
1

Supplemental Material: The SME algorithm, version 4
This note is a supplement to

Forbus, K., Ferguson, R., Lovett, A., & Gentner, D. Extending SME to Handle Large-Scale Cognitive
Modeling. Cognitive Science.

It describes the algorithms in Version 4 of the Structure Mapping Engine, including the details behind
the theoretical complexity analysis whose results were summarized in Section 5 of that paper. We begin
with its inputs, outputs, and operations, then provide a step-by-step description of the algorithm,
including the computational complexity of each step. Finally, we combine the complexity results for
each step to yield the overall complexity.

All references to figures, tables, and papers refer to the main article. References to sections of the
paper are marked as such, otherwise section references refer to this document. As in the paper itself,
we use Lisp syntax for representations, and infix mathematical syntax for procedures and algorithms, to
make them easy to distinguish.

1 Inputs, outputs, and operations
Comparison. The fundamental operation of SME is Comparison. The Comparison operation takes the
following inputs:

 Base: A description, consisting of a set of statements in a structured representation language.
 Target: A description, also consisting of a set of statements in a structured representation

language.
 Output constraints: These consist of two numeric parameters:

o The Output Limit is the maximum number of mappings that SME should create. An
output limit of three, for example, means that SME will never produce more than three
mappings. This is its default setting.

o The Score Cutoff enables SME to consider strong competing matches while ignoring
small competitors to the best match. The default score cutoff of 0.8, for example,
means that mappings whose structural evaluation is more than 20% below that of the
best mapping are pruned.

 Filters: An optional set of additional constraints that mappings must satisfy. The set of filters
allowed is described in Section Error! Reference source not found. of the paper.

As discussed in the paper, the output constraints and filters allow task models to automatically tune the
matcher. The output constraints implement capacity limits, while filters enable task models to provide
additional criteria to guide the matcher. As also described in the paper, the language for describing
filters is tightly constrained, since allowing them to be arbitrary computations violates the spirit of
structure-mapping.

The Comparison operation produces as output a set of mappings. A mapping contains

 Correspondences: The alignment between base and target represented by this mapping,
expressed as a set of pairings of items (statements, entities, and predicates) in the base with
items in the target.

2

 Structural evaluation: A numerical estimate of the overall quality of the match.
 Candidate inferences: A set of analogical inferences suggested by this alignment, including

structural evaluations of the degree to which the candidate inferences are supported by and
extrapolate from the mapping (Section 4.4 of the paper). Candidate inferences are computed by
default from base to target, but reverse candidate inferences, from target to base, can also be
computed on demand. Reverse candidate inferences are used when reasoning about
differences, for example.

Mappings and candidate inferences are now first-class entities that can be directly referred to systems
using SME. For example, a problem solver might have the explicit goal of extending a mapping or
verifying a candidate inference. We believe that this is psychologically plausible, given the human ability
to reason about analogies. An analogy ontology (Forbus et al. 2002) has been defined to enable
analogical operations to smoothly interoperate with other kinds of reasoning when needed. However,
SME itself only relies on very basic assumptions about the representation system it is being used with.
The representation system must identify relations, attributes, and functions, and provide information
about their arity. If minimal ascension is to be used, the representation system must also supply
superordinate relationships, which can be used by an optional procedure to evaluate it.

To support incremental mapping, SME now provides two additional operations: Extend and Remap.

Extend. The Extend operation extends the results of a comparison when new items are added to the
base or to the target. (To streamline processing, we do not permit items to be removed from either
base or target – if items are removed, a match must be restarted.) Correspondences aligning the new
items are created, and then the existing mappings are extended with these new correspondences as
appropriate.

Remap. Incremental mapping can require backtracking, since misleading early information can lead to
mappings that are suboptimal in light of later additional information. The Remap operation reconstructs
the mappings from the kernels, providing the same results that would have been found if the current
state of the base and target had been available originally. As described below, both Extend and Remap
algorithms are carefully organized so as to preserve previously computed results that are still valid, for
maximal efficiency. We believe this is psychologically plausible – essentially, the initial stages remain
unguided and parallel, while task-specific influences can operate at the later, serial phase of processing.

2 The SME Algorithm, Step by Step
Extend and Remap are almost entirely defined in terms of the same operations as Comparison.
Consequently we focus on Comparison and note along the way how Extend and Remap work.

For analyzing complexity, we decompose the phases from Section 2 of the paper further into the
following steps:

Phase One: Constructing the Match Hypothesis Network

1. Finding match hypotheses. Local correspondences (match hypotheses) between items in
the base and target are proposed in parallel.

Phase Two: Parallel Evaluation of the Match Hypothesis Network

3

2. Structural consistency filtering. Match hypotheses that violate structural consistency are
removed from further consideration.

3. Structural evaluation propagation. Structural estimates of match quality are constructed for
each correspondence based on a trickle-down algorithm that provides a local
implementation of systematicity.

Phase Three: Constructing Mappings

4. Kernel creation. A kernel is a potential seed of a mapping. Identifying them and scoring
them is the first step towards creating a global construal of a match.

5. (Optional) Filtering. Irrelevant kernels are filtered using automatically imposed constraints
from task models, using strictly local criteria.

6. Greedy merge. A small number of global mappings are constructed from the kernels.
7. Candidate inference creation and evaluation. Analogical inferences are generated for each

mapping and evaluated in structural terms.

We next describe how each step works in detail.

2.1 Finding Match Hypotheses
Match hypotheses are potential correspondences. A match hypothesis links an item in the base to an
item in the target. Conceptually, this stage creates, in parallel, match hypotheses between all pairs of
items in the base and target that could correspond. (By “item” we mean expressions, entities and
functors.) The result is a network out of which mappings are constructed.

The structure of the match hypothesis network is motivated by the constraints of structure-mapping.
The parallel connectivity constraint ties the structural consistency of a match hypothesis to the
existence of match hypotheses for the corresponding arguments of the statements that it aligns. For
any statement S, we use arguments(S) to refer to its arguments. Similarly, given an item A, we use
parents(A) to refer to the set of statements in which it appears as an argument. For example, in

S1: (contains (bloodstream animal12) serotonin)
arguments(S1) = {(bloodstream animal12), serotonin}
S1 parents(serotonin)

Parent and argument relationships are similarly defined for match hypotheses, based on the statements
they align. That is, MH1 is in arguments(MH2) if the base and target items aligned by MH1 are
corresponding arguments in the statements aligned by MH2, and conversely, MH2 is in parents(MH1).
For example,

S2: (contains (bloodstream animal6) serotonin)
MH1: (bloodstream animal6) (bloodstream animal12)
MH2: S2 S1
MH1 arguments(MH2)
MH2 parents(MH1)

It is also useful to refer to the predicate, function, or connective involved in a statement. We use the

function functor for this purpose. Thus

contains = functor(s2)
bloodstream = functor((bloodstream animal6))

4

A match hypothesis that has no parents is called a root match hypothesis. Similarly, statements in
descriptions that are not themselves arguments of another statement are called root statements. We
simply use the word “root” when context makes it clear which type we are talking about.

Here is the match hypothesis construction algorithm:

Match Hypothesis Network construction

Inputs: Base B, Target T, (optional) procedure locally-alignable?

Outputs: Network of match hypotheses MHS

1. Initial network construction: For each Bi Expressions(Base) and Ti
Expressions(Target) such that Functor(Bi) = Functor(Ti) &
not(Ubiquitous(Functor(Bi))),

1.1. Create MH(Bi, Ti)
1.2. Push(MH(Bi,Ti), MHS)
1.3. For each corresponding pair of arguments Bj, Tk in MH(Bi,Ti), push(<Bj, Tk>, Queue)

2. Network growth: Until Queue is empty, process each <Bj, Tk> as follows:
2.1. If functor(Bj) = functor(Tk) & not(Ubiquitous(Functor(Bi)))ignore.

 ;; Step 1 already handled this pair, but if ubiquitous, it didn’t – it’s part of larger structure, so
;; it’s now worth binding

2.2. If Bj, Tk are both entities, create MH(Bj,Tk), push(MH(Bj,Tk),MHS)
2.3. If either Bj or Tk is an entity, ignore.
2.4. If functor(Bj) and functor(Tk) are functions and identical-functions constraint is false,

2.4.1. Create MH(Bj,Tk), push(MH(Bj,Tk),MHS)
2.4.2. Push(<Bj,Tk>, Queue)

2.5. If locally-alignable? is supplied and locally-alignable?(Bj,Tk,MH(Bi,Ti)),
2.5.1. Create MH(Bj,Tk), push(MH(Bj,Tk),MHS)
2.5.2. For each corresponding pair of arguments Bk, Tl in MH(Bj,Tk),

 Push(<Bk, Tl >, Queue)

An initial set of match hypotheses is constructed based on purely local, structural grounds (Step 1), and
then extended based on placing arguments of potentially corresponding statements into alignment
(Step 2). The contents of the initial set of match hypotheses and the growth of the network are
governed by the tiered identicality constraint1. Recall that tiered identicality by default requires
relations to match identically. The initial set of match hypotheses is created by finding all pairs of
statements Bi Base and Ti Target such that

functor(Bi) = functor(Ti)

and, if the functor is not a ubiquitous predicate, creating a match hypothesis for it.

1 See Ferguson (2003) for the special case of creating match hypotheses over pairs of commutative expressions,
such as matched group or set expressions. In this case, SME delays creating one-to-one matches until resolved by
other non-commutative expression matches, during the merge process. It represents the set of potential matches
between commutative expressions in a compact matrix called a commutatives table.

5

This set is grown by propagating outward from the initial set, looking for matches between
corresponding arguments of the statements aligned in the initial match hypothesis set. Weaker criteria
are used for matching when alignment is suggested by other match hypotheses. Statements whose
functors are ubiquitous predicates are matched, since the shared parent provides a reason to do so: not
including it would violate parallel connectivity. By default, matches between non-identical functions are
allowed when they would support a larger match, since these semantically correspond to cross-
dimensional differences. Such cross-dimensional matches are not allowed if the identical-functions filter
is in force. The optional procedure locally-alignable?, if supplied, implements the non-default
cases of tiered identicality. For example, if minimal ascension is used, this procedure must use an
appropriate knowledge representation system to ascertain if there is a close-enough common
superordinate. All of the examples in the paper and the experiments in Section 3 of the paper use strict
identicality or minimal ascension.

2.1.1 Complexity of Finding Match Hypotheses
The default test using tiered identicality is identity of functors, which can be considered a unit-time
operation. Other techniques like similarity tables (Holyoak and Thagard, 1989) and minimal ascension
(Falkenhainer, 1987) satisfy the unit-time operation assumption. We ignore potentially more complex
tests here, since they lie outside the spirit of structure-mapping.

Finding the initial set of match hypotheses requires comparing every statement in the base with every
statement in the target to see if their functors are identical, and if so, creating a match hypothesis. On a
serial machine, this step is bounded above by O(n2). Since each comparison is independent, they can be
done in parallel in unit time if there are at least n2 processors available. We have found it useful to pre-
sort expressions in the base and target into bins by functor, so that we can simply create match
hypotheses between expressions in corresponding bins. In the worst case, where every expression had
the same functor, this would still be O(n2), but in the best case, where every statement within the base
and target had a different functor, this would reduce to the complexity of the sort, i.e. O(nlog(n)).

The filling out of the match hypothesis forest by generating match hypotheses between corresponding
arguments (when possible), is a function of the number of match hypotheses found in the initial step
and the depth of each tree of arguments. We ignore the depth-related costs for two reasons. First,
argument trees are typically much smaller compared to the total number of statements in the
description. Second, all match hypotheses between statements with identical functors have already
been found in the initial step, so only entities plus statements involving non-identical functions or
ubiquitous predicates will cause new match hypotheses to be created. This means the complexity of the
filling in the match hypothesis forest is bounded by O(n2).

2.2 Structural Consistency Filtering
The collection of match hypotheses as generated provides the threads out of which mappings are
woven. However, at this stage in processing it is still inchoate. Local application of structure-mapping
constraints prunes all match hypotheses that could never be part of a consistent mapping. Such
hypotheses are marked as structurally inconsistent by this stage of processing and subsequently
ignored.

Recall that parallel connectivity states that the arguments of a pair of aligned statements must also be
aligned. Match hypotheses that violate parallel connectivity are said to be incomplete. The first part of
detecting incomplete match hypotheses occurs during the construction of the match hypothesis forest,
since failure during the attempt to align the arguments of two matching statements indicates that that
match hypothesis is incomplete. However, parallel connectivity also implies that all parents of that

6

match hypothesis are also incomplete. This implication is enforced by propagating incompleteness
markers upwards to all parents from incomplete match hypotheses once the forest has been finished.

The 1:1 constraint is enforced by propagating information through the argument relations about
structural dependencies of match hypotheses. The descendants of a match hypothesis is the set of
match hypotheses that it structurally depends upon. For example,

MH1: (above triangle32 circle6) (above triangle18 circle3)
MH2: triangle32 triangle18
MH3: circle6 circle3
MH4: above above
descendants(MH1) = {MH2, MH3, MH4}

descendants is the transitive closure of the arguments relation. We use descendants to define
the set of nogoods for a match hypothesis, i.e., those match hypotheses which, combined with it,
would lead to a structurally inconsistent result2.

We define nogoods recursively as follows:

nogoods(MH) = { MHi | MH MHi
 ([BaseItem(MH) = BaseItem(MHi)
 TargetItem(MH) = TargetItem(MHi)]
 [MHj (MHj descendants(MH))
 MHi nogoods(MHj)])}

That is, two match hypotheses are together structurally inconsistent if either they directly map the same
base item to different target items (or the same target item to different base items) or if corresponding
descendants do.

Since descendants and nogoods are heavily used in creating mappings, we compute these sets explicitly
and cache them with each match hypothesis. Structurally inconsistent match hypotheses are detected
during this process, i.e., when the intersection of a match hypotheses’ descendants and nogoods is non-
empty.

To support incremental operation, the descendants and nogoods sets are recalculated whenever new
match hypotheses are added to the forest. (The same calculation is used when a match is started, with
every match hypothesis being new.) Perhaps surprisingly, the structural consistency computations are
monotonic with respect to the addition of new items to the base and target. That is, the sets of
descendants and nogoods can only grow, not shrink. This is easier to see if one remembers that
statements can be added but not modified. This means for any statement its arguments remain
constant. (Tweaking a representation to improve the match is carried out by adding redundant items to
base or target, but these only give rise to new match hypotheses, rather than replacing or mutating
existing ones.) Updates occur by propagating upwards from the lowest-order newly added match
hypotheses. The descendants are simply the union of the descendants of the arguments, plus the
match hypothesis between the corresponding functors (when the match hypothesis is an expression).

2 The term nogoods is an analogy with truth maintenance systems, in which nogoods are either sets of inconsistent
assumptions or clauses that generate such sets (Forbus & de Kleer, 1993).

7

The nogoods are simply the union of the nogoods of the arguments with the set of match hypotheses
that directly conflict with it (i.e., that satisfy the first disjunct in the definition above).

2.2.1 Complexity of Structural Consistency Filtering
Suppose there are m match hypotheses. Organizing the propagation step as an iteration that proceeds
from entity matches up through the parents relations can be done in such a way that each match
hypothesis is processed exactly once, using standard tree traversal algorithms, hence this step is O(m).
Again we treat set operations as constant-time, since they can be implemented using bit vectors (or run-
length encoded bit vectors) to minimize cost.

2.3 Structural Evaluation Propagation
Structural evaluation implements the systematicity preference. Ultimately, structural evaluation scores
will be assigned to each mapping by adding up the scores of the match hypotheses that comprise the
mapping. Structural evaluation needs to be done early, since its results are used in guiding the greedy
merge process described below. Thus as soon as structural inconsistencies have been removed, a
numerical propagation step is used to compute scores for each match hypothesis.

The score of a match hypothesis is computed in two parts. First, there is a local component, a starting
score given to every match hypothesis. There are two parameters here: same-functor is the score
given if the match hypothesis involves statements with identical functors or involves entities, and
different-functor otherwise. The default values for same-functor and different-functor are 5x10-4
and 2x10-4 respectively. Note that their exact values do not matter, only their values in relation to each
other. The second part of the score is computed by the trickle-down rule: Given MHa with parents MHS,

Score(MHa) Score(MHa)+ trickle-down * Sum(Scores(MHS)]

where trickle-down is a constant indicating the strength of the systematicity constraint. The default
value for trickle-down is 8. Notice that this algorithm results in high scores for entity match
hypotheses that support large structurally consistent matches. Thus the global preference for
systematicity is computed by a propagation algorithm operating on local evidence.

In some cases, a match hypothesis can receive trickle-down from parents that are structurally
inconsistent with each other. For example,

MH1: (above triangle32 circle6) (above triangle18 circle3)
MH2: (above triangle32 circle6) (above triangle18 square19)
MH3: triangle32 triangle18

Both MH1 and MH2 are parents of MH3, but a final mapping could not contain both of them. To avoid
inflating the value of a match hypothesis during trickle-down, the algorithm greedily selects a match
hypothesis’ parents, beginning with the highest-scoring parent, and skipping over any parent that is
structural inconsistent with parents already selected. It only applies trickle-down from these selected
parents (in this example, either MH1 or MH2).

Earlier versions of SME normalized the score of each node to be a maximum of 1.0. This proved to be
problematic for large, deeply nested representations, since many of the lower-level nodes would max
out to 1.0. Consequently, we eliminated this limit, and now normalize at the level of the mapping, as
discussed below.

8

2.3.1 Complexity of Structural Evaluation Propagation
Local scores are initialized when match hypotheses are created, so the only cost is that of applying the
trickle-down rule. On a serial machine, applying trickle-down can be done by iterating over the match
hypotheses, starting at the roots of the match hypothesis forest and working downwards. First, suppose
each match hypothesis has only a single parent, so greedily selecting among parents is not a factor.
Since this only requires processing each match hypothesis once, the complexity is O(m). On a data-
parallel machine, assuming at least m processors, the time required will be proportional to the
maximum depth of expressions being processed. In the worst case this would be O(m), in the
(extremely unnatural) case when the base and target were single expressions with extremely deep
nesting, i.e.,

 (P (P (P … (P e)…)))

More typically, there is a small integer d that can be found as an upper bound on the depth of
expressions, in which case the data-parallel time required will be constant independent of m.

Now, consider the case where match hypotheses have multiple parents. Each match’s parents must be
sorted by score, so that they can be greedily selected for trickle-down. If a match has p parents, this will
require O(plog(p)) time, however, p in our experience is always small, so we ignore the cost of this
operation.

2.4 Kernel Creation
Kernels form an important intermediate representation in the creation of a mapping. They represent
the place where we believe that the shift from parallel processing to serial processing in analogical
matching occurs, and where we suspect that penetrability can begin to occur.

A kernel consists of the union of a structurally consistent root match hypothesis with its descendants.
The structural evaluation score of a kernel is the sum of the structural evaluation scores for the match
hypotheses that comprise it. The nogoods of a kernel is the union of the nogoods of the match
hypotheses that comprise it.

Kernels are found by the following algorithm:

1. For each root R in the match hypothesis forest,
a. If R is structurally consistent, then create kernel K consisting of R descendants(R).
b. Otherwise, recurse on arguments(R)

It is important to note that match hypotheses can be in multiple kernels. Merging kernels with
overlapping base structure can lead to candidate inferences, if the base statements corresponding to
the match hypothesis roots are not themselves roots of the base description, as Fig. 6 illustrates.

2.4.1 Complexity of Kernel Creation
An extreme upper bound for the complexity of this step is O(m), where m is the number of match
hypotheses. This could in theory occur when the match hypothesis forest is extremely shallow,
consisting of correspondences between distinct unary predicates with an entity as their argument,
leading to m/2 kernels. The best case would be when the base and target were completely isomorphic
structures with a single root, with each subexpression having a unique functor. In that case there would
be exactly one kernel. In practice the number is somewhere in between, with good matches having a
small number of large kernels and poor matches having a lot of small ones.

9

2.5 Match Filters
The greedy merge algorithm used to combine kernels into mappings provides a good approximation to
the best mapping, in terms of structural consistency. We believe that this is both psychologically
accurate and useful computationally. However, in cases where task demands impose additional
constraints on mappings, a carefully constrained set of filters, automatically constructed by the larger
task model, can be provided as one of the inputs to the match process.

Filters work by eliminating kernels from further consideration, weeding them out before they are used
in the merge phase. Here is how they operate:

 (Excluded bi tj) remove kernel if it contains a match hypothesis which maps bi to tj.
 (Required bi tj) remove kernel if it contains a match hypothesis which maps bi to some

tk, tk tj or if there is a match hypothesis that maps tj to some bl, bl bi.
 (Identical-functions) remove kernel if it contains a match hypothesis that maps a

functor F which is a function to some function G, G F.
 (require-within-partition-correspondences Att1 Att2) remove kernel if it

contains a match hypothesis that maps an entity with attribute Att1 to an entity with attribute
Att2.

It is important to notice that filtering only determines whether or not kernels are considered in the
merge phase, i.e., kernels inconsistent with the filters are not destroyed. This provides the ability to
rapidly explore alternate interpretations, since the only work that needs to be re-done when exploring
alternate constraints is re-doing the merge process itself.

2.5.1 Complexity of Match Filters
All of the tests for filter constraints are strictly local and rely only on structural properties of the
expressions themselves, with the exception of the partition constraints. There, category membership is
tested by the existence of attribute statements explicitly within the descriptions, which again is a local
operation. Thus applying any of these filters to a single kernel can be considered a constant-time
operation, so the complexity of applying them to the set of kernels is simply O(k), where k is the number
of kernels.

2.6 Greedy Merge
A mapping is a structurally consistent set of correspondences that is maximal, i.e., adding more match
hypotheses would make it structurally inconsistent. Importantly, a comparison can have multiple
maximal mappings, due to some interpretations of that comparison being structurally inconsistent with
each other.

Mappings are created by merging kernels. As Section Error! Reference source not found. of the paper
outlines, we now use a greedy merge algorithm instead of an exhaustive algorithm, trading guarantees
of optimal outputs for efficiency. We believe that this kind of approximation is psychologically plausible.

Our algorithm proceeds in two phases:

1. For each base root that participates in a kernel, greedily merge the kernels that project to it. This
step improves the likelihood of candidate inferences by pre-combining kernels that could lead to
them.

2. Greedily merge the solutions found for each base root to form a handful of global mappings.

10

We give the formal description of the entire algorithm below. We start with the crucial core algorithm
combining partial mappings, which we call GreedyMerge. Greedy algorithms combine local solutions to
form global solutions. They require a notion of solution quality that can be used to impose a preference
ordering on local solutions. For constructing interpretations of a match, the local solutions are the
kernels and the quality metric is their structural evaluation scores. The core GreedyMerge algorithm is:

Algorithm: GreedyMerge
Input: A set of partial mappings PMAPS, a score cutoff S, and a maximum number of desired
interpretations N
Output: Up to N combined mappings, MAPPINGS

1. Sort PMAPS into a list in descending order, based on their structural evaluation scores.
2. INTERPS {}; MAX 0
3. Until PMAPS = {}

3.1. INTERP pop(PMAPS)
3.2. For each K in PMAPS,

3.2.1. If Nogood(INTERP,K) then
3.2.1.1. INTERP INTERP {K}
3.2.1.2. PMAPSPMAPS – K

3.3. For each INTERP-B in INTERPS,
3.3.1. For each K in INTERP-B,

3.3.1.1. If Nogood(INTERP,K) then
3.3.1.1.1. INTERP INTERP {K}

3.4. If score(INTERP) > MAX then MAX score(INTERP)
3.5. If score(INTERP) < S*MAX then go to 4.
3.6. INTERPS INTERPS {INTERP}
3.7. If |INTERP| = N then go to 4.

4. Mappings map(CreateMapping,INTERPS)

Note that step 3 allows an interpretation to also include kernels from previously-found interpretations.
This step is solely used in the second phase, in which global mappings are discovered.

Algorithm: CreateMapping
Input: An interpretation INTERP, consisting of a set of partial mappings
Output: A mapping M
1. Let M be a new mapping
2. Correspondences(M) apply(,map(correspondences, INTERP))
3. Score(M) apply(+,map(score,Correspondences(M))
4. CandidateInferences(M) FindCandidateInferences(M)
Finding candidate inferences is discussed in the next section.

Intuitively, the GreedyMerge algorithm selects the largest partial mapping and merges into it
everything that is structurally consistent. Each partial mapping added to the interpretation can rule out
others, since it imposes new structural consistency constraints. (The nogoods for a set of partial
mappings is simply the union of the nogoods for the partial mappings.) By starting with the largest we
improve our chances of getting the best solution. By starting subsequent solutions with the largest
remaining partial mapping, we improve our chances of getting a different yet still good solution, since to

11

be still available it must be structurally inconsistent with earlier solutions. We view the ability to
generate multiple interpretations of an analogy as critical. Even with a firm goal in mind, there can still
be several ways to interpret an analogy (e.g. the Contras example in Holyoak and Thagard (1989)).

With the GreedyMerge algorithm in hand, now we can define GreedyMap:

Algorithm: GreedyMap
Inputs: A list of kernels KERNELS, a set of match constraints CC, a score cutoff S, and a maximum
number of desired interpretations N
Outputs: Up to N global mappings, MAPPINGS
1. Let BASE-PARTITIONS = CalculateBasePartitions(KERNELS).
2. Let CANDIDATES = apply(, map(GreedyMerge, BASE-PARTITIONS)).
3. GreedyWeave({},CANDIDATES, S, N).

CalculateBasePartitions involves sorting the kernels into equivalences classes according to what
base root(s) they project onto, and performing GreedyMerge within each equivalence class. This step
is useful because candidate inferences arise from common base structure, hence pre-merging kernels
that project onto the same base increases the likelihood of good candidate inferences.

GreedyWeave simply calls GreedyMerge on each of the candidates in turn. The process stops when
either N solutions are generated or a new solution drops below the score cutoff of the previous solution.

Recall that N, the maximum number and S, the score cutoff, are psychologically motivated. The limited
number of mappings that can be produced respects constraints on memory resources, and the score
cutoff implements the intuition that an overwhelmingly better mapping swamps consideration of any
alternatives. The default value for N is 3, and the default value for S is 0.8.

2.6.1 Complexity of Greedy Merge
Let us begin with analyzing the GreedyMerge algorithm, since it is at the core of the process. The first
step, sorting the kernels, is O(klog(k)) in the number of kernels k. Each mapping is found in linear time
O(k) because it requires considering first the unused kernels and then the kernels in previous mappings.
At most, N mappings are constructed (where N = 3 by default). Therefore, the overall complexity is
O(klog(k)). This is assuming that the cost of structural consistency tests can be ignored, which is
reasonable given fast set intersection/union techniques involving bit-vectors.

Recall that the number of kernels k is worst-case O(n2) in the size of the base and target. In terms of
base and target sizes, then, the complexity of GreedyMerge is thus worst case O(n2log(n2)), i.e.,
O(n2log(n)). In practice the number of kernels is typically much smaller, since the worst-case presumes
that every statement is independent. Rich, structured representations with substantial overlap tend to
provide fewer and larger kernels, leading to better performance in such situations. This is unlike many
match algorithms, where matching larger structures always leads to worse performance.

CalculateBasePartitions involves doing a GreedyMerge step for each of the base roots. The
number of base roots as a function of the size of the base can range anywhere from 1 to n/2, the former
when the entire base is a coherent focused argument, and the latter where the base consists of a
disconnected set of entities, each with a single attribute known about it. (It can never be larger than n/2
because entities without any attribute or relational information will not participate in any match
hypotheses, and hence will be irrelevant for the algorithm.) Therefore in the worst case, the complexity
of CalculateBasePartitions is O(n2log(n)) in the case of isolated entities, with typical case

12

complexity being much lower than that. Again, with this algorithm, growth in base and target sizes does
not always result in growth in processing time or memory – it can actually decrease if the growth makes
the relational structures more connected!

Given the tight bounds imposed by N and S, the complexity of GreedyWeave is simply that of
GreedyMerge, O(n2log(n)), since the number of times it is executed depends on them instead of the
sizes of the base and target. The worst-case complexity for the GreedyMap step is simply the
complexity of its most expensive step, CalculateBasePartitions, and hence is O(n2log(n)).

2.7 Generating Candidate Inferences
The algorithm for computing candidate inferences is:

Algorithm: FindCandidateInferences
Input: A mapping M
Output: the set of candidate inferences CandidateInferences(M)
1. CandidateInferences(M) {}
2. For each R Roots(Base(M)),

2.1. When MH Correspondences(M) | Root(BaseItem(MH)) = R
 MH2 Correspondences(M) | BaseItem(MH2)=R

2.1.1. CandidateInferences(M) CandidateInferences(M)
 ConstructCI(R, M, {})

3. For each CI CandidateInferences(M), CIStrucuturalEvaluation(CI)

That is, each root expression of the base that intersects the subset of the base that is mapped by M but is
not already included in the correspondence gives rise to a candidate inference. Reverse candidate
inferences are computed via the same algorithm, using the target as the starting point instead of the
base.

There is a subtle issue here concerning how much overlap between the base and the mapping is needed
to suggest a candidate inference. The most conservative criterion requires overlapping statements, the
most liberal criterion requires only overlapping entities. The conservative criterion limits candidate
inferences to filling in causal, inferential, or other higher-order structure involving overlapping
statements. The liberal criterion enables candidate inferences to import whole new structures into the
target, based on entity overlaps established by other parts of the base. Given the need to evaluate
candidate inferences in any case, the default mode of operation is the liberal criterion. However, SME
includes a switch for enforcing the conservative criterion, which is implemented by an extra condition in
line 2.1 above.

Recall that candidate inferences can introduce new entities into the target, called skolem entities. The
ConstructCI algorithm must do a tree walk through the base expression, introducing such skolems as
necessary. We say that a base item B is mapped in mapping M if there is some match hypothesis in the
correspondences of M which has B as its base item. If B is mapped, then its correspondent is the target
item for the match hypothesis which mentions B. Similarly, if a target item T is mapped in M, then its
correspondent is the base item for the match hypothesis that involves T. (That correspondent, when
defined, is a function follows directly from the 1:1 constraint of structure-mapping.) Thus we must
introduce skolems for each entity in the base expression that does not have a correspondent.
Moreover, we must introduce the same skolem for each occurrence of the entity in the base expression,

13

since an entity can occur multiple times in the same expression. This is what makes ConstructCI a bit
complex, since it must maintain a table of bindings.

Algorithm: ConstructCI
Input: A base item B, a mapping M, and a set of bindings Skolems
Outputs: An expression representing a candidate inference and a set of skolem entities for base items
that have no correspondent in the target.
1. If B is an entity,

1.1. If Mapped(B,M) then return Correspondent(B,M) and Skolems
1.2. If lookup(B,Skolems) then return value(lookup(B,Skolems)) and Skolems
1.3. Let Sk(B) be a new skolem constant. Return Sk(b) and Skolems Bind(B,Sk(B))

2. If B is a functor, if Mapped(B,M) then return Correspondent(B,M) and Skolems, otherwise
return B and Skolems

3. Otherwise B is an expression.
3.1. If Mapped(B,M) then return Correspondent(B,M) and Skolems
3.2. Otherwise, let cargs = empty list

3.2.1. Let cfunctor, skolems = ConstructCI(functor(B),M, skolems)
3.2.2. For each A arguments(B),

3.2.2.1. Let carg, newskolems = ConstructCI(A,M,skolems)
3.2.2.2. Let cargs = cargs {carg}
3.2.2.3. Let skolems = newskolems

3.2.3. Return MakeExpression(cfunctor, cargs)

A subtle issue in ConstructCI is that it assumes that functors lying outside the mapping should be
brought over intact. This design choice reflects our intuition that one purpose of analogical matching is
to help regularize, and thus extend, one’s knowledge. The alternative would be to always create a
skolem constant for the functor, and then attempt to replace it with the functor from the base as a
separate step. Since candidate inferences always need to be checked for validity in any case,
inappropriate carryover of functors will be detected during this process anyway. Our choice to carry
them over intact biases the process towards accepting the carryover by default.

The structural evaluation algorithm for computing support and extrapolation scores
(CIStructuralEvaluation above) is a variation of the algorithm used for mappings. To compute the
support score of a candidate inference, the initial bias plus trickle-down algorithm is executed on just
the subset of the correspondences that support it in the mapping and adding up the results.

The extrapolation score of an analogical inference is, roughly, the size of the new information over the
total size of the inference. Consider two limiting cases, neither of which can actually occur. If there were
no support (i.e., a hallucination), all the information would be new, so the extrapolation score would be
1. If there were nothing new (everything was there already), then the score would be 0. Any real
candidate inference will be somewhere in between these two values.

The algorithm for computing extrapolation scores is

1. Apply the trickle-down algorithm to the structure of the inference itself, i.e., as if we were
matching the inference to itself

2. The extrapolation score is

14

)()(

)(
InsidescoreOutsidescore

Outsidescore

where Inside refers to the items in the candidate inference that are part of the mapping and Outside
refers to the items in the candidate inference that are being projected. Using the trickle-down
algorithm provides a more conservative score than simply counting items would, since the existence of
large structures outside the mapping will lead to higher scores inside the mapping due to trickle-down.

2.7.1 Complexity of Candidate Inference Generation
Since the size of statements is typically small compared to the number of statements in the descriptions,
we ignore all variability in cost of recursive traversal of statements, treating it as a constant, and focus
instead on the number of candidate inferences there can be, since that can vary as a function of the size
of the input descriptions. Because of structural consistency, each base root can participate in at most
one candidate inference per mapping. Consequently the growth of candidate inferences is bounded by
O(n).

2.8 Extending and Remapping
The intuition behind incremental mapping is that normally people first try to incorporate new
information into an ongoing mapping (Extend), but that they can reinterpret the analogy if necessary
(Remap).

Extending a mapping occurs when new information is added to the base or target of a match. Basically,
the new information is matched against the other representation, leading to new match hypotheses and
new kernels. Notice that since the information is new by assumption, there cannot already be any
correspondences pertaining to it in the match. Therefore either some new kernels will be formed, or
the new information does not match at all to the other description in its current state. New kernels are
then added to existing mapping(s) if they are structurally consistent with them. This can lead to the
elimination of candidate inferences, if the new information is about the target and “fills in” the missing
structure.

The worst-case complexity of extending a mapping is the same as the Comparison algorithm, since in the
worst case one is adding all of the information to an empty base and target. The typical case complexity
is of course much lower, since adding one new item to the base (or target) only requires checking it
against all of the items in the target (or base), not re-checking any previous base (target) statements.

The Remap algorithm simply destroys the existing mappings and re-performs the Greedy Merge
algorithm based on the full set of kernels from scratch. Thus the complexity of the Remap operation is
simply that of the Greedy Merge algorithm. Psychologically, we believe that the remapping criteria
people use is task-specific. Consequently, SME does not automatically remap: The decision to remap
must be taken by some external model or system. To help external systems make such decisions SME
does provide an estimate of what fraction of the total possible structural evaluation the current
mappings represent. When this fraction gets low, it suggests that remapping might lead to a better
global interpretation.

2.8.1 Complexity of Extending a Match and Remapping
Extending a match with new items in the base and/or target requires extending the match hypothesis
forest and adding the kernels (if any) to the existing mappings. The candidate inferences for the
mappings need to be recomputed. This is clearly bounded above by the complexity of computing the

15

match from scratch, although in practice it is typically far less. Remapping simply re-runs GreedyMap,
which is O(n2log(n)), as per the analysis above.

3 Complexity of the SME algorithm
If, as we believe, comparison comprises one of the core processes of cognition, then it is crucial for its
computational complexity to be low. SME’s computational complexity is in fact quite low. Recall that if
the number of items in the base and target is n, the number of kernels k is bounded by n2. The results of
the complexity analysis can be summarized as follows:

Operation Worst-case
time, serial
processing

Finding match hypotheses O(n2)

Structural consistency filtering O(n2)

Structural evaluation propagation O(n2)

Kernel creation O(n2)

Filtering O(n2)

Greedy merge O(n2log(n))

Candidate inference construction O(n)

Extending/Remapping O(n2log(n))

Thus the SME algorithm is worst-case O(n2log(n)) on a serial processor. Most of SME’s processing can be
done in parallel, as our analyses of individual steps noted. Assuming a data-parallel machine with at
least n2 processing elements to handle match hypothesis networks, the processing for the overall
algorithm would be between log and linear, depending on specific assumptions about the parallel
architecture.

