016] 

found that 29% of elementary science test questions they 

examined required using qualitative reasoning to answer.  

This suggests that shallow understanding systems (e.g. 

[Khashabi et al, 2016; Clark et al, 2016; Khot et al, 2017]) 

will not suffice for human-level performance on such tests.  

Given the breadth of natural language, learning approaches 

look like the only option. 

 Learning in this domain is difficult: There do not exist the 

large annotated corpora needed for modern machine learn-

ing methods.  Even if there were, such approaches lead to 

building domain-specific language systems, which do not 

gracefully extend to other domains.  Since many interesting 

problems combine multiple domains, generality is also an 

important constraint.  Our approach [Crouse et al, 2018] is 

to use a domain-general semantic parser which is extended 

by learning abductive patterns that connect the general-

purpose semantics to the representations needed for reason-

ing about various domains.  These Evidence Expressions 

(EEs) are then applied to new problems via analogy. Im-

portantly, EEs are compositional, in that multiple EEs 

learned for simpler texts can be combined (via multiple 

analogies) to provide interpretations for more complex texts.  

In our prior work, EEs were constructed by connection 

graph techniques, using as input unannotated natural lan-

guage question-answer pairs (the classic Geoquery factoid 

Q/A domain).  This paper extends these ideas to handle 

more complex, multi-sentence training examples, as needed 

for building scenario models.   

 We begin by reviewing the relevant background.  Then 

we describe our technique, including both learning and ap-

plication of the learned knowledge. We evaluate our ap-

proach by answering questions requiring model formulation 

from a set of 4th and 5th grade science questions. 

2 Background 

2.1 Qualitative Process Theory 

Qualitative Process Theory [Forbus, 1984] formalizes pro-

cesses as the mechanism underlying continuous change.  

The direct effects of a process (e.g. liquid flow into a tub) 

are called direct influences (represented as i+ and i-), and 

their indirect effects are called indirect influences (repre-

sented as qprop/qprop-), e.g. the level of the water in the 

tub.   Model fragments are compositional schemas that 

define types of entities and relationships in the world. They 

have participants which are related by the model fragment, 

constraints among participants that determine when the 

model should be considered, and conditions of activation. 

When a model fragment is active, its consequences hold. 

These are frequently influences, though other relationships 

can be consequences as well. Consider for example the 

model fragment in Figure 1, which describes a contained 

liquid. The first line defines its name.  Lines 2 and 3 define 

the participants, entities of types Container and Con-

tainedStuff. They play the role of containerOf and 

containedObject respectively in an instantiated model 

fragment. Line 4 defines a constraint, that this model should 
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only be considered for liquids. Finally, Line 5 provides a 

consequence, that an indirect influence holds between the 

pressure and amount of contained stuff.  
 Given a domain theory consisting of a set of model frag-

ments and a scenario description, a model formulation algo-

rithm instantiates model fragments based on which precon-

ditions are met by the scenario.  In traditional QR, programs 

that provide structural descriptions do so in the ontology of 

the domain theory.  Here, the challenge is to learn connec-

tions between everyday concepts (e.g. tub) and concepts in 

the domain theory ontology (e.g. container).   

2.2 Semantic Parsing  

We use the Explanation Agent NLU (EA NLU) semantic 

parser [Tomai & Forbus, 2009]. EA NLU is a bottom-up 

rule-based chart parser that uses a feature based grammar. It 

uses the NULEX lexicon [McFate & Forbus, 2011] and 

Fillmore et al’s [2001] FrameNet. FrameNet ties words to a 

semantic schema and annotates how semantic roles are 

bound to arguments in syntactic patterns.  

 As an example, the word change evokes the 

Cause_change frame which has semantic roles that in-

clude Initial_category, and Final_category. 

When used in the sentence “The snow changes to water.”, 

the first noun phrase is the Initial_category, and the 

prepositional phrase is the Final_category. These pat-

terns of role bindings (called valence patterns) are stored in 

the ontology in templates that get bound in the grammar. In 

our system, both the grammar and semantic templates are 

represented in the Cyc ontology [Matuszek et al, 2006]. 

Semantic ambiguities are represented via mutually exclusive 

choice sets, e.g., the word ball in a sentence would lead to 

including a choice set for a toy versus a dance in the par-

ser’s interpretation.  Our system operates over these choices 

to reason about which combination of them would lead to a 

good qualitative model. 

2.3 Analogy 

We use the Structure Mapping Engine [Forbus et al, 2017], 

a computational implementation of Gentner’s [1983] Struc-

ture Mapping Theory. Structure mapping aligns hierarchical 

structured representations (predicate calculus) according to 

the principles of SMT, that each element in a case may 

match with at most one in the other and that the children of 

matched elements also match. After alignment, structure in 

one case that is missing from the other can be inferred by 

analogy (candidate inferences). 

 Consider Figure 2 which shows a mapping between a 

model of heat flow and a model of air flow. In the base 

(left), a difference in air pressure between two rooms causes 

air to flow from one to the other. In the target (right), a 

difference in temperature exists between a hot brick and 

cool room. As in the base, there is a flow process between 

the two entities. When aligned, the ordinal relations and 

flow process match, allowing the inference that, as in the 

case of air flow, a quantity difference drives heat flow.  

We use the MAC/FAC model of analogical retrieval 

[Forbus et al, 1995] and the SAGE model of analogical 

generalization [McLure et al, 2015]. MAC/FAC is a two-

phase model of analogical retrieval that uses a cheap 

preliminary feature-vector match to generate candidates for 

its second stage, which uses SME to select the most similar 

retrieval.  SAGE incrementally accumulates examples in a 

generalization pool, a kind of case library, which contains 

both examples and automatically constructed 

generalizations.  When a new example arrives, it uses 

MAC/FAC to find the most similar item, and assimilates 

them if they are sufficiently similar.  The assimilation 

process produces (or updates) a generalization, where the 

probability of each statement in it depends on the number of 

examples that contribute corresponding statements.  In 

Figure 2, for instance, the flow-between statement would 

have probability 1, whereas the temperature/pressure 

statements would have probability 0.5.   

3 Our Technique 

Following Crouse et al [2018], we represent the mapping 

between lexical semantics and model fragment ontology as 

Evidence Expressions. An evidenceForExpression statement 

(EE) can be viewed as an abductive rule, where the 

antecedents are semantic choices and the consequents are a 

task-specific logical form. In this case, consequents are the 

participant relations and conditions necessary to instantiate a 

set of model fragments. 

1. (isa SimpleContainer ContainedSubstance) 

2. (mfTypeParticipant ContainedSubstance  

  ?container Container containerOf) 

3. (mfTypeParticipant ContainedSubstance  

 ?stuff ContainedStuff objectContained) 

4. (mfTypeParticipantConstraint SimpleContainer 

 (PhaseOf ?stuff Liquid) 

5. (mfTypeConsequence SimpleContainer  

(qprop ((QPQuantityFn Pressure) ?stuff) 

(AmountFn ?stuff))) 

Figure 1. A simple qualitative model of a contained liquid  

Figure 2. An example SME mapping 



 

 

 EEs learned during training can be applied to novel 

questions via analogy. More concretely, question semantics 

are aligned to the antecedents of an EE retrieved via 

MAC/FAC, and the consequent of the EE is then 

instantiated with the entities of the novel question via 

analogical inference. Missing antecedents are allowed at a 

cost and a recombination algorithm determines the smallest 

set of EEs whose antecedents cover the entirety of the 

question semantics [Crouse et al, 2018]. 

 An example will make this clearer. Figure 3 shows a 

simple model for melting. Informally, the requirements for 

activation (lines 2-6) are that there is a solid (line 2), and 

that its temperature is greater than its melting point (line 5 

and 6). Now consider the question described in Figure 4.  

That packed snow is  a solid is not explicitly stated, nor is 

the initial ordinal relationship of its temperature to the 

melting point of water.  That the room is warm is relevant, 

since that could lead to a heat flow, and thus a melting.  

That is consistent with the snow changing to liquid.  Finally, 

there are, from the standpoint of model formulation, 

irrelevancies, e.g. that a student is conducting an 

investigation, although the savvy student would read 

“changes in the state of matter” as a hint. We use this 

example to illustrate how our technique works. 

3.1 Training 

Our technique takes as inputs a natural-language scenario 

paired with the active process of the scenario, drawn from 

science test questions. For the problem in Figure 4, it would 

be given the text paired with the word “melting” which 

refers to the NaiveMeltingProcess model fragment. This 

results in an initial set of model fragments consisting of 

NaiveMeltingProcess, any model fragment participants, 

as well as any fragments that they depend on. This retrieved 

set will be referred to as our target set of expressions. 

 EA NLU interprets the scenario. Figure 5 shows a partial 

set of EA choices for the text in Figure 4. In Figure 5, each 

word has its alternative predicate calculus interpretations 

listed as sub-bullet points. The first step is to map relevant 

elements of the natural language scenario to models and 

their conditions. This proceeds in three phases: The textual 

semantics and model are aligned in an initial matching. 

Relevant aspects of the semantics are also found through 

stability analysis, and finally Steiner tree connecting 

semantics are found to bridge disjointed antecedents. Figure 

6 illustrates this process.  

3.1.1 Initial Matching  

Let T be the target set of logical expressions (model 

fragments) and S be the set of semantic choices (e.g. 1a, 2a-

c, 3a-b, and 4a in Figure 5). The initial alignment step 

operates over the complete bipartite graph G = (S, T, ST). 

A conflict-free matching M in G is a set of vertex-disjoint 

edges (one-to-one correspondence) such that no two pairs of 

edges can have expressions from T that conflict in C. In 

other words, if there is a conflict pair (tk, tl)  C then M 

cannot simultaneously contain a pair of edges like (si, tk) and 

(sk, tl). 

This negative-disjointness constraint makes the matching 

problem NP-Hard [Darmann et al, 2011]. For efficiency, we 

use a local search procedure that starts from a promising 

1. “graduated cylinder” 
 1a. (isa graduated-cylinder751136 GraduatedCylinder) 
2. “warm” 

2a. (ambientTemperature room752597 Warm) 
2b. (temperatureOfObject room752597 Warm) 
2c. (temperatureOfObject room752597 Warm)  
         – 2b and 2c are justified by different parse trees 

3. “water” 
 3a. (isa water751940 (LiquidFn Water)) 
 3b. (isa water751940 Water) 
4. “snow” 
 4a. (isa snow751995 SnowMob) 

Figure 5. A subset of the semantics produced for our example 

question. 2b and 2c shows a situation where the same 

semantics are justified by different parse trees. 

A student is investigating changes in the states of matter. 

The student fills a graduated cylinder with 50 milliliters of 

packed snow. The graduated cylinder has a mass of 50 grams 

when empty and 95 grams when filled with the snow. The 

packed snow changes to liquid water when the snow is put in 

a warm room. Which statement best describes this process? 

Figure 4. An example question involving “melting” 

1.   (isa ?self NaiveMeltingProcess) 
2.   (mfTypeParticipant NaiveMeltingProcess ?thing-melting  
         SolidTangibleThing focusOf) 
3.   (mfTypeParticipant NaiveMeltingProcess ?sub  
        ChemicalCompoundTypeByChemicalSpecies substanceOf) 
4.   (mfTypeParticipantConstraint NaiveMeltingProcess 
         (substanceOfType ?thing-melting ?sub)) 
5.   (mfTypeParticipantConstraint NaiveMeltingProcess  
         (relationAllInstance freezingPoint ?sub ?m-temp)) 
6.   (mfTypeCondition NaiveMeltingProcess (qGreaterThan  
        (TemperatureFn ?thing-melting) ?m-temp)) 
7.   (mfTypeConsequence NaiveMeltingProcess (qGreaterThan  
        (LiquidGenerationRateFn ?self) 0)) 
8.   (mfTypeConsequence NaiveMeltingProcess (qprop  
        (LiquidGenerationRateFn ?self) (TemperatureFn ?thing-melting))) 
9. (mfTypeConsequence NaiveMeltingProcess (i- (AmountOfFn ?sub  
       Solid-StateOfMatter ?thing-melting)(LiquidGenerationRateFn ?self))) 
10. (mfTypeConsequence NaiveMeltingProcess  
        (i+ (AmountOfFn ?sub  Liquid-StateOfMatter ?thing-melting)  
            (LiquidGenerationRateFn ?self))) 

Figure 3. A qualitative model of melting 



 

 

candidate solution and moves amongst better neighboring 

solutions until it can no longer improve. For a conflict-free 

matching M in G, it expands outwards to all conflict-free 

matchings that differ by at most two edges from M. 

The score of a conflict-free matching M is determined by 

three properties: ontological alignment, loose structural 

overlap, and conflict avoidance. We describe each property 

and how they are combined next.  

Ontological Alignment 

The Cyc ontology comes with a number of higher-order 

relations that relate concepts at an abstract level. For 

example, functionCorrespondingPredicate indicates that a 

given function and predicate amount to the same 

relationship, holding for pairs like temperatureOfObject 
and TemperatureFn. We use a set of such relationships to 

estimate expression similarity. 

Loose Structural Overlap 

We employ a simple, loose measure of structural similarity 

inspired by the concept of similarity flooding [Melnik et al, 

2002], due to the distance between the concepts involved.   

 We first define both sets of logical expressions, S and T,  

as hypergraphs. Let H(T) be the hypergraph of T where 

hyperedges are expressions and vertices are the entities and 

variables contained in those expressions. For instance, the 

expression on Line 10 of Figure 3, would be a hyperedge 

connecting ?sub, ?thing-melting, and ?self. By considering 

these sets to be hypergraphs, we can define a notion of 

neighbors in these hypergraphs. 

For a particular expression ti, we consider the neighboring 

expressions to be all those expressions with a distance from 

ti that is less than a given constant k. In our experiments, we 

use k = 3. We define the distance between two expressions ti 

and tj to be the length of the shortest path in H(T) 

connecting any two entities of ti and tj. The loose-structural 

overlap score of expressions si and tj is 1 if both expressions 

have neighbors in H(G) that are also in M and 0 otherwise. 

Conflict Avoidance 

Our system gives preference to edges that lead to the fewest 

conflicts overall. Conflicts in the semantic interpretation 

arise from choices to resolve ambiguities that would lead to 

logical inconsistencies (i.e. a river bank is not a place to 

deposit money).  The normalized conflict-avoidance score 

c(si,tj) is the number of edges in G that do not conflict with 

edge (si,tj) divided by the cardinality of G 

Calculating and Using the Score 

Let o(si,tj) be the ontological alignment score, s(si,tj) be the 

loose structural overlap score, and c(si,tj) be the conflict 

avoidance score. Then, the overal score of a matching M 

between S and T is given as: 

 

∑ 𝛼 ∗ 𝑜(𝑠𝑖 , 𝑡𝑗) + 𝛽 ∗ 𝑠(𝑠𝑖 , 𝑡𝑗) + 𝛾 ∗ 𝑐(𝑠𝑖 , 𝑡𝑗)

(𝑠𝑖,𝑡𝑗)∈𝑀

 

 

where 𝛼, 𝛽, and 𝛾 are the preferences for each property of 

the matching. In our experiments, we have 𝛼 = 0.4, 𝛽 =
0.4, 𝛾 = 0.2 which were values chosen simply because 

conflict-avoidance was found to be important, but less 

important than the other two features. 

The local-search algorithm obtains a first-pass candidate 

solution by greedily finding a matching M that maximizes 

for only ontological alignment. From that initial matching 

M, the algorithm begins to iteratively improve its solution 

by exploring the conflict-free matchings that differ by at 

most two edges from M until it can no longer find a 

matching with a higher score as determined by the equation 

above. When a new matching with a higher score is found, 

the algorithm repeats from that matching, otherwise it 

returns M. 

The final matching contains pairings of expressions in S 

with expressions in T. Some of those pairs include type 

constraints. For example, Line 3b of Figure 5  (“water” as 

Water) might match with Line 3 of Figure 3 (the participant 

with ChemicalCompoundTypeByChemicalSpecies. From 

those type constraint pairings, our approach extracts 

variable bindings (e.g. ?sub with water751940) and 

instantiates the T with those bindings. The result is a subset 

of the instantiated T that includes only participants, 

participant constraints, and conditions, that is conditioned 

on the expressions in S that were used in M. 

 
Figure 6. Training Diagram 



 

 

3.1.2 Stability Analysis  

Often there are salient features of scenario types that are not 

indicated by an ontological match. For instance, situations 

regarding gravity often involve something falling. 

 Our system creates a SAGE generalization pool for each 

process type (melting, freezing, gravity, etc.). The 

generalization pools are populated by the complete sets of 

semantics for all training instances of that type (e.g. each 

question about melting is parsed, and its semantics put into 

a case which is then added to a generalization pool for 

melting). After the matching is complete, the generalization 

pool for the given question type is retrieved and is used to 

assign probabilities to all of the expressions in S. The top 3 

most probable expressions from S that do not conflict with 

already selected expressions from the matching step are 

added to our antecedents. Figure 7 shows the antecedents 

(each of which are predicate calculus interpretations of 

phrases from our training paragraph) after both the matching 

and stability analysis and indicates the source of each 

antecedent. 

3.1.3 Steiner Tree Connecting Semantics  

At this point, antecedents have been drawn from both the 

initial matching and generalized stable structures. Referring 

back to Figure 7, it is clear that the semantics selected thus 

far are disconnected from one another. We would like to 

incorporate the context of the question that includes and 

connects all of those expressions. We pose this as the 

problem of finding a conflict-free Steiner tree through the 

hypergraph H(S) that connects all the entities seen in our 

selected set of choices from S (in Figure 7, those entities 

would be snow751995, water751940, room752597, etc). 

 The minimum Steiner tree problem in graphs is the 

problem of finding the minimum cost tree in a graph G that 

connects a given subset of its vertices. While there are 

approximation algorithms for the Steiner tree problem e.g. 

[Agrawal et al, 1995], there are no approximation 

algorithms that take into account negative-disjointness 

constraints. We use a simple extension to a 2-approximation 

algorithm for the minimum Steiner tree problem (though we 

make no optimality guarantees) to ensure it produces a non-

conflicting set of semantic choices. While our algorithm is 

not guaranteed to result in the antecedents becoming fully 

connected, it appears to work well in practice. It also allows 

for the straightforward addition of coreference resolution, 

by extending the set of semantics to include coreference 

expressions taking two coreferable entities as arguments. 

The Steiner tree algorithm can connect entities across 

sentences when necessary by using those expressions.  

3.1.4 Storing Cases 

The pairing of choices from S and model conditions will be 

stored in a case library as an evidenceForExpression 
statement as its own case. Figure 8 shows the final EE 

produced for the training question in Figure 4, as well as 

sources for each of the antecedents of the EE. The 

consequent of the EE are the forms required to instantiate 

the model fragment (i.e. its participants and constraints). 

3.2 Testing 

Following training, we have a set of evidenceForExpression 

statements whose antecedents are question semantics and 

whose consequents are activation requirements of model 

fragments (e.g. participants of the correct type and relations 

between them). 

3.2.1 Retrieval and Instantiation 

Given a new scenario, it is first interpreted by EA NLU. The 

complete set of undisambiguated semantics forms a case. 

MAC/FAC then retrieves the five most similar EEs (i.e. the 

ones with the most antecedent overlap) from the case library 

of EEs. The consequents of an EE are inferred by analogical 

inference and bound with the variables from the scenario 

interpretation. 

EEs are abducible in that only a subset of the antecedents 

are required to infer the consequent activation conditions. 

An initial ranking of the EEs is given by the number of 

abduced antecedents. To prevent over-eager application of 

EEs to a given scenario, our technique only considers those 

EEs with at least as many antecedents satisified as abduced. 

3.2.2 Composing EEs  

The ordered EEs are input into a slight variant of the query 

composition algorithm of Crouse et al [2018]. The 

modification excludes conflict counts from being considered 

in the score of an EE, which turns the composition 

(temperatureOfObject room752597 Warm)      - from matching 
(isa water751940 Water)            - from matching 
(isa snow751995 SnowMob)          - from matching 
(isa change2037026 StateChangeEvent)        - from stability analysis 
(isa put2038224 PuttingIntoAState)               - from stability analysis 
(isa room752597 RoomInAConstruction)      - from stability analysis 

Figure 7. Antecedents after matching and stability analysis 

(evidenceForExpression 

  (and (isa snow751995 SolidTangibleThing) 
           (isa water751940 ChemicalCompoundTypeByChemicalSpecies) 
           (substanceOfType snow751995 water751940) 
           (relationAllInstance freezingPoint water751940 abduced-temp12) 
           (qGreaterThan (TemperatureFn snow751995) abduced-temp12) 
  (and (temperatureOfObject room752597 Warm)      - from matching 
           (isa water751940 Water)            - from matching 
           (isa snow751995 SnowMob)           - from matching 
           (isa change2037026 StateChangeEvent)       - from stability analysis 
           (isa put2038224 PuttingIntoAState)               - from stability analysis 
           (isa room752597 RoomInAConstruction)      - from stability analysis 
           ((VerbRelFn be) water2037198 snow751995) - from Steiner tree 
           (fe_effect put2038224 room752597)               - from Steiner tree 
           (fe_Cause put2038224 snow751995)               - from Steiner tree 
           ((IBPFn parts) room752597 change2037026) - from Steiner tree 
           (objectActedOn change2037026 snow751995))) - from Steiner tree 

Figure 8. The final EE (sources of antecedents are to the right) 



 

 

algorithm into a greedier coverage-focused algorithm (i.e. 

an algorithm that looks for EEs covering as many semantic 

choices as possible, without regard to how many semantic 

choices the selected EEs would rule out through choice-set 

constraints). We briefly recap the algorithm here. 

The composition algorithm takes a set of instantiated EEs 

and a set of semantics S to be covered. The antecedents of 

each EE are elements of S, where S is the set of semantic 

choices for the current scenario. The algorithm iteratively 

selects the EE whose antecedents cover as much of S is 

possible, removing semantic choices from S that conflict 

with selected EEs as it goes. When S is empty (because the 

elements of S were either covered by some selected EE or 

conflicted with the antecedents of some selected EE) the 

algorithm returns the consequents of every selected EE. The 

appeal of the algorithm is that it treats the EE selection 

process as a coverage problem, producing the smallest set of 

consequents that reflects as much of the semantics as is 

possible. 

3.2.3 Model Formulation and Question-Answering 

The output of the composition algorithm is a set of 

activation conditions that can be used to instantiate model 

fragments relevant to the scenario at hand. Our technique 

uses this model formulation algorithm to instantiate all 

applicable model fragments and collects the resultant facts 

about the scenario into a set of model facts F. 

 Our method is evaluated on two types of scenario 

questions: standard questions (e.g. those that end in a 

question mark like “What process occurred?”) and fill-in-

the-blank questions (e.g. “When ice melts it ____”). To 

handle standard questions, we first filter out all expressions 

from F that do not have a positive alignment score (like in 

training) with our question semantics. Then, for each answer 

option, the semantics for the answer are matched against F 

using the same matching procedure described in training. 

For fill-in-the-blank questions the process is largely the 

same. For each answer option, the semantics of the question 

and answer are matched against F using the matching 

procedure from training, and the highest scoring answer of 

the question-answer pairs is output as the answer to the 

question. If no models can be instantiated, then no answer 

will be chosen. 

4 Experimental Evaluation and Discussion  

We evaluate our approach on a set of 45 questions from 4th 

and 5th grade elementary science tests. This set of questions 

was extracted by a script that searched across a large set of 

science test questions (collected by the Allen Institute for 

Artificial Intelligence). The questions the script returned had 

keywords associated with the model fragments outlined in 

Crouse and Forbus’ [2016] science test analysis. 

Furthermore, the questions were restricted to those 

involving reasoning about a scenario, not questions 

involving definitions or taxonomies. Future work will 

involve determining all of the phenomena in the elementary 

science tests that can be representable by QR models. 

 The questions our system was designed to handle were 

those only requiring model formulation. Those involving 

more complex QR techniques like qualitative simulation or 

differential qualitative analysis were out of the scope of this 

work. We categorized those questions requiring only model 

formulation as model formulation questions and those 

requiring additional reasoning on top of relevant instantiated 

model fragments generated by model formulation (i.e. all 

others) as model reasoning questions. 

 We evaluated using 5-fold cross validation (i.e. 36 

questions for training, 9 questions for testing per fold). 

Table 1 shows our overall average performance on all 

questions, model formulation questions, and model 

reasoning questions. Random guessing on this dataset would 

lead to 25% correct. 

 The performance gap between model formulation and 

model reasoning questions is quite substantial. This comes 

as no surprise, given that our approach is not yet learning 

how to answer more reasoning-intensive questions during 

training. This gives one immediate avenue for future work, 

which is to extend our approach to learn the reasoning 

needed to answer the more advanced questions through only 

question-answer pairs.  

4 out of 7 errors for model formulation questions were 

due to phrasings outside of the handling of our approach. 

For example, the question, “Which type of force requires 

contact between two objects for one to …” requires one to 

know that “two objects” implies there are two distinct 

objects in the scenario. Our approach only identifies one 

object from that scenario, and thus cannot successfully 

instantiate a model fragment for friction. The remaining 3 

errors were due to inadequate training data, where our 

approach hadn’t seen a scenario similar enough to formulate 

the correct model to answer the question. 

The model reasoning questions gave our approach much 

more difficulty. Apart from requiring more sophisticated 

reasoning techniques, the language of the questions tended 

to be more complex. Accordingly, for 4 out of 19 questions 

our approach found the correct model fragment to use, but 

instantiated it incorrectly. For 6 out of 19 questions the 

wrong model fragment was selected, while in another 6 out 

of 19 questions the correct model fragment was instantiated. 

The unfortunate last source of issues were processes that 

were never seen during training. Our corpus only had two 

Question Type Correct / Total Percent 

All 26 / 45 58% 

Model Formulation 19 / 26 73% 

Model Reasoning 7 / 19 37% 

Table 1. Average Performance 



 

 

questions revolving around fluid displacement, and both of 

those questions were found in the same fold.  

5 Related Work  

Barbella & Forbus [2011] introduced analogical dialogue 

acts (ADAs), which formalize the roles played by individual 

utterances in instructional analogies. Their approach used 

the ADAs recognized from the semantic parse of an 

instructional text to build structured cases that were then 

compared with SME. Their system used inferences from 

these analogies to interpret and answer questions. Our 

approach also uses analogical inferences to construct an 

interpretation of text (scenario model), however our system 

goes a step further in that EEs are learned from natural 

language while ADAs were recognized with manually 

constructed rules. They also used dynamic case construction 

[Mostek et al, 2000] to automatically extended their cases 

with pertinent background facts from the knowledge base, 

which may be a useful technique to incorporate into our 

system to validate activation conditions which may be 

available as stored knowledge. 

Barbella & Forbus [2015] further present a method for 

constructing coherent cases from text which is similar to our 

goal of extracting relavent semantics. One way our 

approaches differ is that our relevence condition is overlap 

with a pre-existing model while theirs finds facts related to a 

seed from the text. Their  approach is complementary to 

ours and could be used to segment a corpus into cases from 

which our approach could build interpretations. 

 Chang [2016] combined natural language understanding, 

spatial reasoning, and analogical reasoning to interpret 

instructional analogies. These analogies could be used to 

learn qualitative knowledge. Of particular relevance to our 

work was the use of visual representations to disambiguate 

natural language. Their work used the CogSketch sketch 

understanding system [Forbus et al, 2011] to  represent 

sketches with the Cyc ontology. EA NLU semantic choice-

sets were disambiguated by selecting those choices that 

were most related to the outputs of the sketch understanding 

system. This could be incorporated naturally into our work 

as part of the ontological features our approach uses during 

the matching step.  

Khashabi et al [2017] introduced the notion of essential 

question terms, which were terms absolutely critical to the 

understanding of a particular question. They showed that 

without those terms, human performance on science test 

questions dropped significantly. This is related to our 

approach which learns the essential components of a 

scenario needed to infer the activation conditions of a 

particular model fragment (EEs). 

Khot et al [2017] introduced a method for answering 

complex, compositional science test questions from OpenIE 

extracted knowledge bases. They posed the problem of 

multiple-choice question-answering as a search for an 

optimal subgraph connecting a question and answer through 

the knowledge base. The types of questions this system was 

designed for were compositional factoid questions, which 

likely makes their system complementary to ours. 

Fan and Porter [2004] introduced Loose-speak, an 

interpreter intended to fix misalignments commonly seen 

between the queries of novice users of a knowledge base 

and the knowledge base being queried. It was equipped with 

a variety of features for determining when an expression in 

the knowledge base was likely the intended expression of 

the user, some of which are similar to the ontological 

alignment features of our work. 

6 Conclusions and Future Work 

We have described an implemented system that adapts a 
domain-general semantic parser to build qualitative scenario 
models. Our system uses these models to answer elementary 
science test questions. Our approach builds on prior work by 
Crouse et al [2018] and uses their EE formalism for cases 
that are retrieved and applied by analogy to adapt the 
parser’s outputs. The primary contribution of this work is a 
novel technique which associates the relevant semantics of a 
scenario to qualitative model fragments and applies these 
associations by analogy to construct a scenario model. This 
approach goes significantly beyond prior work in its ability 
to build models for multi-sentence scenario questions and in 
providing a richer framework for judging ontological 
similarity. 
 There are three clear directions for future work. First, our 
approach only utilized a small number of qualitative models 
and thus it was limited in scope. Future work will use the 
mapping between the core elements of QP theory and 
FrameNet produced in [McFate & Forbus, 2016a] to extract 
qualitative models a la [McFate & Forbus, 2016b] and 
broaden the range of model fragments our system can 
utilize. Second, we will extend the reasoning capabilities of 
our system to handle a larger range of questions. Finally, we 
do not currently generate natural language responses, nor 
natural language explanations for the answers given. 
Generating both would set the stage for teaching and 
correcting the system via interactive dialogue. 
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