
“Situated AI” in Video Games:
Integrating NLP, Path Planning and 3D Animation

Marc Cavazza, Srikanth Bandi and Ian Palmer

Electronic Imaging and Media Communications, University of Bradford
Bradford, West Yorkshire, BD7 1DP, United Kingdom

E-mail: {M.Cavazza, S.Bandi, I.J.Palmer}@Bradford.ac.uk

Abstract

This paper investigates the integration of Artificial
Intelligence techniques into video games, from the
perspective of voice controlled adventure games.
Speech-based interfaces would add new dimensions
to the control of video games. However, the
integration of speech raises several issues, such as the
adequate level of interpretation that should be carried
by the system. We describe the implementation of a
command interpreter based on Natural Language
Processing techniques and specifically discuss the
generation of appropriate system actions from spoken
commands. The relevant AI techniques are plan
generation and path planning. We consider the
generation of simplified plans within the situated AI
paradigm as a good candidate for integration with
NLP. Work is in progress to reincorporate traditional
search-based path planning into the same paradigm.

1. Introduction: Speech Control of Video
Games

In this paper, we present ongoing research in the
integration of AI technologies into real-time
animation systems, which targets game applications.
This work originated with the project of controlling
through speech certain video games, such as the
popular DOOM™ game. While speech input is the
most user-friendly interface, it can also add new
dimensions to the control of game characters. The use
of speech control enables the user to concentrate on
the visual scene rather than on the I/O devices and
also brings increased realism. However, shifting from
direct control to language-based control requires that
the system possesses some interpretation capabilities
that would correspond to the higher level of
abstraction required. These interpretation capabilities
should also compensate for the difference in response
time between direct commands and spoken
commands.

There has been previous research in the control of
game-related actions through natural language input,
such as that of Chapman (Chapman 1991). More
recently, the AnimNL project at University of
Pennsylvania (Webber et al. 1994) has explored some
important issues in the relations between natural
language instructions, actor behaviour and the actor’s
environment, though the intended system is not meant
to be fully interactive. One important result is that
natural language instructions can generate complex
behaviours that are best described by planning
techniques (Geib, Levison, and Moore 1994).
However, in many systems implementing high-level
control (mainly through natural language) of
animated characters’ behaviours described in terms of
planning techniques tend to be implemented by
simpler techniques. Plans are essentially compiled
into scripts or Finite-State systems, good examples
being the SODAJACK system (Geib, Levison, and
Moore 1994) and the PERSONA project (Kurlander
and Ling 1995).

From our early specifications, it became soon
apparent that it was not possible to dissociate the
Natural Language Processing (NLP) aspects from
their interpretation into game playing functions. The
latter are supported by two main techniques, which
are planning and path planning. It is only after we
implemented our NLP module that the full
complexity of the integration of NLP with other AI
techniques appeared. In the next sections, we will
give an overview of the NLP analyser implemented.
We will then discuss how its output can be
interpreted to match the specific functions of a video
game, and, after describing the implementation of a
path planning system, draw conclusions for the
integration of a fully functional voice-operated video
game.

2. Natural Language Processing of gaming
commands

To avoid biases in the definition of possible spoken
commands, we used as a working corpus a
compilation of DOOM™ spoilers available from the
internet. These texts describe on a step-by-step basis
the traversal of a game level, including the optimal
paths and the various actions to be taken. At each
stage, the recommended actions are described as
specific instructions, such as “enter the door with the
skull on it”, “backup and wait for the door to close”,
“go back to the stairs”, “shoot the Cyberdemon with a
chaingun”. At the semantic level, the distinction to be
made is between commands that can be executed with
minimal processing and commands that require
extensive interpretation. Examples of the latter are
doctrine statements and purpose statements
(following Webber's terminology in (Webber et al.
1994)). Doctrine statements express general rules
with no direct connection with the situation at hand,
such as “shoot first, ask questions later” or “just battle
away with rockets, chaingun, etc.” As such they
describe abstract generic knowledge, largely in the
form of meta-rules that should guide system
behaviour. Doctrine statements are certainly out of
the scope of the current work. Purpose clauses
describe actions that cannot be determined from the
given instruction alone. One example in our corpus is
“shoot a barrel to get rid of most of the pink demons”.
Proper processing of that command can only be
achieved through plan generation, generating
complex preconditions for action, such as the
determination of demons and barrels’ relative
positions, etc. These are typically aimed at human
subjects as they carry the justification or explanation
for the action together with the action description. It
should be noted that, apart from the technical
difficulties, there is a practical argument against
extensive interpretation by the system. If the system
had indeed the capability to process high-level goals
these would alter dramatically the nature of the game
experience itself, and in many cases make it much
less enjoyable. We will illustrate the necessary
compromise between intelligence and playability in
the next sections, after having described the NLP
techniques implemented in our experiments.

2.1 An Integrated Parser for Spoken Commands
The first step of speech understanding is speech
recognition, for which we use a commercially

available system (Nuance6™ from Nuance
Communications). We defined a recognition grammar
for the system to ensure acceptable accuracy, thus
placing ourselves in the paradigm of habitable
command languages (Zoltan-Ford 1991). This is
based on specifying a significant number of stylistic
variant for a given concept such as to best cover the
variability of utterances. In the specific case of video
games, we expect that considering the benefits of
speech control and the learning aspects that most
games exhibits, the user would easily accept this
constraint. The recognised sentence is then passed to
the actual NLP module.

The NLP module is based on a parser integrating
syntax and semantics. As evidenced from the study of
DOOM spoilers, the various parameters for
commands and actions call for syntactic processing
capabilities. The need for syntax is for instance
evidenced by the frequency of prepositional
attachments used either in action parameters (“shoot
the baron with the plasma gun”) or in definite
descriptions identifying world objects (“open the door
with the skull on it”). The integrated parser is based
on Tree Furcating Grammars (Cavazza 1998) as a
variant of Tree adjoining Grammars (Joshi, Levy, and
Takahashi 1975). This formalism is based on a an
extended domain of locality and as such achieves a
fair degree of syntax-semantics integration, which
makes possible to construct a semantic representation
for the command in a single step.

Figure 1 is an overview of the processing for the
command “shoot the baron with the BFG9000”. The
various steps of processing can be described as
follows:
- the elementary trees corresponding to each word

are gathered into a forest (whenever one word
can activate more than one tree, several forests
are constructed)

- each forest is parsed left-to-right by checking
possible tree combinations based on tree
categories (initial or auxiliary trees)

- parsing is based on the combination of two
adjacent trees, following substitution (S) or
furcation (F) operations. This process is iterated
until the forest is reduced to a single tree of
sentential root or no further operations are
possible

- synchronous semantic operation are carried
together with tree fusion. For instance,

substituting “baron” to N0 in tree “shoot”
establishes a corresponding semantic relation (the
baron is the object of the shooting action)

The output of the integrated parser is a feature
structure with instantiated semantic relations
corresponding to the various thematic roles. The next
step is to generate corresponding actions from the
characters in the form of a script of behaviours.
Rather than using the DOOM engine, we have
emulated its functions (fig. 2) within our REALISM
animation system (Palmer and Grimsdale 1994).
Another variant is that we choose to represent the
player by an avatar, thus implementing third-person
mode. This point has implications both in terms of
command interpretation and path planning. The
semantic structure produced from the analysis of the
example sentence is:

(:action (:fire)
(:R-obj ((:actor) (:monster) (:B-of-H)))
(:R-instr ((:object) (:weapon) (:BFG))))

which has to be converted into a corresponding script,
i.e. elementary system actions that are dictated by the
nature of the game itself. The first conversion takes
place within the NLP module itself:

((:select-weapon :BFG)
 (:target :baron)
 (:fire))

Instructions one and three correspond to DOOM
commands that can be emulated, while instruction

two involves checking lines of sight and adjusting
direction. We will be assuming a kind of automatic
target lock-on, as the field of vision is rather narrow.

Finally, this would correspond to the following code
within the REALISM system:

selectItem("BFG9000");
if (target = visible("baron")) {
 rotateY(target->getPosition());
 useItem();
}

Other control structures are desirable, such as those
repeating a given action until the goal is met. For
instance, let us consider the difference in processing
“shoot the imp with rocket launcher” and “kill the
baron with the plasma gun”. In DOOM, the intention
is always to kill. While a single strafe of plasma gun
will kill an imp, several shots (or a prolonged strafe)
are needed to neutralise a baron.

The system has been implemented in Common LISP
and runs on a O2 SGI workstation with a 150 MHz
R10000 processor, the speech recognition system
running on a NT PC. The main requirement for
speech understanding in the context of video games is
user real-time response. That is to say that the
appropriate action should be taken by the system
within 1000 ms of the end of the command. We do
not address here “emergency” commands that could
for instance bypass the NLP component and for
which speech input is not optimal anyway. As the
speech recognition process would take up to 500 ms,

Fig. 1. Parsing a spoken command with the TFG formalism

P

 V

Shoot

N0↓

 *V

PP

Prep

with

N0 ↓

 N*

det

the

 N

Baron

N*

the

det

 N

BFG9000

((:action)
 (:fire)
 (:R-obj . :N0))

((:det)) ((:actor)
 (:monster)
 (:B-of-H))

((:R-instr . :N0)) ((:det)) ((:object)
 (:weapon)
 (:BFG))

F

F

FS

S

this gives an indication of what is left for the
remainder of AI computations (Cavazza, Palmer, and
Parnell 1998). The average time to process a
command from the corresponding recognised ASCII
string is 150 ms for even moderately complex orders
such as those involving PP-attachments.

2.2 Command Interpretation
The variety of plans that can be generated in response
to the interpretation of a sentence reflect the
variability of situations encountered and the fact that
commands are issued on the basis of the visible field
of action. Considering even a simple command such
as “shoot the imps with the chaingun”, this might
correspond to radically different situations depending
on whether the player already possesses the chaingun
or has it in his line of sight but should pick it up on
his way to shoot the imps. Obviously, the parse tree
and the explicit semantic representation are identical
in both cases. It is the conversion of the semantic
representation into a game script that differs both in
content and in nature. The straightforward case
consists in selecting the proper weapon and shooting,
where shooting is automatically applied to the
selected weapon. The latter situation calls for a quite
different interpretation, as it involves generating a
plan comprising the collection of the chaingun and
the shooting action that should be delayed until the
chaingun has been collected. We implicitly place the
level of processing at the level of autonomy required
for the system. We expect the system to make local

decisions only, which have to be subordinated to a
specific action such as path planning, shooting a
target, picking-up an object. We thus consider that
“pick up the stimpack” is a valid command, while
“find a medikit” or “watch your health level” are not.
In spite of the role potentially played by reference in
voice-controlled video games, we have not
considered multimodal approaches, where the player
would specifically designate objects within the scene.
This, for several reasons including the need for
specific pointing devices and the fact that the line of
sight roughly plays the role of a deictic zone.

Another consequence is that the main types of
situations would have to be described a priori and
explicitly stated in the spoken command. This would
be a consequence of the situated nature of the
possible actions within a given video game. The
notion of situated action originally arises from the
practical impossibility of defining or implementing
successfully plans for certain specific situations. This
leads to a change in the granularity of the actions
considered and/or the control strategy applied (i.e. no
control strategy apart from reaction to specific
situations). In the field of games (but not specifically
video games) this has been advocated by Agre and
Chapman (Agre and Champan 1987) for the “Pengi”
game. A strong context (such as the one of a video
game which has a rich body of situation with specific
tactic described) can facilitate the increase in
granularity, which can be seen as characteristic of the
situated approach (see e.g. (McCarthy 1998)). Our

Fig. 2. Emulation of the DOOM environment with the REALISM system.

central hypothesis can now be reformulated as
follows: because of the limited initiative that the
guided actor should have, it is possible to implement
its behaviours through situated actions, by generating
scripts from the NLP step. These descriptions would
arise from an a priori study of the various games
phases, which is largely facilitated by the existence of
textual material about it. As a result, we would have
specific scripts corresponding to such situated
concepts as pick-up-visible-chaingun, shoot-visible-
named-target, etc.

3. Path Planning for Artificial Characters
We find voice control of a video game to be more
appropriate in a third person display mode. In this
context, generating movements of the avatar in
response to a specific situation is one of the most
complex functions to be managed by the system. This
section describes a grid-based approach for
navigation of artificial human characters. In current
game applications the environments are becoming
increasingly realistic with the availability of high-
speed graphics hardware. Hence any navigation
algorithm should consider complex scene geometry
for path finding. This should also run efficiently
enough for real-time simulation demanded by game
applications. The proposed methods in this paper
address the problem of path finding in complex 3D
interior scenes, which are especially appropriate for
video games. In our current implementation, this
assumes static scenes inhabited by a single actor. The
first step consists in building an appropriate
environment map. The 3D scene should thus be
converted into a map searchable for optimal paths. A
discretised 3D grid is adapted as the environment
map because of the efficiency gains it offers. Sections
of the scene are successively displayed on a raster
screen and corresponding values read from the frame-
buffer. From this, the occupancy status of the cells in
the 3D grid can be determined. Since this is the most
time consuming process, it is performed only once
and hence the emphasis on static scenes.

The path finding is done between two cells in the
grid. The basic method is “flood-fill” or “bushfire”
algorithm used in filling closed regions with irregular
and non-polygonal boundaries. The regions lie on 2D
discrete cell grid. A seed cell is selected in the region
and its neighboring cells are enumerated. In the next
iteration the new cells in turn generate their neighbors

without repeating cells enumerated earlier. The cells
which are marked as obstacles are avoided. The
enumerated cells expand like a “wavefront” in a
breadth-first manner. All cells in a wavefront are
marked with their iteration number. Once a goal cell
is reached, the cells are traced back across decreasing
values of wavefronts until the seed cell is reached.
The path generated is optimal according to the
Manhattan L1 metric. Several innovations are added
to extend this algorithm for efficient 3D grid search
(Bandi and Thalmann 1998).

Every cell in 3D has 26 neighbors as opposed to 8
neighbors in 2D. Thus a naive extension of basic 2D
flood-fill to 3D grid will be grossly inefficient.
However, a human actor walks only on the surface.
This means only the cells lying on surfaces need to be
enumerated. If (x,y,z) is a surface cell, then (x,y+1,z)
is empty. With this definition, the effective cell
neighbours reduce to 8 as in the 2D case. Hence
performance of path finding in 3D scenes runs close
to 2D levels. We use a simple A* algorithm for path
expansion. Instead of expanding all the cells into a
breadth-first tree, a heuristic is applied to select cells
closest to the goal for next expansion. An example of
a generated path in a 3D environment is represented
on figure 3.

Figure 3 . Human-like path planning (graphic layout
courtesy of LIG-EPFL)

By treating objects as obstacle or non-obstacle,
common-sense meaning may be missing from the
scene data. For example, following optimal path
criteria, the actor may step on tables even though it is
not socially correct to do so. This semantic
information can be encoded in cells and used in path

planning. It would eventually relate to proper
common sense knowledge representations or an
ontology of physical behaviours.
In many games we see exotic actions such as panic
stricken actors leaping from one location to other
disconnected regions to ward of dangers. Traditional
flood-fill requires the cell regions to be connected. By
expanding the concept of a cell neighborhood,
disconnected cell regions could be taken care of. This
means, instead of enumerating only immediate cell
neighbours, cells separated by empty spaces could be
deemed to be neighbors, if they are sufficiently close.
The “closeness” or “reachability” depends on human
physical dimensions. A child cannot cross empty
spaces in the same way as an adult can. If an
enumerated neighbor requires a jump or a leap from
the current cell, this information can be encoded in
the current cell while generating the path. When the
actor reaches this cell during a walk, appropriate
action indicated by the cell is carried out, thus
allowing some reactive behaviour. It is possible to
have several alternate paths at a given cell. For
example, human model may be presented with a
bridge and a tunnel path underneath, the choice is
resolved by prioritizing the actions required to take
alternate paths. If the tunnel path requires a normal
walk and the bridge requires a jump, the tunnel is
selected. In this case jumping is assigned lower
priority since it requires greater energy expenditure.
In case of identical actions the tie resolution is
unpredictable. Usually physical dimensions of human
come into play in such situations. If a tunnel is to
small, only a human of short height could pass
through. Taller human models invariably select the
bridge.

Though the environment is assumed to be static,
small changes are permitted. The modifications
required in the cell path are assumed to be small
compared to the total length of the path. This permits
local, efficient updating of the path. Finally, the cells
paths are usually distorted due to the L1 metric used
in distance computations. The crooked paths can be
smoothened by computer graphics techniques such as
a Digital Differential Analyzer (DDA) employed in
rasterising straight lines on graphics screens. Another
aspect is to identify border regions in a scene so that
the actor does not walk unnaturally close to the
obstacles.

The path finding takes place in real time except when
dynamic scene changes are allowed. When scene
changes, that portion must be re-discretised to update
the cell grid.

Path planning is involved in the interpretation of
many spoken commands such as “go back to the
stairs” (see above). In some cases, the semantics of
the spoken command influences the choice of the
path itself. For instance, the specific instruction “run
through the radioactive slime to the red door” might
go against default values for terrain cost when using
A*-based path planning. In which case part of the
semantic interpretation would have to alter the cost
values for some specific terrain as well. Finally, we
have just been dealing with path planning in a static
environment. At some stages, it might be interesting
to explore the inclusion of path planning for tracking
moving targets, using e.g. variants of LRTA* (Ishida
and Korf 1995).

4. Conclusions
While the AI techniques described in this paper have
all been implemented, we have so far only achieved
partial integration of these technologies within the
gaming environment. Namely, we have been
investigating the constraints of real-time performance
while integrating NLP with animation techniques in
the context of the DOOM emulator (Cavazza, Palmer,
and Parnell 1998). Our next step is to achieve a
similar degree of integration with path planning as
demonstrated in (Bandi and Thalmann 1998). Starting
from the requirements of user interaction within a
clear scenario provides useful guidelines for such an
integration, however. As the natural development for
path planning techniques is to include some of the
environment semantics, the requirements of realistic
situations also constitute a useful starting point. In
gaming the guided actors should display a limited
amount of intelligence otherwise the challenging
aspects of the game would disappear. This provides
an ad hoc solution to the problem of generating plans
from natural language instructions, which in itself is
representative of the inclusion of genuine AI
techniques into video games. In our view, the
necessary integration of AI techniques in video
games is faced with a difficult compromise between
the sophistication of the algorithms implemented,
their integration with computer graphics techniques
and the requirements for user real-time performance.

Acknowledgments
Work on path planning was carried by one of the
authors (SB) while at Computer Graphics Lab (LIG),
Ecole Polytechnique Fédérale de Lausanne.

References
Agre, P. and Chapman, D. 1987. Pengi: an
Implementation of a Theory of Activity. Proceedings
of the Sevent National Conference on Artificial
Intelligence. Menlo Park, Calif. AAAI Press.
Bandhi, S. and Thalmann, D. 1998. Space
Discretization for Efficient Human Navigation.
Computer Graphics Forum, 17(3):C195-C206.
Cavazza, M. 1998. An Integated TFG Parser with
Explicit Tree Typing, Proceedings of the Fourth
TAG+ Workshop, Technical Report, IRCS-98-12,
Institute for Research in Cognitive Science,
University of Pennsylvania.
Cavazza. M., Palmer, I. and Parnell, S. 1998. Real-
Time Requirements for the Implementation of
Speech-Controlled Artificial Actors. In: N.
Magnenat-Thalmann and D. Thalmann (Eds.),
Modelling and Motion Capture for Virtual
Environments, Lecture Notes in Artificial Intelligence
1537, New York, Springer.
Chapman, D. 1991. Vision, Instruction and Action.
Cambridge, MIT Press.
Christopher Geib, Libby Levison, and Michael B.
Moore. 1994. Sodajack: an architecture for agents
that search for and manipulate objects. Technical
Report, MS-CIS-94-16, Dept. of Computer and
Information Science, University of Pennsylvania.
Ishida, T., Korf, R.E. 1995. Moving-Target Search: A
Real-Time Search for Changing Goals, IEEE
Transactions in Pattern Analysis and Machine
Intelligence, 6:609-619.
Joshi, A., Levy, L. & Takahashi, M., 1975. Tree
Adjunct Grammars. Journal of the Computer and
System Sciences, 10(1)136-163.
Kurlander, D. and Ling, D. T. 1995. Planning-Based
Control of Interface Animation. Proceedings of the
CHI'95 Conference, Denver, ACM Press.
McCarthy, J., 1998. Partial Formalisations of the
Lemmings Game. http://www-
formal.stanford.edu/jmc/lemmings/lem
mings.html
Palmer, I.J, Grimsdale, R.L. 1994. REALISM:
Reusable Elements for Animation using Local
Integrated Simulation Models, Proceedings of
Computer Animation'94, 132-140. IEEE Comp. Soc.
Press.
Webber, B., Badler, N., Di Eugenio, B., Geib, C.,
Levison, L., and Moore, M. 1994. Instructions,
Intentions and Expectations. Technical Report, IRCS-

94-01, Institute for Research In Cognitive Science,
University of Pennsylvania.
Zoltan-Ford, E. 1991. How to get people to say and
type what computers can understand. The
International Journal of Man-Machine Studies,
34:527-547.

