Support for Cognitive Science Experiments

CogSketch as Research Instrument

Gathering and modeling data in laboratory and classroom experiments

- Model existing psychological experiments
- Collect human data via sketching
- As visual/spatial processing calibrated, provide automatic data analysis facilities

Two Roles in Experiments

- Cognitive simulation platform
 - Including Evans analogy examples
- Gathering & analyzing human data
 - Exporting ink data
 - Interface simplifications

Two Hypotheses about Human Cognition

- Analogy is a central mechanism of reasoning and learning
 - cf. Gentner's Why we're so smart (2003)
- Common sense reasoning primarily relies on within-domain analogical reasoning and generalization, organized around qualitative representations

– Forbus & Gentner, 1997

- Implications:
 - Symbolic, relational representations essential
 - Matching, not chaining

Structure-Mapping Theory (Gentner, 1983)

- Analogy and similarity involve
 - correspondences between *structured* descriptions
 - Feature vectors are inadequate to model human cognition
 - candidate inferences fill in missing structure in target

- Also provides account of similarity, metaphor
- Growing body of psychological evidence that same processes are used in perception, problem solving, and conceptual change

SME: Structure-Mapping Engine

- + structural evaluation
- + candidate inferences

Computational Properties of SME

- Scalable
 - Cases can contain thousands of propositions
 - Cases can be dynamically constructed and expanded from knowledge base contents
- Flexible
 - Has been used with large knowledge bases developed by others (e.g., Cyc, KM)
- Supports Integration
 - Analogy ontology enables smooth integration with logical reasoners
- SME remains the only general-purpose cognitive simulation of analogical matching used with multiple knowledge systems and reasoners

SME can operate over visual structure

Building Blocks for Analogical Processing

Psychological evidence (examples)

- Used to model existing findings
 - e.g., SME models effects of relational structure on similarity
 - e.g., MAC/FAC models dissociation between surface effects on reminding versus preference for deep structure in mapping
 - e.g., SEQL-based model of Marcus experiment still only one that learns in same span of stimuli as infants, and can handle noise
- Used to predict new findings
 - e.g., SME: Initial stage of metaphor processing is symmetric
 - e.g., SEQL: Can generate orders of presentation which can help/hurt concept learning
- A number of aspects not yet modeled
 - e.g., Working memory capacity limits

Some CogSketch Simulation Examples

Geometric Analogy

• Problems of the form "A is to B as C is to __?"

Learning spatial prepositions

Best Generalization IN Size: 3 (candle in bottle, cookie in bowl, marble in water) --DEFINITE FACTS: (rcc8-TPP figure ground) --POSSIBLE FACTS: 33% (Basin ground) 33% (Bowl-Generic ground)

Raven's Progressive Matricies

- Used to measure intelligence
- Extensive data on human performance available

Visual Oddity Task

Geometric Analogy

• Problems of the form "A is to B as C is to __?"

Geometric Analogy

• Problems of the form "A is to B as C is to __?"

Evaluation

- Constructed 20 problems originally used by Evans (1968) with his landmark ANALOGY system
 - Gave problems to 34 participants
 - Ran problems on computational model
- Model chooses answer preferred by humans on all 20 problems
- Model shows a .75 correlation with human timing data

Raven's Progressive Matricies

- Used to measure intelligence
- Extensive data on human performance available

Two-Stage Structure Mapping

Solving the RPM

Row solution

- A is to B, as C is to __?
 - difference(A,B)
 - In A, the inner object is on the left side of the outer object
 - In B, the inner object is on the right side of the outer object

Solving the RPM

- Column solution
- A is to B, as C is to __?
 - difference(A,B)
 - In A, the inner object is on the top half of the outer object
 - In B, the inner object is on the bottom half of the outer object

Evaluation

- Initially evaluated on two fairly easy sections of the standard RPM
 - B: 2x2 matrices, 6 possible answers
 - C: 3x3 matrices, 8 possible answers
- Performed at the level of the average American adult on those sections
 - B: 12/12
 - C: 10/12

Visual Oddity Task

Visual Oddity Task

Our model for the Oddity Task

Results

- Overall Performance: 39 / 45
- Correlation w/Americans: 0.656 (aged 8-13)
- Correlation w/Mundurukú: 0.493 (all ages)
- Model can be used to identify operations that contribute to problem difficulty

Copy/Paste from PowerPoint

- Import shapes drawn in PowerPoint via copy/paste
- PowerPoint shape -> Glyph

Copy/Paste from PowerPoint

- What is supported
 - Most simple shapes
 - Straight/Curved, Open/Closed, Custom-drawn, etc
 - Line thickness, line color, fill color
 - Group PowerPoint shapes together to make them a single CogSketch glyph
- Not supported
 - More complex shapes
 - 3D shapes, shapes with multiple polygons, arrows
 - More complex attributes (shading, textures, etc)

Exporting Ink

Result of Ink Export

			Note: Timestamp information provided for every ink point in the sketch								Ink	
Sketch Namestring	Sketch Case	Bundle Namestring	Bundle	Layer Name		Glyph Names	Glyph	Ink ID	Ink Type			Point Time t stam p (s)
Shopping Cart Redux	Case- 3429195339	"Shopping Cart Anatomy"	BCase- 342919545 2	"Physical "	ObjectL-225	"Handle"	Object-154	74	sketch- polylin 5e	2.244		3252.35 39d0
Shopping Cart Redux	Case- 3429195339	"Shopping Cart Anatomy"	BCase- 342919545 2	"Physical "	ObjectL-225	"Handle"	Object-154	74	sketch- polylin 5e	2.244		3252.64 31d0
Shopping Cart Redux	Case- 3429195339	"Shopping Cart Anatomy"	BCase- 342919545 2	"Physical "	ObjectL-225	"Handle"	Object-154	74	sketch- polylin 5 e	2.244		52d0
Shopping Cart Redux	Case- 3429195339	"Shopping Cart Anatomy"	BCase- 342919545 2	"Physical "	ObjectL-225	"Handle"	Object-154	74	sketch- polylin 5e	2.265		1252.70 73d0

Viewing Timing Data

- Glyph order
 - Need to be in experimenter mode
- Ink replay

Gathering Sketch Data

- Potential CogSketch advantages in data collection:
 - Easier to archive and transmit bits than dead trees
 - Captured digital ink is potentially easier to analyze than video or scanned bitmaps
 - Timing data automatically captured
 - Conceptual labeling could reduce subsequent hand-coding of data ("what's that??")
 - Visual/spatial processing could become calibrated enough with human judgments to automate some kinds of data analysis
- Potential disadvantages:
 - Teaching participants how to sketch with it
 - Overhead of conceptual labeling can be distracting

Simplifying Concept Labeling

- Worksheets use a simple list
- Can be done in any order

Ľ	🖁 Label your dr	awing	X
	(is a	
	Fault Normal fault Reverse fault Hanging wall Foot wall Rock Force		
			OK Cancel

Experimental: Free-form NL input

Coming up: Skins and Scripting

- Skins = ability to hide/expose capabilities in the interface
 - Often useful for participants to have fewer distractions
 - You can already choose skins when building worksheets
 - File format and documentation under development to let experimenters generate their own skins.
- Scripting
 - Want ability to run participants through a number of sketching exercises, with minimal or no experimenter intervention

- Suggestions about what you need would be welcome

Questions?

