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Abstract 
Engineering problem solving requires both domain knowledge and an understanding of 
how to apply that knowledge. While much of the recent work in qualitative physics has 
focused on building reusable domain theories, there has been little attention paid to 
representing the control knowledge necessary for applying these models. This paper 
shows how qualitative representations and compositional modeling can be used to create 
control knowledge for solving engineering problems. This control knowledge includes 
modeling assumptions, plans and preferences. We describe an implemented system, 
called TPS (Thermodynamics Problem Solver) that illustrates the utility of these ideas in 
the domain of engineering thermodynamics. TPS to date has solved over 30 problems, 
and its solutions are similar to those of experts. We argue that our control vocabulary can 
be extended to most engineering problem solving domains, and employed in a wide 
variety of problem solving architectures. 

1. Introduction 
Engineering problem solving requires both domain knowledge and an understanding of 
how to apply that knowledge.  Recent work in qualitative physics has focused on 
building reusable domain theories, concentrating on the fundamental physical laws of 
various domains.  However, there has been little research on representing the control 
knowledge necessary for applying these models.  Qualitative representations have been 
successfully used for designing binary distillation plants (Sgouros, 1993) and for 
designing controllers (Kuipers & Shults, 1994). 
 
However, since de Kleer’s (1975) original work highlighting how qualitative reasoning 
was needed to solve physics problems, the task of engineering analysis, as exemplified by 
textbook engineering problems, has been mostly ignored.  An exception was a foray into 
problem solving in thermodynamics (Skorstad & Forbus, 1989), in a system called 
                                                      
1 Presented at Qualitative Reasoning Workshop, 1996 
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SCHISM.  While SCHISM pioneered some useful ideas (e.g., heuristics for choosing 
good control volumes), both its domain knowledge and control knowledge were too 
limited to solve more than a handful of examples.  Other research has created 
formalizations of engineering thermodynamics that are much broader, but still lack the 
control knowledge needed for capturing the efficiency and flexibility of human experts.  
For instance, CyclePad (Forbus & Whalley, 1994) contains enough qualitative and 
quantitative domain knowledge to carry out numerical steady-state analyses of 
continuous-flow systems.  However, it also is excessive in its computations, sometimes 
solving hundreds of equations that it doesn’t need to.  A computational account of 
engineering problem solving must explain the efficiency of expert solutions by showing 
how to achieve similar efficiencies in software. 
 
We claim that qualitative representations and compositional modeling can be used to 
create control knowledge for efficiently solving engineering problems.  In this paper we 
describe an implemented system, called TPS (Thermodynamics Problem Solver) that has 
been developed to explore the use of qualitative representations in controlling 
engineering problem solving. TPS represents domain knowledge via compositional 
modeling techniques. TPS’ control knowledge includes  modeling assumptions, plans and 
preferences that are used in constraining search.  TPS is currently able to solve 30 
representative thermodynamics problems from various chapters of an introductory 
thermodynamics book.  The solution plans used by TPS are similar to experts’ plans. We 
expect problem solving control knowledge  based on qualitative representations can be 
adapted for other domains and integrated into other problem solving architectures. 
 
Section 2 describes expert problem.  Section 3 analyzes the global structure of the 
thermodynamics domain.  Section 4 describes how plans and preferences are represented 
in TPS.  Section 5 presents the primitives of our modeling language.  Section 6 describes 
TPS’ architecture.  In Section 7, we present an example of TPS solving a problem.  
Section 8 discusses related work in developing control knowledge and Section 9 proposes 
possible extensions to TPS. 

2. Expert Problem Solving 
How does an expert solve a problem?  Looking at expert and novice differences in 
problem solving is one way of understanding the control knowledge of the expert.  
Larkin, McDermott, Simon and Simon (1980) have argued that in the domain of physics, 
novice problem solvers use backward inference while experts use forward inference.  
More recent findings by Priest and Lindsay (1992) show that experts and novices use 
similar amounts of forward and backward inference.  The contradictory findings suggest 
that a finer distinction is needed to differentiate between expert and novice behavior. 
 
We conjecture that the expert-novice difference is due to the difference in control 
knowledge.  Control knowledge, which determines whether and when an equation should 
be used, is expressed to a large degree using qualitative knowledge.  TPS’ 
thermodynamics knowledge is represented using qualitative representations and 
compositional modeling, making fundamental concepts of the domain explicit.  TPS uses 
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explicit modeling assumptions, domain specific plans and preferences to express expert 
control knowledge.  TPS’ problem solving involves abstract plans, minimal search of the 
problem space and a combination of backward and forward inferences to produce expert-
like efficient problem solving behavior. 
 
Control knowledge can be encoded by a domain expert as a part of domain knowledge or 
the control knowledge can be learned through solving problems by identifying paths that 
lead to failure or success.  Chunking (Laird, Rosenbloom and Newell, 1986), EBL 
(Dejong, 1986) and generating abstract plans (Knoblock, 1994) are strategies for 
automatically generating control knowledge through solving problems.  Since these 
systems do not re-represent their domain knowledge, fundamental concepts of the 
domain that are not initially identified cannot be learned.  For complex domains, such as 
thermodynamics, where the problem space is large and not uniform, control knowledge 
needs to be identified and encoded by a domain expert.  The local improvements 
provided by today’s speedup learning algorithms are insufficient to automatically 
construct such knowledge. 
 
Experts clearly use weak methods (such as backward chaining, forward chaining, and 
loop detection) in addition to task-specific and domain-specific control knowledge. 
Although TPS does include weak methods as part of its control knowledge, its expert-like 
behavior is the result of domain and task specific knowledge.   Equation-solving is an 
intermediate level method, general within the class of domains that involves certain kinds 
of mathematical models.   TPS includes a simple equation solver, of course, but the real 
art (as de Kleer (1975) and de Kleer & Sussman (1980) pointed out) is to find the right 
set of equations to work with.  This requires knowledge that exploits the global structure 
of the domain, which can then be encoded as plans and preferences so that a problem 
solver reasoning locally can achieve expert performance.   Consequently, we discuss the 
global structure of the domain next. 

3. Analysis of the Thermodynamics Domain 
Thermodynamics is the study of how energy can be transferred from one form to another.  
Engineering thermodynamics provides the theoretical underpinnings for power plants, 
engines of all types, refrigerators, and heat pumps.   What makes thermodynamics 
difficult for students is not the complexity of equations, which are no more complex than 
those found in, say, dynamics.  The challenge lies in the fact that the properties being 
modeled are subtle, meaning that there are both more equations and the range of their 
applicability is more limited.  Engineering thermodynamics requires more explicit 
reasoning about modeling assumptions in order to derive a consistent set of equations 
than many domains.   
 
The kinds of performance bounds thermodynamics problems provide are critical in 
evaluating designs and suggesting improvements to existing systems.  The domain 
knowledge and the control knowledge necessary for engineering problem solving is an 
important part of thermodynamics experts’ professional knowledge.  Discussions with 
domain experts (P. B. Whalley, personal communication) suggests that textbook 
problems are reasonable approximations for engineering analyses performed in industry. 
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Most engineering thermodynamics problems require interleaving qualitative and 
quantitative analysis.  Like other engineering domains, analysis of a thermodynamics 
problem starts with making some modeling assumptions.  In many domains these are 
givens, i.e., ignoring air friction in most elementary dynamics, or ignoring tolerances of 
components in DC circuit analysis.  In thermodynamics, assumptions are resolved by 
deriving or comparing values for particular parameters, which in turn opens up the 
possibility of making further modeling assumptions. 
 
We have used compositional modeling (Falkenhainer & Forbus, 1991) for representing 
the thermodynamics knowledge in TPS.  Our thermodynamics domain model is based on 
the model used in CyclePad (Forbus & Whalley, 1994). It is organized around processes 
and pure substances which are transformed by processes.  A process is an instantiation of 
a physical process, such as heating or cooling, or a combination of basic processes, where 
energy is transformed form one form to another.  A pure substance is a homogeneous 
collection and has associated parameters such as mass, volume, temperature and specific 
volume that are constant throughout the substance. 
 
Modeling assumptions, equations and background facts tie the different parameters of 
substances to each other and to the process acting on the substance.  Different modeling 
assumptions can be made about processes and devices.  For example, a turbine can be 
assumed to be isentropic (entropies at inlet and exit being equal) or adiabatic (ignoring 
any heat loss from the turbine).  By making applicable modeling assumptions about a 
device explicit, TPS makes it possible to reason with modeling assumptions. 

3.1 Finding the Phase of a Substance 
The phase of substance is the primary modeling assumption about a substance.  Fixing 
the phase of a substance is necessary because it  provides the most information for 
finding the set of applicable equations and tables.  A substance can be in one of three 
states: gas, saturated or liquid (solid states are not normally considered in 
thermodynamics).  The three phases a thermodynamic stuff can be in is represented as an 
assumption class (Figure 1).  When there is a thermodynamic-stuff the possible phases of 
the stuff are instantiated.  When a control decision is made to decide the phase of the 
stuff, the choices for phase are examined further. 
 

Figure 1: An assumption class, specifying the three phases of a substance 

 
To determine the phase of the stuff, TPS examines the logical relations that can lead to 
fixing the phase of a substance.  Figure 2 shows one of the relations for showing that the 
substance is in gas form.  If TPS decides to use this relation to find the phase, the 
temperature and the saturated temperature of the substance are calculated and compared.   
 

(defAssumptionClass (decide (phase-of ?stuff)) 
    :triggers ((thermodynamic-stuff ?stuff)) 
    :choices ((gas ?stuff) (saturated ?stuff) (liquid ?stuff))) 
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Figure 2: A logical relationship for showing the phase of the substance 

4. Representing Plans and Preferences 
Control knowledge for a domain needs to be part of how the domain is modeled.  In TPS, 
we use plans, preferences and common assumptions to guide the problem solving.  Plans 
provide a framework for the problem, preferences are used to decide among choices and 
common assumptions are used for making assumptions when there is not contradictory 
information. 
 
Modeling assumptions determine the level of granularity of the model we instantiate for a 
specific problem.  For example, the potential and kinetic energy difference between the 
inlet and the outlet of the turbine is usually considered insignificant.  As a result, when 
the modeling assumption (not (consider-ke ?process)) is true, the first law 
of thermodynamics is simplified to exclude information about kinetic energy.  When 
kinetic energy and potential energy are specified in the problem a finer analysis is 
possible using the first law in its original form. 
 
Common modeling assumptions are assumptions that are made frequently to simplify 
problems.  Knowing what common assumptions are applicable is an important piece 
of control knowledge since assumptions are necessary for finding applicable 
equations and simplifying them.  For example, change in kinetic energy is usually 
ignored for turbines, so when applying the first law to a turbine, TPS makes an 
attempt to see if a kinetic energy difference can be derived.  Determining kinetic 
energy requires knowing the velocity of the substance, which cannot be derived from 
any other knowledge in the domain.  Lack of knowledge concerning velocities enables 
TPS to ignore kinetic energy and use a simplified version of the first law to solve the 
problem.  In another problem where velocity is specified  the first law can be used in 
its original form.  For a different device, such as a nozzle, changes in kinetic energy 
cannot be ignored.  The common-assumption about turbines is given as a background 
fact (Figure 3) and is instantiated when TPS is working with a turbine. 
 

Figure 3:  A background fact 

4.1 Representing Control Knowledge for Equations 
An equation relates a set of numerical parameters to each other.  In TPS, equations 
contain several parts.  The form is the traditional mathematical expression of the 
equation.  Equations also have trigger conditions, assumptions, and  preferences.  Before 
an equation can be considered its triggers must be known to be true.  Trigger conditions 
are for facts that cannot be derived using the inferences in the domain theory.  For 

(define-relation gas-T>Tsat 
    :triggers ((thermodynamic-stuff ?stuff)) 
    :relation (:IFF (gas ?stuff) (> (T ?stuff) (Tsat ?stuff)))) 

(defbackground-fact ((turbine ?name ?from ?to)) 
   (common-assumption (NOT (consider-ke (turbine ?name))))) 
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example, the existence of a container can never be derived, so an equation that applies to 
containers is instantiated only when TPS is already working with a container. 
 
The assumptions of an equation are facts that must be true before we can use the 
equation.  An equation that is applicable to gases can not be used for other substances.  
The reason for separating trigger conditions and assumptions is to guide our inference 
mechanism.  Suppose for example we are asked to calculate the temperature of a piece of 
fluid, consisting of a known substance.  We would have a number of equations we can 
use to derive temperature, some of which would be applicable if the substance is a gas 
and others if it is liquid or gas.  By separating trigger conditions from assumptions, we 
can decide that we must find the phase of the fluid before choosing an equation.  The 
structure of the domain and how it is modeled determines which statements should be 
triggers and which ones should be assumptions.   
 
Preferences reflect how an equation is typically used in problem solving.  Although an 
equation can be solved for any one of its parameters in theory, in practice equations tend 
to be solved for one variable more than others.  The equation given in Figure 4 is the 
definition for  constant-pressure specific heat (cp).  This equation is often used for 
finding specific heat and never used for finding the gamma value of the substance.  
(Gamma is either known from tables or derived from other equations that contain only a 
single occurrence of the term.)  Control conditions for equations, in terms of preference 
statements, provide directionality to equations.  An equation can still be used to solve for 
any of its variables, but marking an equation’s directionality of typical use explicitly 
helps guide problem solving. 
 

Figure 4:  An equation with preferences for direction of solving 

It is not possible to create the perfect set of preferences that will prevent the problem 
solver from ever making the wrong choices.  Even experts do not solve every problem 
with a perfect plan, without backtracking, every time.  Preferences provide guidance, but 
do not eliminate decisions, so TPS can still solve a problem that does not fit its plans 
through backtracking.   

5. Primitives of our Modeling Language 
TPS integrates the “physics” of the domain with control knowledge for problem solving.  
This makes it possible to represent and reason about control knowledge explicitly.  
Control decisions, suggestions and plans for guiding problem solving are part of the 
model for the domain, just like equations of the domain.  This has required creating a 
compositional modeling language that includes control knowledge in an integrated 
fashion.  We believe the set of modeling primitives we use are applicable across a wide 
variety of engineering domains.  They are: 

(defequation cp=R/gamma*gamma-1 
    :Triggers ((substance ?sub)) 
    :Assumptions ((ideal-gas ?sub)) 
    :not-use-for ((gamma ?sub)) 
    :use-for ((cp ?sub)) 
    :Form (:= (cp ?sub) (/ (* (R ?sub) (gamma ?sub)) (- (gamma ?sub) 1)))) 
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defEntity, define-Process: These statements are used to define conceptual entities and 
physical processes.  Each entity and each  process has a set of parameters which are 
instantiated when it exists.  Constraints and relations of entities and processes are 
expressed using define-relation and equations. 
 
defAssumptionClass:  An assumption class provides a taxonomy of modeling 
assumptions.  During problem solving, finding the right modeling assumption is 
necessary before equations and tables can be used. 
 
defBackground-fact:  Background facts are instantiated when their triggers are satisfied 
and instantiate common assumptions to be used in problem solving.  Common 
assumptions can be modeling assumptions that are specific to a process or a numerical 
value such as molar-mass of water. (See Figure 3 for an example) 
 
define-Relation: Define-relation is used to define logical relations among modeling 
assumptions and numerical values.  Modeling assumptions can be shown by proving that 
the relation holds between the numerical values (See Figure 2 for an example) 
 
defEquation: There are over 100 equations in TPS.  Equations are instantiated and 
become available when the trigger conditions are satisfied.  When the assumptions of an 
equation are satisfied the equation becomes applicable and can be used for finding the 
values of parameters.  As described above, each equation can also have control 
knowledge that guide TPS in using it appropriately. 
 
Control knowledge that is automatically learned usually includes information about what 
equations should be used in what circumstances. TPS does not have any global 
knowledge for choosing equations based on the circumstances.  TPS uses preferences 
about directionality of the equation, common assumptions and plans for choosing 
between equations.  The equation with the least unknowns is chosen when multiple 
equations can be used. 
 
define-Plan:  A plan is instantiated when its triggers are satisfied and provides a list of 
steps to achieve its goals.  The triggers of the plan determine when the plan becomes 
applicable.  A simple plan is shown in Figure 6.  This plan is applicable when there is a 
thermodynamic-stuff and a numerical parameter of the stuff is being searched for.  The 
plan tries to achieve the statements in :goals, which  are intermediary goals for solving 
the current problem.  The steps of the plan are an ordered set of statements that needs to 
be achieved.  If the goals of the plan are found while executing the plan or while solving 
for another goal, TPS would declare the plan dead and not use it.  One of the functions of 
plans is to interleave forward and backward chaining by directing the problem solver 
towards resolving modeling assumptions.  The plan given in Figure 6 directs  the problem 
solver to fix the phase of the substance, which is needed in order to figure out which 
equations may be appropriate. 
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6. The Architecture of TPS 
TPS uses the suggestion architecture (Forbus & de Kleer, 1993) to solve problems.  A 
problem is provided in the form of some initial assertions and a goal. 
A central controller selects what goal to work on next.  Working on a goal consists of (1) 
asking for suggestions as to how to achieve that goal and (2) selecting one of the 
suggestions to act upon.    In TPS, the modeling language primitives are automatically 
compiled into pattern-directed rules that make suggestions and carry them out when the 
appropriate control assertions are made by the central controller.   Carrying out a 
suggestion can either directly solve the problem, or introduce new problems that must be 
solved in order to use the proposed method.   This process continues until either the 
original problem is solved or the system runs out of things to try or until resource bounds 
are exceeded. 
 
A logic-based truth maintenance system   (McAllester, 1978; Forbus & de Kleer, 1993) is 
used to keep track of all data and control dependencies, such as the relationships between 
goals and the relevance of plans and equations.    Thus the status of a goal, whether it is 
solved, failed or open (Nilsson, 1980), as well as suggestions for achieving the goal are 
stored in the LTMS.  This simplifies control reasoning in several ways.  For instance, an 
open problem about which no suggestions have been made is unsolvable.   Such failures 
are marked as assumptions, which can be reexamined as needed if no other solution is 
found. 
 
Epstein (1994) argues that multiple heuristic agents can be used to portray human 
expertise.  We have found this model useful in TPS.  The agents in TPS are the different 
plans that are proposed for the current goal.  We use a simple heuristic for evaluating 
between plans:  Plans that aim to achieve the current goal are given precedence over 
plans that suggest subgoals not directly related to the current goal.  The shortest plan 
among relevant plans is chosen when there are multiple plans.  When choosing among 
equations, preferences about whether the equation should be used for that variable is 
considered.  When preferences are not sufficient, an equation with the least number of 
unknowns is chosen.   
 
TPS’ control knowledge is not dependent on the architecture of the problem solver.  The 
problem solver needs to be able to execute plans suggested by plans, subgoal on 
resolving modeling assumptions when necessary and use equation preferences for 
choosing between equations.  Although the control knowledge can be used with other 
problem solvers, the representation of the domain model needs to make fundamental 
concepts of the domain explicit to allow integration and use of control knowledge. 

7. An example of TPS solving a problem 
A problem description is given in Figure 5 and the plan chosen for this problem is given 
in Figure 6.  Temperatures are given in Kelvins and the pressures are given in Pascals. 
 



9 

Figure 5: TPS’ representation of problem 5.10 from Van Wylen & Sonntag (1985)  

Figure 6: Plan chosen by TPS to solve the problem given in Figure 5 

The plan given in Figure 6 is one of the most general plans TPS uses.  This plan applies 
to all processes and tries to apply the first law.  The first two steps of the plan are fixing 
the initial and the final state of the substance, then the modeling assumptions about the 
process are determined and finally the first law is applied. 
 
When there are multiple suggestions and there is no explicit control knowledge to choose 
among suggestions, suggestions are evaluated and scores are attached to each suggestion.  
TPS’ scoring mechanism is domain independent, giving priority to shorter plans and 
showing assumptions.  Suggestions with low scores are not eliminated, which ensures 
that even when a problem has to be solved in an obscure manner (i.e., using equations 
differently than normal), finding a solution is still possible. 
 
Plans are used to interleave backward and forward chaining.  An equation, which is a 
simple plan, requires finding the values of variables and showing necessary assumptions 
to solve for the current goal.  Since each step required by the equation is necessary, 
equation plans cause the problem solver to perform backward chaining through 
subgoaling.  Other plans, such as the one given in Figure 6 propose subgoals which may 
not be essential to the current goal.  Subgoals that are not essential to the current goal 
cause the problem solver to forward chain. Although forward chaining could potentially 
cause exploring part of the problem space that was not needed for the current problem, it 
is necessary for solving complex problems and reflects experts’ pattern of problem 
solving.  In TPS, plans force the assumptions of equations to be resolved before a 
commitment is made to using an equation.  Once the relevant assumptions are resolved, 
the number of choices is reduced and heuristics are used. 
 

(add-problem 
 :name 'Wylen&Sonntag-Ex5.10 
 :givens '((turbine TUR s1 s2) 
           (thermodynamic-stuff s1)  (thermodynamic-stuff s2) 
           (substance-of s1 water) 
           ((mass-flow (turbine TUR)) NVALUE 1.5) 
           ((Q (turbine TUR)) NVALUE 8500) 
           ((P s1) NVALUE 2000000)  ((T s1) NVALUE 623.15) 
           ((velocity s1) NVALUE 50)  ((height s1) NVALUE 6) 
           ((P s2) NVALUE 100000) 
           ((dryness s2) NVALUE 1) 
           ((velocity s2) NVALUE 200)  ((height s2) NVALUE 3) 
           ((gravity-on s1) NVALUE 9.8066)) 
 :goal '(find-numerical-value (work-done (turbine TUR)))) 

(define-plan analyze-process-with-first-law 
    :triggers ((process ?process ?from ?to) 
               (thermodynamic-stuff ?from) (thermodynamic-stuff ?to)) 
    :goals ((or (find-numerical-value (work-done ?process)) 
                (find-numerical-value (Q ?process)))) 
    :steps ((show (fixed-phase ?from)) (show (fixed-phase ?to)) 
            (show (resolve-modeling-assumptions ?process)) 
            (show (apply-first-law ?process)))) 
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Figure 7: The expert solution to problem given in Figure 5 as given in Van Wylen & Sonntag (1985). 

 
The expert solution to the problem given in Figure 5 is shown in Figure 7.  An expert 
solution uses the minimal number of equations with no backtracking.  The solution in 
Figure 7 uses five equations (kinetic energy and potential energy equations are used 
twice) and two table-lookups to solve the problem.  We compare these results to 
CyclePad and TPS’ results. 
 
CyclePad (Forbus & Whalley, 1994) solves thermodynamics problems using 
unconstrained forward chaining.  TPS’ domain knowledge is based on CyclePad’s 
domain knowledge which has been provided by Forbus and Whalley.  Although 
CyclePad can solve problems very fast, it solves a lot more equations then needed.  For 
example, when CyclePad solves a simpler version of the problem given in Figure 5, it 
instantiates 42 equations and calculates the values for 67 parameters. 

Control Volume:  Turbine 
Inlet State: Fixed 
Exit State: Fixed 
Process:  SSSF 
Model:  Steam tables 
Analysis:  First Law: 
 Qcv + m(Hi + Vi

2/2 + gZi) = m(He + Ve
2/2 + gZe) + Wcv 

 Qcv = -8.5kW 
Solution: 
 hi = 3137.0 (from the steam tables) 
 Vi

2/2 =  (50 x 50) / (2 x 1000) = 1.25 kJ/kg 
 gZi = (6 x 9.8066) / 1000 = 0.059 kJ/kg 
 Similarly, he, Vi

2/2 and gZe are calculated 
 Substituting all into first law gives:  Wcv = 655.7 kW 
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Figure 8: TPS’ solution to problem given in Figure 5 

 
TPS’ solution for the problem involves 3 table lookups, and solving 12 equations.  TPS 
instantiates and solves a many fewer equations than CyclePad.  TPS has limited 
knowledge of symbolic algebra, so instead of combining equations like an expert, it 
solves equations creating some intermediary values that the expert is able to skip. 
 
TPS is not able to solve all textbook thermodynamics problems for several reasons.  TPS’ 
domain model covers steady-state steady flow problems and processes acting on 
contained substances.  Uniform state uniform flow problems, such as a filling a container, 
are not covered in TPS’ domain model.  We are currently extending TPS’ domain model 
to cover this class of problems.  TPS uses saturated and superheated tables for water and 
freon, but does not have the necessary tables for other substances yet.  The equation 
solver used in TPS performs limited symbolic algebra, so TPS cannot currently solve 
problems requiring an equation as an answer.  This can be remedied by embedding 
another program inside TPS for performing symbolic algebra or by building one 
ourselves.  We believe that TPS will be able to solve all of the problems found in an 
introductory thermodynamics textbook when its domain model and control knowledge 
have been extended to cover the variety of devices and processes encountered.  

TPS starts the problem by looking for an appropriate plan 
The plan given in Figure 6 is chosen  
Executing the plan: 
Step 1: Fixing the state at the inlet.   
Assume (gas s1) and verify it using saturation temperature. 
Step 2: Fixing the state at the exit 
Infer that exit is saturated since dryness is given. 
Step 3: Resolving modeling assumptions about the Turbine 
 Reject no-KE assumption because velocity is given 
 Reject no-PE assumption because height is given( 
 Reject no-Heat assumption, the value for heat is given 
 Not consider Isentropic assumption since it is not adiabatic  
Step 4: Applying first law: 
 Q = ∆H + ∆KE + ∆PE + W 
 Q = 8.5Kw Given in problem statement 
 (spec-h s1) is marked known using tables 
Propagating known information: 
 (H s1) is marked known using equation  
            (H s1) = (mass-flow s1)*(spec-h s1) 
 Information about known parameters get propagated. Equation solving 
begins after work is marked as known.  
Calculating the answer: 
 Calculating (change-in-enthalpy (turbine TUR)) 
 (H S1) = (mass-flow S1)*(spec-h s1) = 1.5 * 3137 = 4705.5 
      (2 equations, 1 table lookup) 
 (H S2) = (mass-flow S2)*(spec-h s2) = 1.5 * 2675.5 = 4012.5 
      (2 equations solved, 1 table lookup) 
 (change-in-enthalpy (turbine TUR)) = (H S2) - (H S1) 
      (1 equation solved) 
 change-in-ke is calculated by finding KE of S1 and S2  
            (3 equations solved) 
 change-in-pe is calculated by finding PE of S1 and S2  
            (3 equations solved) 
 W = 655.7kW is found by solving the equation for first law. 
           (1 equation solved) 
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8. Related Work 
 
In SCHISM Skorstad and Forbus (1989) use molecular collection ontology (Collins & 
Forbus, 1987) to determine the control volume for analysis.  SCHISM constructs a 
control volume by following a piece-of-stuff  around the cycle.  TPS uses initial state, the 
process and the final state of the substance to form control volumes.  A separate control 
volume is created for each device examined.  When finding parameters of the whole 
system, the control volume is expanded to include the relevant parts of the cycle. 
 
In OUZO (Sgouros 1993) heuristic design strategies and knowledge about physical 
principles is combined for designing separation systems in chemical engineering. OUZO 
goes through a propose-modify-redesign cycle to find a reasonable design for separation.  
Unlike problem solving, design problems usually have multiple acceptable solutions and 
the method for finding the design is not considered important.  Textbook problems are 
more constrained compared to design problems.  TPS’ control knowledge is used to find 
the right path to the answer as well as the right solution. 
 
Kuipers (1994) uses qualitative simulation to predict the set of possible behaviors for the 
system which can then be used by a controller.  The behavioral trees include all possible 
behaviors.  When solving textbook problems, we are interested in finding what the 
current behavior is rather than controlling the behavior.  TPS’ control knowledge is 
useful for finding the behavior of the system without considering all the possible 
alternative behaviors. 
 

9. Discussion 
Engineering problem solving  requires having  domain knowledge and control knowledge 
for constraining the search space.  Previous work on problem solving has concentrated on 
building problem solvers with general strategies and automatically generated control 
knowledge from examples.  Since our theories of learning and re-representation are not 
adequate, these programs have had little success.  Research in qualitative physics has 
focused on constructing domain theories, but have not focused sufficiently on how these 
domain theories can be used for problem solving. 
 
Plans, preferences and logical relations in TPS make it possible to reason about the 
modeling assumptions explicitly which is necessary for all engineering problem solving.  
TPS demonstrates how domain specific control knowledge can be created using 
qualitative representations and compositional modeling principles. TPS has solved over 
30 problems and its solutions are similar to those of experts.   
 
We expect that TPS’ coverage can be extended to the majority of textbook 
thermodynamics problems by remedying the limitations pointed out in Section 7.  To 
completely cover such problems two additional extensions are needed.  TPS currently 
cannot read or produce graphs when solving problems.  We are planning on integrating 
TPS with SKETCHY (Pisan, 1995) to enable TPS to solve problems that require 
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interpreting graphs and diagrams.  Another avenue of research is incorporating 
qualitative simulation as one of TPS’ plans.  Qualitative simulation can be used to 
explore possible scenarios for problems where device behavior is ambiguous.  We also 
plan to test our ideas in other engineering domains to determine their generality. 
 

10. References 
Chi, M., Fletovich, P. & Glaser, R. (1981) Categorization and representation of physics 
problems by experts and novices.  Cognitive Science, 5, 121-153.   
 
Collins, J. and Forbus, K. (1987). Reasoning about fluids via molecular collections.  
Proceedings of AAAI-87. 
 
de Kleer, J. (1975). Qualitative and quantitative knowledge in classical mechanics.  
Technical Report 352.  MIT AI Lab, Cambridge, MA. 
 
de Kleer, J. and Sussman, G. J. (1980). Propagation of constraints applied to circuit 
synthesis.  Circuit Theory and Applications, 8, 127-144. 
 
Dejong, G. F. (1986).  Explanation based Learning.  In Machine Learning: An Artificial 
Intelligence Approach, Vol. II.  Morgan Kaufman, Los Altos, CA. 
 
Epstein, S. L. (1994). For the right reasons: the FORR architecture for learning a skill 
domain..  Cognitive Science, 18, 479-511. 
 
Falkenhainer, B. and Forbus, K. (1988).  Setting up large-scale qualitative models. In 
Proceedings of AAAI-88. 
 
Forbus, K. and de Kleer, J. (1993). Building Problem Solvers, MIT Press. 
 
Forbus, K and Whalley, P. B. (1994). Using qualitative physics to build articulate 
software for thermodynamics education. In Proceedings of AAAI-94, pp. 1175-1182. 
 
Knoblock, C.A. (1994).  Automatically generating abstractions for planning.  Artificial 
intelligence, 68, 243-302. 
 
Kuipers, B. J. and Shults, B. (1994). Reasoning in logic about continuous systems. In The 
Eight International Workshop on Qualitative Reasoning about Physical Systems, Nara, 
Japan, 164-175. 
 
Laird, J., Rosenbloom, P. and Newell, A. (1986).  Universal Subgoaling and Chunking.  
Kluwer Academic Publishers. 
 
Larkin, J., McDermott, J., Simon, H. and Simon, D. (1980).  Models of competence in 
solving physics problems.  Cognitive Science, 4, 317-345. 



14 

 
McAllester, D. (1978).  A three-valued truth maintenance system.  S.B. thesis, 
Department of Electrical Engineering, Massachusetts Institute of Technology. 
 
Nilsson, N. J. (1980).  Principles of Artificial Intelligence.  Morgan Kaufman. 
 
Pisan, Y. (1995).  A visual routines based model of graph understanding.  In Proceedings 
of the Seventeenth Annual Conference of the Cognitive Science Society, pp. 692-697. 
 
Priest, A. (1986) Inference strategies in physics problem solving.  In A.G. Cohn and J.R. 
Thomas (Eds.), Artificial Intelligence and its Applications. New York: John Wiley & 
Sons Inc.  
 
Priest, A. & Lindsay R. (1992). New light on novice-expert differences in physics 
problem solving.  British journal of Psychology, 83, 389-405. 
 
Sgouros, N. (1993). Representing physical and design knowledge in innovative 
engineering design. Ph.D. Thesis. Evanston, IL. Northwestern University. 
 
Skorstad, G. and Forbus, K. (1989).  Qualitative and quantitative reasoning about 
thermodynamics. In Proceedings of the Tenth Annual Conference of the Cognitive 
Science Society. 
 
Van Wylen, G. J. & Sonntag, R. E. (1985) Fundamentals of Classical Thermodynamics.  
New York: John Wiley & Sons Inc.  
 
Whalley, P. B. (1992). Basic Engineering Thermodynamics. Oxford, NY: Oxford 
University Press. 
 


