Scaling Up in Size and Knowledge

- **The Good News:**
 QSIM predicts all possible behaviors consistent with given qualitative and semi-quantitative knowledge.

- **The Bad News:**
 QSIM output can be large, even infinite.
 The problem is real, not spurious, behaviors.

- **The Good News:**
 There are solutions.
Four Solutions to Intractability

- **(1) Chatter Abstraction**: detect and abstract a region of unconstrained change to a single qualitative state.

- **(2) Model Decomposition**: use both state-based and history-based simulation to ignore irrelevant relationships.

- **(3) Temporal Logic Model-Checking**: use a theorem-prover to query the behavior tree.

- **(4) Temporal Constraints**: guide the simulator’s attention to specified portions of the state space.
(1) The Problem of Chatter

Chatter occurs when a variable’s direction of change is unconstrained, except by continuity.

Chatter in one variable can propagate to others.
Qualitative behaviors are trajectories through state space. Chatter is a property of a region of the state space.

Sometimes knowledge of higher-order derivatives can help. Often not.
Chatter Box Abstraction

- Detect entry into a chatter box.
- Identify chattering variables and boundary values.
- Do focused envisionment to detect exits from chatter box.
- Replace envisionment with a single abstract state.

But: envisionment is still exponential in number of chattering variables.
Dynamic Chatter Abstraction

- Detect entry into chatter box.
- Create *chatter dependency graph*:

![Diagram of chatter dependency graph]

- Evaluate status of classes of chatter-equivalent variables.
- Simulate with abstracted qdirs. (Unique values indicate exit from chatter box.)

Analysis is complex, but the algorithm is efficient.
(2) Model Decomposition

- The Problem:
 - Basic QSIM uses a global state representation.
 - Unrelated changes must be temporally ordered.
 - Branch on all possible orders.

- The Solution:
 - Decompose complex model into weakly-interacting components. [Simon, 1969]
 - Combine component behaviors into model behavior.
QSIM = Temporally-Extended CSP

• Compute all behaviors of each component.
 – State-based simulation within components.
 – Abstract values for unknown boundary variables.
 – Guided simulation for known boundary variable behavior.

• Each component behavior must belong to some global behavior.
 – History-based analysis between components.
 – Causal dependency among components controls simulation order: sequential or concurrent.

• Record dependencies among component behaviors.
Example: Controlled Two-Tank Cascade
Efficiency Gains on N-Tank Systems

Different causal topologies:

- **Cascade**
- **Chain**
- **Loop**

<table>
<thead>
<tr>
<th>Number of Comp’s</th>
<th>Cascade</th>
<th>Chain</th>
<th>Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QSIM</td>
<td>DecSIM</td>
<td>QSIM</td>
</tr>
<tr>
<td>2</td>
<td>0.204</td>
<td>0.815</td>
<td>3.075</td>
</tr>
<tr>
<td>3</td>
<td>0.621</td>
<td>1.6</td>
<td>10.94</td>
</tr>
<tr>
<td>4</td>
<td>2.2</td>
<td>3.12</td>
<td>37.55</td>
</tr>
<tr>
<td>5</td>
<td>7.09</td>
<td>5.49</td>
<td>139.3</td>
</tr>
<tr>
<td>6</td>
<td>21.92</td>
<td>6.32</td>
<td>676</td>
</tr>
<tr>
<td>7</td>
<td>71.59</td>
<td>8.39</td>
<td>1633</td>
</tr>
<tr>
<td>8</td>
<td>236</td>
<td>11.67</td>
<td>8101</td>
</tr>
<tr>
<td>9</td>
<td>806</td>
<td>11.75</td>
<td>nt</td>
</tr>
<tr>
<td>10</td>
<td>nc</td>
<td>14.05</td>
<td>nt</td>
</tr>
</tbody>
</table>

Graphs showing run time (Sec) vs. number of components for each topology.
(3) Temporal Logic Model-Checking

- Temporal logic expresses what we want to know about the behaviors.

- The QSIM behavior tree can be viewed as a model for statements in a branching-time temporal logic.

- Model-checking determines whether a statement is true of the behavior tree.
 - Sound and complete.

- QSIM behavior tree predicts behaviors of dynamical systems.
 - Guaranteed coverage, but possible spurious behaviors. (Filtering is sound but incomplete.)

A universal statement can thus be proved by qualitative simulation.
Simulating KJA PI controller.
Behavior tree rooted at S-0,
with 1 initial states and 17 behaviors.

Some behaviors don’t terminate...
Checking: (EVENTUALLY (STATUS QUIESCENT)).
Validity = (NIL NIL T NIL T T T NIL T T T NIL T T T T T).

...but all that terminate have zero error.
Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT) (QVAL E (0 STD)))))
Validity = T.

Every fixed point is stable.
Checking: (NECESSARILY (ALWAYS (IMPLIES (STATUS QUIESCENT) (STATUS STABLE))))
Validity = T.
Technical Issues

Matching assumptions between QSIM and Model-Checking.

- A behavior tree is *closed* when every behavior terminates with a quiescent state, a region transition, or a cycle.
- The QSIM Guaranteed Coverage theorem applies only to closed behavior trees.
- For effective model-checking, cycles in the behavior tree output by QSIM must be unwound one extra time.
The Main Theorem

- **Main Theorem:**
 - If Φ is a universal state formula in EBTL and M is a closed tree and $(\text{TL } M \Phi)$ returns T, then Φ' is true of every real function consistent with the QDE.

- **Lemma:** the QSIM Guaranteed Coverage Theorem
 - If QSIM returns a closed tree then QSIM predicts every real function consistent with the QDE input.

- **Caveats:**
 - If M is not closed, some real behaviors may not be predicted (yet).
 - If Φ is not universal, the model of Φ' could be a spurious behavior.
Level Control of the Water Tank

\[\dot{x} = f(x, u) = q - u \cdot p(x). \]

- \(x \) = amount in tank
- \(q \) = inflow into tank
- \(u \) = drain area
- \(p(x) \) = influence of pressure at drain
A Heterogeneous Controller

The operating regions and their appropriateness measures:

![Diagram showing operating regions]

1. **Low**
2. **Normal**
3. **High**

The local control laws:

- \(x \in Low \Rightarrow u_l(x) = 0 \)
- \(x \in Normal \Rightarrow u_n(x) = k(x - x_s) + u_s \)
- \(x \in High \Rightarrow u_h(x) = u_{max} \)

The global control law:

\[
 u(x) = l(x)u_l(x) + n(x)u_n(x) + h(x)u_h(x).
\]

The discrete abstraction:

\[
 \text{Low} \rightarrow \text{Normal} \leftarrow \text{High}.
\]
Qualitative Combination of Behaviors

- Overlapping operating regions for the local laws.

- Require qualitative agreement where laws overlap.

- Guarantee monotonic behavior in overlap regions.

\[
\begin{align*}
 \text{Low} & \Rightarrow q > 0 \\
 \text{Normal} & \Rightarrow q_b < q < q_c \\
 \text{High} & \Rightarrow q < u_{\text{max}} \cdot p(c)
\end{align*}
\]

- Abstract the control law to a finite transition diagram.
Behavior Trees for Local Control Laws
Validity of Qualitative Properties

Simulating controller U_l.
Behavior tree rooted at $S-0$, with 3 initial states and 3 behaviors.
Checking UPWARD-MOTION: $$(\text{NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL) (QVAL X (NIL INC)))))}$$
Validity at $S-0 = T$.
Checking DESTINATION: $$(\text{NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL))}).$$
Validity at $S-0 = T$.

Simulating controller U_n.
Behavior tree rooted at $S-40$, with 16 initial states and 34 behaviors.
Checking UPWARD-MOTION: $$(\text{NECESSARILY (ALWAYS (IMPLIES (QVAL X ((NIL B) NIL) (QVAL X (NIL INC)))))}$$
Validity at $S-40 = T$.
Checking DOWNWARD-MOTION: $$(\text{NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) NIL) (QVAL X (NIL DEC)))))}$$
Validity at $S-40 = T$.
Checking DESTINATION: $$(\text{NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL))}).$$
Validity at $S-40 = T$.
Checking STABILITY: $$(\text{NECESSARILY (EVENTUALLY (AND (QVAL X ((B C) STD)) (STATUS QUIESCENT) (STATUS STABLE))))).$$
Validity at $S-40 = T$.

Simulating controller U_h.
Behavior tree rooted at $S-167$, with 3 initial states and 21 behaviors.
Checking DOWNWARD-MOTION: $$(\text{NECESSARILY (ALWAYS (IMPLIES (QVAL X ((C NIL) NIL) (QVAL X (NIL DEC)))))}$$
Validity at $S-167 = T$.
Checking DESTINATION: $$(\text{NECESSARILY (EVENTUALLY (QVAL X ((B C) NIL))}).$$
Validity at $S-167 = T$.
(4) **Temporal Constraints: TeQSIM**

Temporal logic lets the modeler use knowledge not expressible in the QDE or SQDE.

- Trajectory constraints describe intended behaviors.
 - Time-varying exogenous variables.
 - Events and discontinuous changes.
 - Semi-quantitative bounds on behaviors.

- Interleave QSIM with the temporal logic model-checker. Accept only behaviors consistent with TL constraints.

- Focus attention on subset of behavior space.
TeQSIM Examples

• Specify exogenous input.

(event step-up :time (2 3))
(event step-down :time (17 24))
(disc-change (event step-up)
 ((inflow (normal high)
 :range (1500 1800)))
(disc-change (event step-down)
 ((inflow normal)))

• Focus on overflow scenario.

(event open)
(disc-change (event open)
 ((valve (normal max)
 :range (4 nil))))
(before (qvalue level (top nil)) (event open)
 (eventually (qvalue level (top nil))))

Derive temporal bounds on (event open) to prevent overflow.
More Information:
http://www.cs.utexas.edu/users/qr

Qualitative Reasoning