Model-based Diagnosis and Fault Analysis - Applications in the Automotive Industry

Peter Struss

OCC'M Software GmbH
1 Tasks and Requirements
2 Model-based Solutions
3 Applications 1: On-board Diagnosis
4 Applications 2: FMEA
5 Applications 3: Workshop Diagnosis
6 Applications 4: Authoring Systems
7 Research Topics
Model-based Systems for industrial Applications

- Product Life Cycle

(Re-)Design

- Recycling
- Maintenance

Manufacturing

Control

OCC'M Software
Model-based Systems for industrial Applications

Basis for problem solving:
- Knowledge about Technologies

(Re-)Design

Recycling

Manufacturing

Maintenance Control

- Function
- Components
- Processes
- Materials

- Production processes
- Disturbances
- Faults
- ...

OCC’M Software
Requirements

- Variant problem
 - versions of subsystems
- Safety critical application
 - completeness of results
- Diagnostics during design
- Representation and re-use of knowledge
1 Tasks and Requirements
2 Model-based Solutions
3 Applications 1: On-board Diagnosis
4 Applications 2: FMEA
5 Applications 3: Workshop Diagnosis
6 Applications 4: Authoring Systems
7 Research Topics
Key Ideas: **Compositional Modeling**

- **Library:** Component Models
- **Component Behavior**
- **Structure**
- **System Model**
- **CAD Data**

domain specific

- User: specifies structure only
- System model is generated automatically

system specific

OCC’M Software

Heller AG 17.4.97 Struss Auto 1 – 7
Component Type Models
Key Ideas: Generation of Diagnosis Systems

- **domain specific**
 - Library: Component Models
 - Component Behavior
 - Structure

- **task specific**
 - Generic Diagnosis Algorithm
 - System Model

- **system specific**
 - CAD Data
 - Specific Diagnosis System

- **User:** specifies structure only
- **Diagnosis system is generated automatically**
Key Ideas: **Generic Diagnosis Algorithm**

Diagnosis:
- Find an assignment of a mode (Ok, Fault₁, ...) to each component C_i such that
- the MODEL and the OBSERVATIONS are consistent
Key Ideas: Generic Diagnosis Algorithm

Note:
- Any kind of model will do
- if it preserves the component structure of the device
- Numerical, statistical, qualitative, ...

System \[\text{Observations} \rightarrow \text{OK}(C_1), \text{OK}(C_2) \rightarrow \text{Predictions} \rightarrow \text{Model} \]
Demonstrated

- Compositional, qualitative models
- Re-use of models
Requirements

Different Tasks - shared knowledge
- FMEA
- On-board diagnostics
- Authoring system
- Workshop diagnosis
Example: Turbo Control

- FMEA:
 “Effect of turbo control valve (2) stuck-closed?”

- Workshop diagnosis:
 “Possible causes of black smoke?”

- On-board diagnosis:
 “Signals --> Faults”
Demonstrated

- Re-use of models
- Re-use of model-based analysis
Key Ideas: Re-use of Models

- **domain specific**
 - Library: Component Models
 - Component Behavior
 - Struktur
 - CAD Daten

- **task specific**
 - Specific Test Generator
 - Specific FMEA System
 - Specific Diagnosis System
 - General Algorithm
 - Test Generation Algorithm
 - Generic Diagnosis Algorithm

- **system specific**
 - System modell
 - Diagnosis System
 - ...
Additional Power through Qualitative Models

Cover

- Classes of Systems
 - independently of specific parameters
 - and contextual conditions
- Classes of Faults
 - “valve does not open properly”
 - e.g. FMEA
- Classes of Symptoms
 - “increased carbon emissions”
 - e.g. diagnosis manuals

- Efficient analysis and diagnosis
Qualitative Modeling

Equations
Q₁ + Q₂ = 0

Domain Signs
[x] := sign (x)

Derivatives
∂x := [dx/dt]

Deviations
Δx := x_{act} - x_{ref}

Model Fragments

[Q₁] ⊕ [Q₂] = [0]
∂Q₁ ⊕ ∂Q₂ = [0]
[ΔQ₁] ⊕ [ΔQ₂] = [0]
Engine Model - Combustion (Partial)

fuel atomisation ΔAF
fuel mass ΔMF
air mass ΔMA
air oxygen rate ΔAO

Combustion

E combustion energy
EO exhaust oxygen rate
NO nitrogen oxides
EC carbon emissions

<table>
<thead>
<tr>
<th>ΔAF</th>
<th>ΔMF</th>
<th>ΔMA</th>
<th>ΔAO</th>
<th>ΔE</th>
<th>ΔEO</th>
<th>ΔNO</th>
<th>ΔEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[-]</td>
<td>[+]</td>
</tr>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[+]</td>
<td>[0]</td>
<td>[+]</td>
<td>[+]</td>
<td>[0]</td>
</tr>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[-]</td>
<td>[0]</td>
<td>[-]</td>
<td>[-]</td>
<td>[0]</td>
<td>[+]</td>
</tr>
<tr>
<td>[-]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[-]</td>
<td>[+]</td>
<td>[0]</td>
<td>[+]</td>
</tr>
</tbody>
</table>

...

Struss MBDIA 4-13
1 Tasks and Requirements
2 Model-based Solutions
3 Applications 1: On-board Diagnosis
4 Applications 2: FMEA
5 Applications 3: Workshop Diagnosis
6 Applications 4: Authoring Systems
7 Research Topics