
Abstract 

One challenge for building software organisms is to 
support more autonomous, self-directed learning, 
rather than learning from annotated data or blindly 
exploring state spaces.  We present a method for 
learning a simple game given a qualitative model.  
The qualitative model provides partial information 
about how actions and quantities influence each 
other, and which goals trade off with each other, al-
lowing the learner to progressively rule out unpro-
ductive actions based on qualitative state descrip-
tions of the current situation, and to experimentally 
adjust the relative importance of competing goals.  
We show that this amounts to operationalizing a 
qualitative model into a quantitative prescriptive 
model, which can lead to rapid improvement in per-
formance on a simple game. 

1 Introduction 

Any human-like model of learning should account for the role 
of prior knowledge. When we learn a new task, we do not 
start from a blank slate, but rather, expectations and beliefs 
guide actions and explanations to permit learning from far 
fewer trials than is the norm for today's machine learning.  
We refer to this as data efficiency. 

One way that knowledge can guide learning is through self-
directed experimentation.  We pose questions to ourselves 
and take actions to triangulate on ever more accurate models.  
Knowledge about the domain can help pose questions that re-
fine models as well as guide credit assignment.  We argue 
that data efficiency can arise from a more general notion of 
state.  A learned action policy need not map from concrete 
primitive states to ground primitive actions, but may consist 
of abstract states and constraints that map to generalized ac-
tions.  Learning becomes a progressive refinement of states 
and actions that can stop as soon as performance plateaus, 
rather than exhaustively searching through primitive states. 

This paper brings together experimentation and reinforce-
ment learning, using a qualitative model [Forbus, 2019] as 
the prior domain knowledge.  We show how a qualitative 
model can support self-directed experiments at a high level 
by exploring quantitative tradeoffs between competing goals.  
We also show how the same qualitative model can guide 

credit assignment to rule out ineffective action policies. Qual-
itative state representations further serve as antecedent con-
ditions in learned action policy rules. 

Previous work in active learning and experimentation has 
tended to focus on supervised learning of classification tasks 
or domain theory acquisition and refinement. While this can 
result in efficient learning, our focus differs in the prior 
knowledge available to the learner, the means of credit as-
signment, and learned knowledge being an action policy. 

Reinforcement learning tends to focus on a more bottom-
up “model-free” learning, at the cost of many learning trials 
[Sutton and Barto, 2018].  Although our mechanism is also 
unsupervised, it leverages a qualitative domain model to sup-
port efficient learning.  We believe this will ultimately enable 
a continuum of approaches from highly interactive appren-
tice-like learning to fully autonomous experimentation. 

This paper describes a system that learns to play a simple 
game given a qualitative model of the mechanics of that 
game.  Next we describe the domain task, the Human Re-
sources Manager game, followed by how it is played using a 
qualitative model and goal network.  Section 4 presents the 
learning mechanism, including credit assignment, experi-
mentation, the representation of experimental controls and 
learning goals.  Section 5 presents the results of empirical ex-
periments.  Section 6 compares this to related work and sec-
tion 7 presents conclusions. 

2 The Domain Task: HRM 

Human Resources Manager (HRM) is a single-player game 
in which the objective is to manage a small printing company   
for twenty months without driving the company into bank-
ruptcy or ending with a negative cash flow. The player starts 
with $50,000 and a roster of three employees and makes HR 
decisions about hiring, firing, training, promoting and giving 
raises.  Unhappy employees quit and former employees sue 
the company if they were fired improperly.   

HRM was adapted from a 27-year old corporate training 
simulator [Feifer and Hinrichs, 1992].  It is implemented via 
backchaining rules in a form similar to the Game Description 
Language [Genesereth and Thielscher, 2014].  We chose 
HRM because it was simple to implement, has a complex un-
derlying mathematical model, and yet it factors out adversar-
ial and stochastic complexities.  This provides a simple 

How Qualitative Models can Improve Learning by Experimentation 
 
 

Thomas R. Hinrichs and Kenneth D. Forbus 
Department of Computer Science, Northwestern University, Evanston IL 

{t-hinrichs, Forbus}@northwestern.edu 
 



testbed to explore ideas about autonomous experimentation 
by enabling the system to impose experimental controls on 
quantities and actions.  We make no claims for its entertain-
ment or pedagogical value. 

Negotiating tradeoffs is key in this game, as in most strat-
egy games.  Finding an effective compromise between com-
peting demands is an abstract task that is a major constituent 
of learning a strategy.  One of our research goals is to dis-
cover how to acquire such strategic knowledge with the same 
basic mechanism as learning action-level policies. 

There are three main tradeoffs in HRM: First, the goal to 
reduce labor costs with a low headcount competes with the 
goal to maximize income.  Second, the goal to keep employ-
ees happy with high salaries competes with keeping salaries 
low to minimize labor costs.  Third, the goal to invest in em-
ployee training competes with keeping payroll costs down.  
Discovering quantitative compromises for these goals can be 
thought of as turning a qualitative model into a partly quanti-
tative model. 

3 The Game Interpreter 

Before describing the learning mechanism, it helps to first 
understand how the game player works.  It first sets up the 
initial state consisting of quantitative properties and relations 
of the simulated company.  On each turn it queries for legal 
actions, selects one and applies it, and computes the next 
state.  Most actions are domain-level primitives that can be 

applied to individual employees, such as giving a raise or 
evaluating them.  These have immediate effects, so we refer 
to them as synchronic actions.  There is a special diachronic 
operator, doNextTurn, that advances the simulated time by 
one month.  This allows the player to take any number of ac-
tions within a turn and then explicitly advance the time.  This 
happens automatically when there are no more viable actions 
to take in a turn.  When a game is over, the score is computed. 

Selecting good actions is what the system must learn.  In-
stead of starting with a blank slate, as most RL systems do, it 
has a qualitative model of the quantities in the game, the 
graph of their influences, and the qualitative effects of actions 
on quantities.  For example, giving an employee a raise in-
creases their salary, which in turn positively influences the 
employee's attitude and the company's labor costs.  The learn-
ing problem is to figure out how to balance these competing 
factors and to identify conditions for taking actions. 

The qualitative model was produced manually by abstract-
ing the equations in the game’s rules.  Prior work has shown 
the feasibility of learning a qualitative model from demon-
stration [Hinrichs and Forbus 2012], but this was not the cur-
rent research focus.  The HRM model has 37 reified quantity 
types and 53 influences between quantities, actions, and 
events.  A quantity type may be instantiated for each em-
ployee or for the company itself. Because the qualitative 
model ultimately connects intermediate quantities like salary 
to the top-level game goal, it is possible to automatically 

 

Figure 1: Goal network for HRM computed from the qualitative model 

 



translate the influences into subgoals of the game goal.  A 
static analysis routine walks the qualitative influences to reify 
goals, as described in [Hinrichs and Forbus, 2016].  Here the 
goal types produced are all of the form maximize (or mini-
mize) some quantity type.  Static analysis during construction 
detects tradeoffs by identifying quantity types that both posi-
tively and negatively influence the same quantity.  Figure 1 
shows the goal network for HRM, with oval nodes indicating 
goals involved in tradeoffs.  

A goal is operational if there is a qualitative influence be-
tween some primitive action and the goal quantity, e.g. max-
imizing an employee’s salary is operational because there is 
a qualitative dependence of employee salary on the action 
doGiveRaise.  Higher level goals, such as maximizing em-
ployees' attitudes, may be active, but are not operational be-
cause there is no direct control over attitudes. 

The reified goal network also keeps track of the relative 
activation of goals throughout the game.  The activation of a 
goal estimates its importance and thereby the proportional al-
location of effort expended in pursuing it.  Conceptually, if 
the top goal to win the game has 100% activation, then that 
activation is subdivided among its subgoals.  By default, ac-
tivation is allocated evenly, so that it serves as an informal 
proxy for importance relative to the top goal. Also, goal acti-
vation can be explicitly set by a meta-level planning action, 
used to experimentally explore tradeoffs. 

The effect of goal activation is to control the likelihood of 
picking actions that serve one goal over another.  For goals 
pertaining to a single entity, such as the company, this results 
in stochastically picking an action or not, whereas for goals 
that apply to many entities, it selects a subset of entities to act 
on.  For example, if the goal of maximizing salaries is only 
20%, then only 20% of employees should receive raises.  We 
refer to this as an action budget for a type-level goal. The 
action budget ensures that no single action type monopolizes 
available resources.  Although it still allows raises to be given 
every turn, the action policy refinement learns to suppress 
this when the actions have no positive benefit on higher-level 
goals, as described later. 

Algorithm 1 outlines the action selection process.  When 
the game player chooses an action to take, it steps through 
active, operational domain goals in decreasing order of acti-
vation.  It identifies action predicates that influence the goal 

quantity and queries for ground legal actions.  If there are ac-
tion policies or experimental conditions on the action predi-
cate, it filters the actions and selects the action whose entity 
argument is the most underperforming with respect to the 
goal (hence, argMin with respect to goal_performance).  For 
example, only the most underpaid employees should receive 
raises.  Finally, it takes the action in the game and records the 
quantity changes as it computes the next state.  Any expecta-
tion violations here are passed to credit assignment to con-
struct or refine an action policy for the action predicate. 

4 Learning Mechanism 

Our objective is to learn abstract lessons autonomously with 
as few trials as possible, using a qualitative model to guide 
experimentation strategically, and enabling credit assignment 
to extract more powerful lessons from each trial. 

4.1 Credit Assignment 

Drawing more general conclusions from each trial promotes 
data-efficiency in learning.  When the learner loses a game, 
it looks back in time to the most recent action that set it up to 
lose the game, using the qualitative model to reconstruct the 
causal trail back to poor decisions.  This post-mortem analy-
sis identifies the quantities contributing to the loss.  For 
HRM, this is the company’s capital reaching zero.  It traces 
backward, looking for a change in the derivative of capital 
until it reaches the turn in which some action influenced the 
company’s capital.  It searches the indirect influences on cap-
ital until it finds an action that negatively impacted the profit 
rate, such as giving a raise or firing somebody. It posts learn-
ing goals to learn the conditions under which action primi-
tives should be applied, creates or refines action policies, and 
schedules follow-up experiments for further refinements. 

4.2 Generalization 

To prevent the same mistake from being made in similar cir-
cumstances, an action policy is constructed for that action.  
Whereas an action policy in most reinforcement learners 
maps directly from states to utilities of actions, our learner 
instead acquires and progressively generalizes constraints on 
actions.  In particular, an action policy rule relates a qualita-
tive state characterizing the condition with an action specifi-
cation that may itself be lifted or generalized.  For example, 
a policy might prohibit promoting Alice when her perfor-
mance is less than 20 and her attitude is less than 50. Such a 
rule would look like:  
(controlConditionLowerBound  

 (LearnCondForActionFn doHRMPromote)  

 (MostSpecificConditionFn doHRMPromote) 

 (ruleOut (doHRMPromote Alice))) 

where first argument is the learning goal, the second argu-
ment is a functional term denoting the name of a model frag-
ment that defines a qualitative state, and the third term is the 
action specification.  The model fragment, in turn, relates the 
quantity conditions: 

Algorithm 1 Action Selection 

Input: domain goals 
Output: execution of actions in simulated world 
1: foreach domain goal in decr. order of activation do 
2:   while meets_action_budget(goal) do 
3:  legal ← legal_actions(goal) 
4:  acceptable ← filter_by_action_policy(legal) 
5:  action ← argMin(goal_perf (entity(a), goal)) 
6:  Perform action. 
8:  record before/after quantity changes 
9:   refine action policy 
10:   end while 
10: end foreach 



(and (< (performance Alice) 20) 

     (< (attitude Alice) 50))1 

As new failure or success instances are encountered, the 
ranges on quantities are extended and the arguments to the 
action specifications are lifted as necessary. This representa-
tion was adopted to support experimental controls and has the 
benefit of being relatively concise and explainable. 
4.3 Autonomous Experimentation 
Autonomous experimentation is the process by which the 
learner proposes and executes its own experiments to reduce 
uncertainty.  There are two reasons for autonomous experi-
mentation: to strategically curate experience and to simplify 
credit assignment.  We address the former by systematically 
varying experimental parameters and the latter by controlling 
other exogenous parameters to restrict possible causes of 
change.  In addition, experiments are organized around ex-
plicit declarative learning goals as a way to be more strategic 
about the exploration process.  These learning goals specify 
two different kinds of experiments that are supported: action 
experiments and tradeoff experiments.   

An action experiment is created when a postmortem traces 
a failure to an action that either directly caused a game loss 
or caused a trend that ultimately led to the loss.  The agent 
posts an action-condition learning goal to refine the condi-
tions under which the action is advisable.  It then schedules 
experiments to refine the conditions by exploring the region 

                                                 
1 Simplified syntax for presentation purposes 

between the most specific state to rule out and the most gen-
eral.  In other words, it reduces the uncertainty by driving the 
qualitative state conditions in a manner similar to candidate 
elimination in Version Spaces [Mitchell et al., 1983]. 

Tradeoff experiments, on the other hand, explore higher-
level decisions by controlling the relative activations of com-
peting goals.  If the baseline allocations for competing goals 
is 50%-50%, then a tradeoff learning goal will spawn two ex-
periments that set activations to 75%-25% and 25%-75% re-
spectively.  Subsequent experiments further extrapolate or in-
terpolate the best performing allocation so far.  These tradeoff 
experiments further simplify credit assignment by suppress-
ing all actions that cannot influence either of the competing 
goals.  Consequently, this is an offline policy. 

5 Evaluation  

We ran learning trials under the two experimental conditions: 
action learning and tradeoff learning.  In the first, we tested 
action learning by having it play autonomously through pure 
trial and error while honoring the goals and qualitative model.  
It learned to rule out actions that failed to have an immediate 
benefit as predicted by the qualitative model.  It also learned 
from post-mortem analysis to rule out actions that had a long-
term negative effect leading to a loss of the game.  Initially, 
performance was spectacularly bad.  Because every action in 

 

 

Figure 2: Action learning trials 1-3 & 10.  The action abbreviation key is:  

Evaluate, Promote, Hire, Fire, Raise, Train, Lawsuit, Overpaying, Bankruptcy 
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the game serves some goal, it micromanaged and tried to pur-
sue every action as often as possible.  In some cases, it tried 
firing everybody in the first few turns, leaving the fixed costs 
to drive the company into bankruptcy shortly afterward.    

Figure 2 shows the results of the first three trials and the 
tenth trial.  Each chart shows the progression of the company-
wide capital, income, and production cost over time.  While 
the first trial ended with bankruptcy in turn 5, by the second 
trial, it had learned an action policy that ruled out firing em-
ployees in most conditions and had discovered that hiring 
more employees was the key to surviving past turn 20.  Trials 
3 through 10 continue to improve the final outcome by in-
creasing the profitability of the company until it banks 
$240,000 by turn 20 in trial 10.  

In addition to performance curves, the charts also present 
the actual sequence of actions and events in the trial.  We can 
see from this that it quickly stopped firing employees and 
learned to hire sooner in the game.  Moreover, as it refined 

the action policies, it learned to play with a lighter touch, such 
that by trial 10, it achieved better performance with far fewer 
actions consisting of hiring additional employees, giving a 
few raises and evaluations, one promotion and one training 
course.  Thus the qualitative goal network is refined by the 
action policy, which provides quantitative constraints on 
when it is effective to take particular actions. HRM is deter-
ministic and the game objective is not especially difficult to 
achieve.  In fact, under the baseline conditions of taking no 
actions at all, the company only fails after 19 turns.  However, 
the point of these experiments is to show how quickly it is 
able to improve given fairly minimal background knowledge. 

Figure 3 shows the results of tradeoff learning trials.  Here, 
because tradeoffs can be enumerated ahead of time, an initial 
set of six trials was scheduled to extrapolate tradeoff ratios in 
either direction from the baseline tradeoff allocation.  In the 
first two trials, it explores the salary tradeoff by first setting 
the activation of the goal to minimize salaries at 50% vs 0% 

 

Figure 3: Tradeoff learning trials 
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for maximizing salaries.  Of course, since there is no action 
to reduce salaries, this translates to never giving a raise.  
Moreover, since all other actions are suppressed in this of-
fline policy, trial 1 is equivalent to the baseline condition of 
taking no actions at all.   

The next pair of trials explored the tradeoff between reduc-
ing labor costs by omitting training (Trial 3) and increasing 
employee competence by training employees (Trial 4).  As 
with salary, there is no "untrain" action, so by not training 
anyone and suppressing all other actions, Trial 3 is equivalent 
to the baseline condition.  Trial 4 did train an employee in the 
first turn, but the only evidence of that is a small spike in pro-
duction cost, causing it to lose two turns earlier.   

The final pair of trials explored the tradeoff between hav-
ing fewer employees to reduce labor costs (Trial 5) and hav-
ing more employees to increase production (Trial 6).  The ef-
fect of reducing headcount by firing approximately half the 
staff was swift and severe: labor costs dropped, but fixed 
costs stayed the same causing profits to nosedive leading to 
bankruptcy in turn 6.  Finally, in Trial 6, by hiring two addi-
tional employees, income (barely) exceeds production cost 
and the company remains profitable. 

Ultimately, the tradeoff trials are merely suggestive of one 
way for a learning agent to experiment at a more abstract 
level than individual primitive operators.  As currently imple-
mented, the relative goal activations of competing goals are a 
coarse mechanism for controlling behavior and further re-
finement of the tradeoff ratios would not appreciably improve 
performance in this domain.  Despite this, it learned to win in 
six trials, which is data efficient by most standards. 

6 Related Work 

The approach described here builds on ideas from several ar-
eas, most notably autonomous experimentation, reinforce-
ment learning, and qualitative modeling.   

Learning by experimentation requires a learner to design 
and run experiments to validate or refute its own hypotheses.  
Part of this involves imposing experimental controls to mini-
mize conflating factors and to simplify credit assignment.  
Important early work in experimentation includes the opera-
tor refinement method [Gil, 1994] which acquired domain 
knowledge about operator applicability.  It used experimen-
tation to identify and refine missing pre- and post-conditions 
of planning operators that led to anomalous outcomes in ex-
ecution.  Like operator refinement, our system runs experi-
ments to refine the conditions under which an operator can or 
should be applied.  Our approach differs by focusing on learn-
ing the advisability of different actions in different situations 
in order to optimize behavior.    A qualitative domain model 
guides credit assignment and concisely encodes experimental 
controls.  The inequalities in action policy rules effectively 
turn experimental design into a search in a parametric space. 

Like most reinforcement learners, our system performs un-
supervised learning. While an important topic in RL is when 
to explore vs exploit learned knowledge [Kearns and Singh 

2002; Brafman and Tenenholtz, 2002], we focus instead on 
experimentation that determines what to explore. 

Reinforcement learning typically requires hundreds to 
thousands of trials to learn even simple behaviors because it 
exhaustively explores the state space of the system.  Hierar-
chical reinforcement learning addresses such high dimen-
sionality scaling problems using temporal abstraction and hi-
erarchical control [Barto and Mahadevan, 2003]. Function 
approximation accommodates states that take continuous val-
ues [Santamaría et al.,, 1997].  Using qualitative states to en-
code action policies could be considered a kind of 
knowledge-derived function approximation.  

 In cognitive robotics, [Janež et al., (2013)] used experi-
mentation to learn a qualitative model of robot actions to sup-
port prediction and explanation of effects.  Part of their strat-
egy for learning faster was to experiment with more complex 
environments in order to encounter a greater diversity of ob-
jects more quickly.  In some respect, that is the exact opposite 
of what our system does, because one of the benefits of ex-
perimentation is the ability to simplify credit assignment 
through controlling and simplifying the environment. 

Šoberl et al. (2017) explored the use of qualitative models 
for driving behavior in a simulated robot.  Their qualitative 
constraints serve a similar purpose to our qualitative action 
policies, except that they are not revised because the system 
does not learn. 

7 Conclusions 

A qualitative model is one kind of prior domain knowledge 
that can guide learning.  It is itself a form of declarative, 
learnable knowledge that can serve multiple roles in learning 
to play a game or control a system of some kind.  One of those 
roles is to facilitate experimentation.  Experimentation re-
duces ambiguity in credit assignment by imposing controls 
on what will be systematically varied and what will be held 
constant.  We have presented two ways to do this: by gener-
alizing or specializing qualitative state conditions on action 
selection and by manipulating the tradeoff ratios of activa-
tions of competing goals.  In both cases, the result of learning 
is to operationalize the qualitative model by learning more 
quantitative policies for pursuing actions or goals. 

A major property of the learning technique described here 
is that it is data-efficient.  It attains good (if not optimal) per-
formance in under ten trials.  It achieves this by starting with 
a qualitative domain model and ruling out vast portions of the 
potential state space whenever an action fails to provide a 
predicted performance benefit.  It does not need to wait until 
the end of the game to receive an extrinsic reward, since the 
model and its derived goal network provide an immediate re-
ward signal via an audit trail from any action up to the top 
level goal.  We believe that the resulting data efficiency is an 
important property of any learning system that purports to be-
have in a manner remotely like human intelligence. 
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