
Proceedings of AAAI-94, pp 1175-1182, August, 1994.

Using qualitative physics to build articulate software
 for thermodynamics education

Kenneth D. Forbus
Qualitative Reasoning Group

The Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue, Evanston, IL, 60201 USA
forbus@ils.nwu.edu

Peter B. Whalley
Department of Engineering Science

Oxford University
Parks Road, Oxford, OX13PJ, UK

whalley@vax.ox.ac.uk

Abstract
 One of the original motivations for research in qualitative

physics was the development of intelligent tutoring systems
and learning environments for physical domains and complex
systems. This paper demonstrates how a synergistic
combination of qualitative physics and other AI techniques can
be used to create an intelligent learning environment for
students learning to analyze and design thermodynamic cycles.
Pedagogically this problem is important because
thermodynamic cycles express the key properties of systems
which interconvert work and heat, such as power plants,
propulsion systems, refrigerators, and heat pumps, and the
study of thermodynamic cycles occupies a major portion of an
engineering student’s training in thermodynamics. This paper
describes CyclePad, a fully implemented learning environment
which captures a substantial fraction of a thermodynamics
textbook’s knowledge and is designed to scaffold students who
are learning the principles of such cycles. We analyze the
combination of ideas that made CyclePad possible, comment on
some lessons learned about the utility of various techniques,
and describe our plans for classroom experimentation.
1. Introduction

One of the central motivations for research into
qualitative physics has been its potential for the
construction of intelligent tutoring systems and learning
environments. By providing computational accounts of
human reasoning about the physical world, ranging from
what the person on the street knows to the extensive
expertise of scientists and engineers, qualitative physics
should provide representation languages and reasoning
techniques that can be applied to helping people make
the transition from novice to expert reasoning about
physical systems. Indeed, some of the earliest work in
the field was directly aimed at instructional problems
(e.g., [1 ,2]). Over the last decade there have been
several important efforts aimed at using qualitative
physics to help teach diagnosis, troubleshooting, and
operation of complex physical systems (e.g., [3 ,4 ,5 ,6]),
but little effort has been focused on using qualitative
physics in classroom settings, to help undergraduates
learn principles of a domain (a rare exception is [7]).

In this paper we describe a system, called CyclePad,
that has been built to help engineering undergraduates
appreciate and therefore learn important principles of
thermodynamics. CyclePad provides a conceptual CAD
environment where students can design and analyze
power plants, refrigerators, and other thermodynamic
cycles. It relies on a synergistic combination of existing
AI techniques: compositional modeling to represent and
reason with modeling assumptions, qualitative
representations to express the intuitive knowledge of
physics needed to detect impossible designs, truth-
maintenance to provide the basis for explanations, and
constraint reasoning and propagation to provide efficient
mathematical reasoning. It incorporates a substantial
fraction of the knowledge in a typical engineering
thermodynamics textbook [8], and has been tested on
over two dozen examples of problems involving steady-
state, steady flow systems where numerical answers or
single-parameter sensitivity analyses are required.

Section 2 describes the pedagogical problems that
motivated the design of CyclePad, including a brief
overview of what thermodynamic cycles are and how
they work. Section 3 demonstrates CyclePad’s operation
from a user’s perspective. How CyclePad works is the
subject of Section 4, with Section 5 summarizing the
lessons we have learned so far in building the system.
Section 6 outlines our plans for future work.
2. The task: Teaching the design of
thermodynamic cycles

A thermodynamic cycle is a system within which a
working fluid (or fluids) undergoes a series of
transformations in order to process energy. Every power
plant and every engine is a thermodynamic cycle.
Refrigerators and heat pumps are also examples of
thermodynamic cycles. Thermodynamic cycles play
much the same role for engineering thermodynamics as
electronic circuits do for electrical engineering: A small
library of parts (in this case, compressors, turbines,
pumps, heat exchangers, and so forth) are combined into
networks, thus potentially generating an unlimited set of
designs for any given problem. (Practically, cycles range

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

from four components, in the simplest cases, to networks
consisting of dozens of components.) One source of the
complexity of cycle analysis stems from the complex
nature of liquids and gases: Subtle interactions between
their properties must be harnessed in order to improve
designs. Cycle analysis answers questions such as the
overall efficiency of a system, how much heat or work is
consumed or produced, and what operating parameters
(e.g., temperatures and pressures) are required of its
components. An important activity in designing cycles
(or indeed in many engineering design problems) is
performing sensitivity analyses, to understand how
choices for properties of the components and operating
points of a cycle affect its global properties.

To illustrate, consider the sequence of power plant
designs in Figure 1. Figure 1(a) shows a simple Rankine
cycle, which pumps a working fluid (as liquid water) into
a boiler to produce steam. In the turbine the high-
pressure steam expands, thus performing work. Heat is
extracted from the steam in the condenser so that the
working fluid is again water. Finally, this water is
pumped into the boiler (which requires the pump to
absorb work) thus beginning the whole cycle again.
These processes happen continuously in steady flow, in
every part of the system. As it happens, this cycle is not
very efficient. Raising the temperature of the boiler
increases efficiency, but due to material properties of the
components, there are upper bounds on operating

pressures and temperatures. Figure 1(b) shows a more
efficient design, which uses a second turbine to extract
more energy from the steam. The purpose of the reheater
is to ensure that the steam does not become “wet”, i.e., to
begin to condense, because water droplets moving at
high speed may damage a turbine. The extra energy
required to reheat the steam is more than balanced by the
additional work gained from the second turbine. One
can do even better, however. Figure 1(c) shows a
regenerative feedwater cycle where some of the steam
from the outlet of the high-pressure turbine is routed
back to the water feeding the boiler. The boiler then is
adding heat to water that is starting at a higher
temperature, which increases efficiency.

The analysis and design of thermodynamic cycles is
the major task which drives engineering
thermodynamics, aside from applications to chemistry.
In thermodynamics education for engineers, cycle
analysis and design generally appears towards the end of
their first semester, or is even delayed to a second course,
since understanding cycles requires a broad and deep
understanding of the fundamentals of thermodynamics.
Even the most introductory engineering thermodynamics
textbooks tend to devote several chapters to cycle
analysis, and in more advanced books the fraction
devoted to cycles rises sharply. Indeed, some textbooks
focus exclusively on cycle analysis (e.g., [9]). Aside
from their intrinsic interest, the conceptual design of

Figure 1: Sequence of conceptual designs for a power plant

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

thermodynamic cycles provides a highly motivating
context for students to learn fundamental principles more
deeply than they would otherwise.

Q: Why is Nu_thermal(CYCLE) = 46%?
A: Nu_thermal(CYCLE) = 46%
 was found by using
 Nu_thermal(CYCLE) =
 net_work(CYCLE)/Q_in(CYCLE)
 on
 Q_in(CYCLE) = 4069.555 kW
 net_work(CYCLE) = 1872.219 kW

Q: Why is net_work(CYCLE) = 1872.219 kW?
A: net_work(CYCLE) = 1872.219 kW
 was found by using
 net_work(CYCLE) =
 work_in(CYCLE)+work_out(CYCLE)
 on
 work_in(CYCLE) = -15.68446 kW
 work_out(CYCLE) = 1887.903 kW

Q: Why is work_out(CYCLE) = 1887.903 kW?
A: work_out(CYCLE) = 1887.903 kW
 was found by using
 work_out(CYCLE) =
 work(TURBINE2)+work(TURBINE1)
 on
 work(TURBINE2) = 1372.131 kW
 work(TURBINE1) = 515.7723 kW

Q: Why does work_out(CYCLE) =
 work(TURBINE2)+work(TURBINE1) hold?
A: work_out(CYCLE) =
 work(TURBINE2)+work(TURBINE1)
 because we assumed:
 CYCLE is a thermodynamic cycle
 the work-flows-out of CYCLE consist
 of {work(TURBINE2),work(TURBINE1)}

Q: How has TURBINE1 works isentropicaly
 been used?
A: TURBINE1 works isentropically
 was used to derive
 TURBINE1 works adiabaticaly
 T(S3) = Tout_i(TURBINE1)
 s(S2) = s(S3)

Figure 2: A CyclePad hypertext dialog

A variety of problems arise when teaching students
how to design and analyze thermodynamic cycles:1 (1)
Students tend to get bogged down in the mechanics of
solving equations and carrying out routine calculations.
This leads them to avoid exploring multiple design
alternatives and to avoid carrying out trade-off studies
(e.g., seeing how efficiency varies as a function of
turbine efficiency versus how it varies as a function of

1 These observations are based on the experience of the

second author, who teaches engineering thermodynamics
to undergraduates.

boiler outlet temperature). Yet without making such
comparative studies, many opportunities for learning are
lost. (2) Students often have trouble thinking about
what modeling assumptions they need to make, such as
assuming that a heater operates isobarically, leading
them to get stuck when analyzing a design. (3) Students
typically don’t challenge their choices of parameters to
see if their design is physically possible (e.g., that their
design does not require a pump that produces rather than
consumes work).

CyclePad was designed specifically to help students
learn engineering thermodynamics by providing an
intelligent learning environment that handles routine
calculations, facilitates sensitivity analyses, helps
students keep track of modeling assumptions, and detects
physically impossible designs.

3. Overview of CyclePad
CyclePad can be viewed as a CAD system for the

conceptual design of thermodynamic cycles, although it
provides substantially more explanation capabilities than
existing CAD software. CyclePad performs steady state
analyses of steady-flow thermodynamic cycles. The
restriction to steady-state is standard for this kind of
analysis, since issues of how to start up and shut down
the plant, or how easy it will be to monitor, maintain, or
troubleshoot are issues of concern only after the basic
design has been shown to be sound with respect to the
goals for it (e.g., amount of work produced, efficiency,
etc.). The restriction to steady-flow systems means that
CyclePad cannot currently be used to analyze internal
combustion engines, such as Otto or Diesel cycles.
Although we plan to extend CyclePad to analyze such
systems, steady flow cycles constitute the majority of the
cycle-related material taught to engineering students.
(For example, in [8] four out of five chapters on cycles
concern steady flow cycles, in [9] it is 9 out of 10
chapters, and [10] focuses only on steady-flow systems.)

When a user starts up CyclePad, they find a menu of
component types (e.g., turbine, compressor, pump,
heater, cooler, heat exchanger, throttle, splitter, mixer)
that can be used in their design. Components are
connected together by stuffs, which represent the
properties of the working fluid at that point in the
system. (Stuffs serve the same role as nodes in electronic
circuits.) The interface helps the user put together a
design by highlighting what parts remain unconnected
and providing simple critiques of the structure. Once the
structural description of the cycle is finished (e.g., there
are no dangling connections or stuffs), CyclePad allows
the user to enter an analysis mode, where the particular
properties of the system, such as the choice of working

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

fluid, the values of specific numerical parameters, and
modeling assumptions can be entered.

CyclePad accepts information incrementally, deriving
from each user assumption as many consequences as it
can. At any point questions can be asked, by clicking on
a displayed item to obtain the set of questions (or
commands) that make sense for it. In addition to
numerical parameters and structural information, all
modeling assumptions made about a component are
displayed with it, and clicking on a component shows the
modeling assumptions that can legitimately be made
about that component, given what is known about the
system so far. The questions and answers are displayed
in English, and include links back into the explanation
system, thus providing an incrementally generated
hypertext. Figure 2 illustrates.

In addition to numerical assumptions, selecting a
component provides commands for making or retracting
modeling assumptions concerning that component. For
example, clicking on a new turbine yields a menu of
commands which offers the options of assuming the
turbine is adiabatic or isentropic. Such modeling
assumptions can introduce new constraints which may
help carry an analysis further and new parameters (e.g.,
the efficiency of the turbine) that must be set.

When CyclePad uncovers a contradiction, it changes
the interface to provide tools to resolve the problem by
presenting the source of the contradiction (e.g., an
impossible fact becoming believed, or conflicting values
for a numerical parameter) and the set of assumptions
underlying that contradiction. The hypertext dialog
facilities can be used with this display to figure out which
assumption(s) are dubious and change them accordingly.

We have tested CyclePad on over two dozen examples
to date, ranging from simple ideal gas problems to the
analysis of a combined gas turbine/steam Rankine cycle
system. We believe that the current version of CyclePad
can solve all of the problems in [8] concerning steady-
state analyses of steady-flow cycles that require
numerical answers or sensitivity analyses involving a
single parameter. (We are continuing to test it on new
examples, drawn from other textbooks as well.)
CyclePad is very efficient. The combined gas
turbine/steam Rankine cycle is the most complex system
in [8], consisting of ten components. Good students take
between 20 minutes and one hour to solve this problem.
CyclePad does somewhat more work in analyzing this
problem than a good student would, instantiating 219
equations involving 362 parameters, whereas a solution
can be found using only 52 equations. However,
CyclePad is still faster, taking just over two minutes on a
workstation, versus just over ten minutes on a
PowerBook 165c. We believe that the combination of
the speed at which CyclePad carries out the routine

calculations, its explanation facilities, and its
consistency-checking facilities, will make it a valuable
tool for students learning thermodynamics.

4. How CyclePad works
The overall structure of CyclePad was inspired in part

by EL [11], an experimental system for DC and AC
analysis of analog electronic circuits. EL was one of the
first systems to use constraint propagation and
dependency networks to organize its reasoning, and
introduced the idea of dependency-directed backtracking.
In this section we see how CyclePad exploits the
advances made by the field since EL, by examining each
of the AI ideas that contributes to CyclePad’s operation,
and the reasons for these particular design choices.

4.1 The role of compositional modeling
Compositional modeling [12 , 13 , 14] provides

formal representation and reasoning techniques for
formulating and reasoning about models. Knowledge
about a domain is organized as collections of model
fragments, organized by modeling assumptions and the
ontology of the domain. Formulating a model for a
specific problem consists of instantiating fragments from
the domain theory, taking into account the kinds of tasks
the model is to be used for.

As noted previously, steady-state analyses are required
for the conceptual design of thermodynamic cycles. By
restricting ourselves to steady-flow systems, it is also the
case that the process structure (i.e., the collection of
physical processes acting in each component) is fixed for
all time. These restrictions allow us to organize the
domain theory around the components which comprise a
cycle and the properties of the working fluid at particular
locations (i.e., the connections between components).

The modeling language used in CyclePad is similar to
other implementations of compositional modeling. For
example, Figure 3 shows part of CyclePad’s model of a
heater. CyclePad’s knowledge base consists of 29
conceptual entities, 5 physical processes, 9 assumption
classes, 98 equations, 40 pattern-directed rules and 41
background facts about thermodynamics.

Modeling assumptions are organized into assumption
classes [15 , 13]. Assumption classes are always
associated with particular classes of components. The
relevance of one assumption class can depend on the
particular choices made for another assumption class.
For example, it only makes sense to consider whether a
compressor is isentropic if it is already known (or
assumed) to be adiabatic.

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

4.2 The role of constraint reasoning and propagation

A design is not finished until numerical values have
been chosen for its parameters. This is one reason why
the overwhelming majority of thermodynamics textbook
problems require numerical answers.2 This fact, plus
the relative simplicity of the equations involved, has
meant that constraint propagation has sufficed for
CyclePad.

2 In a typical textbook we surveyed, 90% of the exercises

required numerical answers.

In compiling CyclePad’s knowledge base, equations
are automatically converted into antecedent constraint
rules that propose values for the nth variable in an
equation whenever the other n-1 variables are known.
Redundant equations are introduced when needed to
overcome simultaneities. This automatic translation
simplifies development. Equations in their original form
are still represented in the knowledge base, however, and
are used in two ways. First, they are part of the
dependency structure for any results calculated via
constraint propagation, for explanatory accuracy.
Second, they can be inspected via the query system, so
that students can find out what equations mention a
specific parameter, and what equations might be used to
calculate a desired value.

Property tables comprise a critical source of
information for CyclePad. Property tables are woven into
the constraint propagator via pattern-directed rules,
operating under the same protocol as the rules compiled
for equations. Due to the inherent loss of accuracy in
interpolation, it is important, unlike equations, to avoid
using tables in every logically possible fashion. Given a
superheated vapour, for instance, knowing the pressure
and temperature suffice to determine everything else
(e.g., the specific enthalpy, specific entropy, etc.). If one
redundantly computes from, say the specific enthalpy and
specific entropy what the pressure and temperature will
be, it is very likely that the newly estimated values will
trigger a contradiction, given the accumulated
inaccuracies in the interpolation process. Consequently,
an important design choice in implementing tables is
selecting which directions of access are likely to prove
most productive for the kinds of analyses being made.

4.3 The role of qualitative physics
In CyclePad qualitative physics provides the medium

for representing constraints on what is physically
possible. Occurrences of physical processes inside
components are explicitly represented. Each process
occurrence includes ordinal constraints that are tested
against numerical values by CyclePad’s constraint
propagation mechanism. Figure 4 shows a sample of
what CyclePad knows about physical processes.

(defEntity (Abstract-hx ?self ?in
 ?out)
 (thermodynamic-stuff ?in)
 (thermodynamic-stuff ?out)
 (total-fluid-flow ?in ?out)
 (== (mass-flow ?in)
 (mass-flow ?out))
 (parameter (mass-flow ?self))
 (parameter (Q ?self))
 (parameter (spec-Q ?self))
 (heat-source (heat-source ?self))
 ((parts :cycle) has-member ?self)
 (?self part-names (in out))
 (?self IN ?in)(?in IN-OF ?self)
 ?self out ?out)(?out out-of

?self))

(defAssumptionClass
 ((abstract-Hx ?hx ?in ?out))
 (isobaric ?hx)
 (:not (isobaric ?hx)))

(defEntity (Heater ?self ?in ?out)
 (abstract-Hx ?self ?in ?out)
 (?self instance-of heater)
 (heat-flow (heat-source ?self)
 (heat-source ?self)

 ?in ?out)
 ((heat-flows-in :cycle)
 has-member (Q ?self))
 (> (Q ?self) 0.0))

(defEquation Hx-law
 ((Abstract-Hx ?hx ?in ?out))
 (:= (spec-h ?out)
 (+ (spec-h ?in) (spec-Q

?hx))))

(defEquation spec-Q-definition
 ((Abstract-Hx ?hx ?in ?out))
 (:= (spec-Q ?hx)
 (/ (Q ?hx) (mass-flow ?hx))))

Figure 3: A sample of CyclePad’s knowledge base

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

4.4 The role of truth maintenance
We used an LTMS [16] in CyclePad because it offered

the best tradeoff between inferential power and economy.
(In fact, CyclePad’s inference engine is the LTRE system
from [17] We ruled out a JTMS because Horn clauses
are too clumsy for many of CyclePad’s inferential needs,
including biconditionals (used in definitional
consequences of modeling assumptions, e.g., a
compressor is operating isentropically exactly when its
isentropic efficiency is 1.0) and TAXONOMY constraints
[18] (used in implementing assumption classes). The
ability of an ATMS to provide rapid switching between
very different contexts was not required: While frequent
additions and retractions of assumptions are made in
carrying out an analysis, typically these changes are a
small fraction of the working set of assumptions in force.

A critical role for the LTMS dependency network is as
an input for explanation generation. Explanations in
CyclePad are in terms of structured explanations, an
abstract layer between the reasoning system and the
interface that casts the consequences of the inference
system in terms relevant to the user. This includes
summarization (e.g., [19]), as in removing any reference
to implementation-dependent information such as the
constraint propagation mechanism from an argument. It
also includes making explicit implicit dependencies, such
as the variables whose values must be known before the
constraint rule implementing a particular equation will
fire when explaining what assumptions might lead to
more progress.

5. Lessons learned from developing CyclePad
CyclePad represents one of the first attempts to apply

ideas developed by the qualitative physics community to
a real application. While CyclePad has not yet been
fielded, we believe that we have already learned several
generally useful lessons in building it.

5.1 Compositional modeling scales up
Previous uses of compositional modeling have either

focused on large but purely qualitative domain theories,
or small quantitative theories. CyclePad demonstrates
that the ideas of compositional modeling can be used to
organize a substantial body of quantitative and
qualitative knowledge so that it can be used effectively.

Automatic model formulation, which typically has
been the focus of previous compositional modeling work,
is less relevant for this application. Nevertheless, the
mechanisms of assumption classes and logical
constraints between modeling assumptions provide a
valuable service in helping the user organize an analysis.
In fact, one of the skills being taught in using CyclePad
is model formulation. A boiler, for instance, is typically
approximated as a heater for the purposes of cycle
analysis. A flash chamber is modeled as a splitter whose
working fluid is saturated and with particular
assumptions about the dryness of the outlets. A multi-
stage turbine is modeled as a sequence of turbines and
splitters. CyclePad helps users analyze models, so they
can figure out if their choice of idealization makes sense,
but currently CyclePad does not provide direct assistance
with formulating an idealized model from an informal
specification.

5.2 Regarding constraint reasoning
In this task numerical constraint propagation suffices.

There are however natural extensions of CyclePad’s
analytic abilities for which algebraic manipulation would
be useful. For instance, some insights about how a cycle
works are best captured via equations.3 We plan to
extend CyclePad to derive such equations on demand.
Our experience with the constraint rules compiler in
CyclePad, and other work on thermodynamics problem
solving [20], suggests that relatively simple algebraic
capabilities will suffice for this extension.

We draw two additional conclusions regarding
constraint manipulation. First, the commercial world
has developed many powerful symbolic algebra packages,
such as Mathematica, Maple, and Macsyma, which in
some cases are excellent off-the-shelf solutions to

3 For example, figuring out that for a gas turbine cycle the

maximum specific work output is achieved when the pressure
ratio is the square root of its maximum possible value [8].

(defProcessEpisode (fluid-flow ?in ?out)
 (same-substance ?in ?out))

(defProcessEpisode (total-fluid-flow
 ?in ?out)
 (fluid-flow ?in ?out)
 (== (mass-flow ?in) (mass-flow ?out)))

(defProcessEpisode
 (heat-flow ?src-start ?src-end

 ?dst-start ?dst-end)
 (> (T ?src-start) (T ?dst-start))
 (:not (< (T ?src-start) (T ?dst-end)))
 (:not (> (T ?dst-end) (T ?src-end))))

(defProcessEpisode (compression
 ?in ?out ?worker)
 (> (P ?out) (P ?in))
 (< (spec-shaft-work ?worker) 0))

(defProcessEpisode (expansion
 ?in ?out ?receiver)
 (< (P ?out) (P ?in))
 (> (spec-shaft-work ?receiver) 0))

Figure 4: Physical process knowledge in CyclePad

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

particular problems. However, we suspect that many
educational applications will be like CyclePad: Simple
algebraic facilities are all that is required, and thus the
complexity (and expense) of integrating commercial
symbolic algebra packages can be avoided. Second, we
found that special-purpose constraint languages (e.g.,
[21]) were too restrictive for our purposes. Given the
need to reason about modeling assumptions and the need
to integrate information from property tables, it was
much easier to implement a simple constraint propagator
inside a pattern-directed inference system than it was to
interface a special-purpose constraint manipulator.
Aside from applications where scaling up to extremely
large system descriptions (e.g., VLSI CAD) is a key
requirement, it is hard to see any situation where using
such languages makes sense.

5.3 Regarding qualitative physics
The combination of steady-state analysis, the

restriction to steady-flow systems, and the use of
idealized components dramatically simplified the
representation of physical processes, since the
occurrence of particular physical processes could simply
be stipulated inside a component.

CyclePad’s focus on quantitative analysis also means
that the major inferential role for qualitative physics is
ruling out physically impossible designs. We believe
similar simplifications will hold in many other
applications, since well-designed artifacts explicitly
represent the important physical changes in terms of the
kinds of components and connections that comprise a
schematic, and many science and engineering
educational applications involve quantitative knowledge
heavily.

On the other hand, certain extensions to CyclePad’s
capabilities will require substantially more qualitative
representations and reasoning. For instance, CyclePad
currently does not try to explain how components work,
nor does it provide assistance for understanding the
physical rationale underlying design changes. To
formalize such arguments will take richer qualitative
representations, as well as the ability to reason with
property diagrams (e.g. [22]). Fortunately, the
automatic instantiation of physical process descriptions
from a domain theory is an inexpensive and well-
understood operation.

5.4 Regarding explanation generation and TMSs
The use of a structured explanation system as an

abstraction layer between interface and reasoning system
was extremely helpful in developing CyclePad, since it
allowed us to optimize each independently. We also
found, as suggested by [23], that sophisticated natural

language generation techniques were inappropriate for
this task. The ability to automatically generate hypertext
in response to a user’s questions obviates the need for
discourse planning, and the fixed nature of the task
means that issues such as selecting the appropriate level
of detail in an explanation can be postponed. Hypertext
allows users to select how much they want to know about
a topic, and since the hypertext is only generated on
demand, many navigation problems common in fixed
hypertexts are avoided.

ATMS technology [24] has been widely used in
qualitative reasoning systems because of its ability to
rapidly switch between alternate interpretations. As
noted previously, this ability is unnecessary in CyclePad,
and we suspect that this will be true for most educational
applications.

6. Discussion
CyclePad demonstrates that qualitative physics has

advanced enough to support new applications of AI to
educational problems. Compositional modeling provides
representational tools and techniques that can be used to
encode a substantial body of knowledge about
engineering thermodynamics, with constraint
propagation providing analytic capabilities and
qualitative representations providing the intuition needed
to detect student blunders. Automatically generated
hypertext explanations enable the user to explore the
consequences of his or her assumptions, and figure out
what modeling assumptions are needed to make further
progress.

To date, CyclePad has only been tested with graduate
student volunteers. We will be testing it with
undergraduate engineering students both at Oxford and
at Northwestern this academic year. Feedback will be
gathered via a combination of electronic mail and
interviews, which we will use to further improve the
system. Our goal is to have CyclePad continuously
available to undergraduates, so that their needs will help
guide subsequent development.

Several extensions to CyclePad are in progress. First,
we will extend it to handle non-steady flow cycles, such
as Otto and Diesel cycles. Second, we will add some
algebraic capabilities, so that CyclePad can help students
derive algebraic expressions that capture important
tradeoffs in specific systems.

We view CyclePad as part of a virtual laboratory for
exploring thermodynamic cycles. A virtual laboratory is
a software environment consisting of a set of parts,
corresponding to physical parts or important abstractions
in the domains of interest, tools for assembling
collections of these parts into designs, and facilities for
analyzing and testing designs. By working in this

Proceedings of AAAI-94, pp 1175-1182, August, 1994.

software environment, students can “build” their designs
and try them out without expense or danger. In simpler
domains some commercial software exists that can be
viewed as virtual laboratories (e.g., Interactive Physics
for simple dynamics and Electronics Workbench). A
novel contribution of qualitative physics is the ability to
generate explanations. For educational applications,
explanation generation is vital, to help students see what
aspects of a situation are important and to tie what they
are observing back to fundamental principles. One of
our next steps is to extend CyclePad’s explanation
facilities, by adding coaches [25 , 26 , 27] to help
students, both to guide them through the analysis process
(including the representation of real devices in terms of
ideal components) and to suggest improvements to a
student’s design.

7. Acknowledgments
This work was supported by a grant from the Science

and Engineering Research Council in the UK and by
grants from the Office of Naval Research and NASA
Langley Research Center in the U.S.. We thank Yusuf
Pisan and John Everett for many enlightening bug
reports and suggestions.

8. References

1 Forbus, K. & Stevens, A. Using Qualitative Simulation to
Generate Explanations. Proceedings of the Cognitive Science
Society, August 1981.
2 Brown, J.S., Burton, R. & de Kleer, J. Pedagogical, natural
language, and knowledge engineering techniques in SOPHIE I,
II, and III. In Sleeman, D. and Brown, J.S. (Eds.), Intelligent
Tutoring Systems, Academic Press, 1982.
3 White, B. & Frederiksen, J. Causal model progressions as a
foundation for intelligent learning environments. Artificial
Intelligence, 42, 99-157.
4 Massey, L., de Bruin, J. and Roberts, B. A Training System
for System Maintenance. In Psotka, J. Massey, L., and Mutter,
S. Intelligent Tutoring Systems: Lessons Learned. Erlbaum,
1988.
5 Govindaraj, T. Qualitative approximation methodology for
modeling and simulation of large dynamic systems:
Applications to a marine steam power plant. IEEE
transactions on systems, man, and cybernetics, vol SMC-17,
no. 6, November/December 1987.
6 Masahiro Inui, et al. Development of a model-based
intelligent training system for plant operations.
Proceedings of International Conference on ARCE,
Tokyo, pp 89-94, 1990.
7 Roschelle, J. Collaborative Conceptual Change: Jointly acting
social and cognitive processes. Proceedings of CogSci-93.
8 Whalley, P. Basic Engineering Thermodynamics, Oxford
University Press, 1992.

9 Haywood, R. W. Analysis of Engineering Cycles: Power,
Refrigerating and Gas liquefaction Plant, Pergamon Press,
1985.
10 El-Wakil, M. Powerplant Technology, McGraw-Hill, 1984.
11 Stallman, R.M. and Sussman, G.J. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-
Aided Circuit Analysis, Artificial Intelligence 9 (1977), 135--
196.
12 Falkenhainer, B., and Forbus, K. Setting up large-scale
qualitative models. Proceedings of AAAI-88, August, 1988.
13 Falkenhainer, B. and Forbus, K. Compositional Modeling:
Finding the Right Model for the Job. Artificial Intelligence,
51, (1-3), October, 1991.
14 Nayak, P. Automated modeling of physical systems. Ph.D.
dissertation, Computer Science Department, Stanford
University, 1992.
15 Addanki, S., Cremonini, R., & Penberthy, J.S., Reasoning
about assumptions in graphs of models.
Proceedings of IJCAI-89, 1989.
16 McAllester, D. An outlook on truth maintenance. MIT AI
Lab memo AIM-551, 1980.
17 Forbus, K. and de Kleer, J. Building Problem Solvers, MIT
Press, 1993.
18 Hayes, P. Naive Physics 1: Ontology for Liquids. In Hobbs,
J. and Moore, R. (Eds.) Formal Theories of the Commonsense
World, Ablex, Norwood, NJ, 1985.
19 Gruber, T. & Gautier, P. Machine-generated explanations of
engineering models: A compositional modeling approach.
Proceedings of IJCAI-93.
20 Skorstad, G. and Forbus, K. Qualitative and quantitative
reasoning about thermodynamics, Proceedings of the Cognitive
Science Society, August, 1989.
21 Steele, G. and Sussman, G.J. CONSTRAINTS: A language
for expressing almost-hierarchical
descriptions, Artificial Intelligence, 14 (1980):1--39.
22 Pisan, Y. Visual reasoning about physical properties via
graphs, submitted for publication, 1994.
23 Reiter, E. & Mellish, C. Optimizing the costs and benefits
of natural language generation, Proceedings of IJCAI-93, 1993.
24 de Kleer, J. An assumption-based truth maintenance system.
Artificial Intelligence, 28(1986): 127--162.
25 Burton, R. & Brown, J.S. An investigation of computer
coaching for informal learning activities. In Sleeman, D. and
Brown, J.S. (Eds.), Intelligent Tutoring Systems, Academic
Press, 1982
26 Lesgold, A., Eggan, G., Katz, S. and Rao, G. Possibilities
for Assessment Using Computer-Based Apprenticeship
Environments. In Regian, J. & Shute, V. Cognitive
Approaches to Automated Instruction. Erlbaum, 1992.
27 Schank, R.C., & Nohan, M.Y. Empowering the student:
New Perspectives on the Design of Teaching Systems. The
Journal of the Learning Sciences, 1(7-35), 1991.

