Wrap-up
Overview

• Seeking feedback on some plans for the near future
 – New conceptual labeling methods
 – High-level language for visual routines
 – Authoring support for education
 – Other “sweet spots” for education?
 – Building a community

• Discussion: What would you like to do with CogSketch?
Current Conceptual Labeling Schemes

KB concept picker
- Wide breadth
- High reasoning support
- High entry barrier

List concept picker
- Narrow breadth
- High reasoning support
- Low entry barrier

Strings
- Wide breadth
- No reasoning support
- Low entry barrier
Glyph Button Bars

- Associate domain symbols with predefined layer types
 - Use drag and drop to fill out information
- Can scale to 10^3 glyph types
- Only makes sense if learning visual symbols is part of domain learning

1. Choose type of glyph
2. Fill out roles in complex entities filled in via drag & drop
3. Draw
4. Draw ink for the glyph
5. Finish
Plan: Explore NLU for labeling

• Use string as input to natural language system
 – Lexical lookup
 – Phrase parsing
 – Use context of sketch to help disambiguate
 – If uninterpretable, fall back to just recording string

• Resources
 – WordNet/OpenCyc links already in KB
 – Exploring VerbNet for subcat frames to import
 – Existing simplified English NLU system (EA NLU) using ResearchCyc KB contents
Modalities for entering non-spatial information

• Examples: intended behavior, purpose of design, Q/A in tutoring, …

• Simplified English NLP
 – Same infrastructure for conceptual labeling, plus discourse processing
 – Progress in language-based tutors suggests that this may be feasible for particular types of tasks

• Form-filling
 – Much less flexible, but very practical
 – Can use same word/phrase parsing as conceptual labeling
Smoother Interface Mechanics

• Annoyance: Button presses to start/stop glyph drawing
 – Improvement: Right-click for start/stop as option
 – Speech commands another option in some settings
 – Open question: How can automatic segmentation be made usable?
 • Needs to be extremely reliable
 • Needs robust error recovery
 • Need to allow user intervention if necessary
Continue extending CogSketch into broad-scale model of human visual-spatial processing

- Accurate simulation of human performance
 - Evans, RPM, Visual Oddity
 - Expand: Sorby, Vandenberg, Paper Folding, etc.
- Explain individual & group differences via parameters and ablation
- Goal: Convergence of model as number of phenomena captured grows

![Graph showing accuracy vs. model additions and phenomena modeled.]
Visual Routines Language

- Rapid convergence of techniques used to solve various visual tasks
 - But all of the simulations are written in Lisp code, driving CogSketch internal operations
- Possible approach: Define high-level declarative language for writing visual routines
 - Constrained to psychologically plausible operations
 - Support uploading of new routines by CogSketch users
 - May provide a simpler way to program CogSketch than the API
Other “sweet spots” in education?

• Working hypothesis: Sketch-based educational software could have great benefits for education
• Worksheets: Simple, practical, low entry barrier
• Design Buddy: Complex, but could raise the bar for intelligent tutoring systems
• Where else should we be looking?
Building a Community

• Add “phone home” facility for gathering data from willing users
 – Identities scrubbed for privacy reasons
• Provide on-line archive for researchers to access submitted sketches
• Build distribution site for worksheets
 – Goal: Create an “ecology” of worksheet users
Discussion

• You’ve now seen the current state of CogSketch
• What might you be interested in doing with it?
• How might we extend it to help you do that?