Authoring the“Intelligence’ of an Educational Game

M. Zancanaro, A. Cappelletti, C. Signorini, C. Strapparava

{zancana|cappelle|signori|strappa@irst.itc.it}

Panté di Povo —38050Trento Italy

Abstract

In this paper, we describe a frame-based
production rule system that works as the Artificial
Intelligence Engine of an educaional computer
game. We discuss the need o an authoring
environment clealy separated by the game in
order to allow atechnicd staff withou any skill s
in either Al or Computer Science to encode the
“intelligence” of the game. Finaly, we briefly
introduce two graphicd interface for authoring
and testing frame hierarchies and production
rules.

The prodiction rule system and the authoring
tods have been developed in the context of a
projed funded by the European Community to
develop a prototypicd educaional computer
game.

I ntroduction

Today, there is a wide accetance on the role of
Al to buld more @mpelling computer games
([Laird and van Lent, 200Q), yet very little
concern has been shown onletting content experts
rather than programmers design the “intelli gence”
of the system. The aitthoring issue gains
dramaticdly importance in the design o
educational (and yet engaging!) computer games,
where you would like to let content experts or an
editorial tedhnicd staff to define and test the rules

of the game. Indeed, in the nea future it might be

valuable to hire professonal script writers even
for noneducaiona games.

In this paper, we briefly discussour experiencein
the design and implementation d a rule-based
engine to be used in a 3D ornline eucaional
computer game and its authoring environment.
This work is pat of a projead cdled
RENAISSANCE"' funded by the European
Community in the adion line of “access to
scientific and cultural heritage”. The projed was
officially started in January 2000 and therefore
what is discussed here must be considered a work
in progress

The RENAISSANCE Projed

The am of the RENAISSANCE projed is to
develop a computer game that makes use of high
quality 3D graphics and engaging interadion
while still able to deliver scientificdly validated
contents. The long term goal is to experiment with
an innovative pedagogicad approach: delivering

! The partners of the RENAISSANCE projed (IST-
199912163 other than ITC-irst are Giurti
Multimedia, one of the biggest Italian publishing
companies, as the main contrador; Blaxxun Interadive
a german-based company whose main businessis 3D-
based virtual environments over the Internet and Iridon
Interadive a Swedish company that produces and

distributes computer games.

culture in an effedive and amusing way at the
same time.

The game is conceved as a 3D-based multi-user
role-playing virtual community over the Internet.
The game environment is the renaissance ®urt of
Urbino in central Italy aroundthe first half of the
fourteenth century. The term Renaissance
describes the period o European history from the
ealy 14th to the late 16th century, the name
comes from the French word for rebirth and
referred to the revival of the values and artistic
styles of clasdgcd antiquity during that period,
especidly in Italy. This senario was chosen
because life in that period was subjed to complex
and subtle behavioral rules © predsely defined
that have been codified in handbodks, in particular
the famous “Book of Courtier” by Badassarre
Castiglione, pudished in 1528.

The players, as courtiers, have to increase their
social positions and compete to oltain the Duke
and Duchess favors. The ultimate goal is to
enable users to experience as redisticdly as
possble, the complexity of social life during that
fascinating historicd period while having the
same fun d playing a “state of the at” video
game.

The score of ead player is expressed in terms of
his fame, fortune, faith and force which can vary
acording to his “oppatunistic” behavior in
different situations. The “intelligence” of the
games resides in a rule-based system (cdled the
Evaluation Engine) that computes the “effed” of
the players adionsin the virtual world.

In the next sedion, we briefly introduce the
system architedure focusing on the internal
structure of the Evaluation Engine. Then, in the
last sedion, we will describe the authoring
environment adually used by an editorial staff to

encode the rules of lifein ou virtua renaissance
court.

Thegamearchitedure

The RENAISSANCE game is a 3D-based multi-
user role-playing game over the Internet. The 3D
rendering engine is locd to ead client and a
Virtual Community Server (VCS) is in charge of
maintaining the synchronization among the
different clients. At ead user adion, the VCS
computes the visible dfeds (in terms of
rendering) and communicaes the canges to the
other clients. The Evaluation Engine, instead, isin
charge of maintaining the mherence of the world
from a semantic paint of view: at ead user adion,
it computes the “pragmatic” effeds bath for the
user that performed the adion and for the rest of
the world. The Evaluation Engine is updated and
queried by the VCS through a message protocol
based onKQML [Labrou, 1997.

The Evaluation Engine

The Evaluation Engine is based onaframe system
cdled CLOSi bult on top d CLOS (the
Common Lisp Objea System) exploiting the
meta-objed cgpabilities of this language. In
designing CLOS-i our aim was to develop a
“light” knowledge representation system yet
efficient enough to be used in complex scenarios.
The prodwction rules g/stem employs an
implementation o the RETE agorithm [Forgy
1982 modified to be used together with a
hierarchy of frames.

Rules and frames are two complementary
knowledge representation schemes. There ae
several attempts to integrate these two
approadhes, bu few efforts (in particular,
[MadGregor, 1983 [Yen, 1991) have been made
to incorporate the terminologicd knowledge of
frame-base systems into a rule-based paradigm.

We think that this approach improves
conventional ruled-based programming from
many points of view. In particular, the pattern
matching operation is based on terminoogicd
definitions, na just on symbadls (likein OP 3, for
example) and conflict resolution can be based on
well-defined spedficity relationship among rules.
Moreover, this approach encourages the
development of a large and coherent knowledge
base that is hared among the rules.

Example of a situation

We discuss here an example of a situation
modeled in the very firss KB of the
RENAISSANCE game: every day at 10 am. an
evening dinner with the Duke is organized. Each
courtier with more than 500 paénts of fame
receves an invitation. The dinner starts at 7pm.
Courtiers who receved an invitation and do no
attend the dinner loose 100 pants of “fame”. In
order to model the organization d the dinner, the
more general frame of activity has been defined
so that the starting and finishing of adivities can
be implemented as general rules. The dinner
frame is defined as a sub-frame of activity, it has
no slots becaise it has no spedal properties.
Inded, we ned this new framein order to write a
more spedfic rule: every day at 10am the dinner
(but not necessarily al the other adivities) is
scheduled; the rule dinner_organization is fired
every time an instance of set_time is receved
with 10as value of the hour dot; the adionisthe
credion d anew instanceof dinner.

The rule dinner_invitation is triggered by the
cregion d an instance of dinner, the other
condtionis that there shoud exist a @urtier with
more than 500 pants of fame. An adion for the
credion d an instance of invitation is built for

any such courtier. The rule invitation_notify
takes care of communicating the events.

Once the dinner starts (acording to the general
rule activity_start), the rule dinner_attendance
will fire on ead courtier for which an instance of
invitation existsand it will deaease his’/her fame.

The Evaluation Engine Authoring
Environment

We dedded to employ a frame-based production
rule system becaise our main concern was to
adlow a staff of technicd editors of writing the
“intelligence” of the system. Other reseachers
showed that production rules are atod powerful
enough for describing human cognition (see for
example, Newell 1991) and simple and intuitive
enough to be understood by naive users (seefor
example, Anderson 1993. Yet we redized that
we had to provide interadive todls to alow the
editors to graphicdly manipulate the frame-based
system and interadively test the rules
independently from the game engine in arder to
let the aditorial work proceal parallel to the work
of the programmers and to the work of the
designers.

We implemented two graphicd interfaces. the
Knowledge Base Editor and the Knowledge Base
Shell.

The Knowledge Base Editor alowsto graphicdly
manipulate the frame hierarchies, to define and to
edit frames and slots and to write rules. It exports
the knowledge-bases as XML files.

Figure 1 depicts a snapshat of the KBE. The main
window is divided into two parts, on the left
window the user can choose whether to work on
the frame hierarchy or onthe set of rules; the right
window is used to edit the particular
frame/instancerule seleded on the left window.
In the snapshat, the frame courtier is sleded on

the left window. Ead frame has a number of
slots that represent the dtributes of the concept. A
frame automaticaly inherits the dlots of its parent

frame®.

BN Object Knowledge Base Interface - Open context: renaissance -last S

Program Context Concept Instance

Knowledge base [Rules | J|concept: courtier =
o

Parent concept:
court_character

Commen t:
EB G COUTBEr FEOTESERTS & BIEVEr. NOLE Bt B9ErE SHOWd e Po MSEENGEs of B
class itis on abstoct dess for progeries i common befween male and female
cotrtiers,

Inherited slots:
© health : number (default: 100; mod fiable}
B id:sting @efault: ; non medifiable)

e number (default: O; meditiable)
e number (default: O; medifiable)

ne : number (default: 0; moditiable)

Figurel1.
Editi ng the frame hierarchy means editi ng frames
and slots (i.e. working on the terminalogicd part)
or editing the instances of an arealy defined
frame (usualy, instances are aeaed, modified
and celeted at run time by the Evaluation Engine,
yet it can be useful to have some pre-defined
instances, for example nonplayer charaders,
furniture, etc). These two adivities can be
interleaved, KBE is able to maintain the whole
knowledge base mnsistent (for example, deleting
a frame means removing all its instances, more
subtly, it sometimes requires removing a slot from
ancther frame and in turn all the wrrespondng
dot values from its instances). Usually, KBE
performs slently these operations, yet when the
amourt of deletions is big it warns the users
before ntinuing. Moreover, the interface has
been designed to minimise the likelihood d
having inconsistent knowledge bases. For
example, the user can never creae a dangling
frame (that is a frame withou a parent): the only

2 At present, multiple inheritance is not allowed. This
fedure can be dedt with in the present evaluation of
the Evaluation Engine yet it may led to very inefficient

and confuse knowledge bases.

way to crede anew frame using the interfaceisto
add a child frame to an existing frame®.

Program Context Rule

Knowledge base | Rules | i[rule: give

factivity_finish
Comment:

A given osject changes possessor, Generic fule.

Left Hand Side:
give : 7action
actes : vactes
object : 7ot]

© moveable_object : Pobj

lgive_regarnds
lgive_regans_female
laive_regants_female2

Right Hand Side:
g modify moveable objest : Yobi
_inventory : %actes

tify

ftake create hold
actor : 7actee
object : ?obj

Figure 2.
KBE suppats the rules writing task as well (see
figure 2). The task of writing rules logicdly
occurs after the aeaion d the knowledge base
(because the left-hand side of arule is expressed
in terms of frames and pasbly instances.) In ou
experience, however, the two tasks are highly
interleaved: afirst sketch of the frame hierarchy
is necessry before ay rule can ever be
conceaved, yet the adual writing of rules usually
suggests new frames or even a different
organisation of the hierarchy. Therefore, we
designed the interfacewith the goa of making it
eay for the user to interleave the two tasks. In
order to avoid inconsistencies as much as possble
the rules are composed by dired manipulation:
before using a cncept in arule, the crrespondng
frame has to be defined in the hierarchy. Asin the
task of knowledge base dditing, alot of chedks are
performed automaticaly to maintain consistency:
for example, if aframeis deleted, all the rules that
use the mrrespondng concept are deleted as well .
The second tod of the authoring environment is
the Knowledge Base Shell (or KBS, for short). It
communicates with the Evaluation Engine in the
very same way as the game does (i.e. KQML
messages). The tedhnicd staff can therefore

% The very first frame is automaticaly creaed by the

system and it’s name is aways top.

perform the operations that the game engine will
perform during a game sesson, ramely creaing
modifying and removing instances or querying the
state of the knowledge base. Moreover, the adual
rulesfired at ead interadion can be monitored.

Update Window

! Frame: give

Parent: sclion
Instances: giwet,

Inherited slots:

Figure 3.

Figure 3 shows a snapshot of the graphicd
interface The gplicaion is composed by five
windows: (1) the “KB Box” window, above on
the left, displays the frame hierarchy and the
instances creaed so far; (2) the “Control Box’
window, displays detailed information on the
seleded element (i.e. either aframe, an instance, a
message dc.); (3) the “Operation Padkages Box”
window, batom on the left, stores the operations
oninstances already defined bu not yet sent to the
Evaluation Engine; (4) the “Retrievals’ window,
bottom midd e, stores the queries to be submitted
to the Evauation Engine; and finally (5) the
“Message Box’ window, stores al the
messagesent to and recaved from the Evaluation
Engine.

KBS adualy interprets the KQML messages
receved by the Evauation Engine ad it
maintains the onsistency in the windaws, in
particular in the “KB Box” where the instances
creaed, deleted, and removed by either an user
operation a the dfed of a rule gplicaion are
properly displayed. Yet, we dedded to maintain
visible the messge echanged to help the

technicd staff in better visualizing what is going
on duing agame sesson.

Conclusions

In this paper, we introduwed a first attempt to
build an authoring environment for the Al of
(educaional) computer games targeted to a
technicd editors gaff. We think that in providing
suppat of this kind o user testing is as much
important as editing, in particular if the elitorial
works has to be made in paralel with the
graphicd design and with the programming, as it
isusually the case.

This work is dill in progress and it has been
conduwct in the context of a projed funded by the
European Community to develop a prototypicd
educational computer game, we would like to
adknowledge the suppat of the other partner of
the projed for their suggestions and fruitful
discusgons.

Bibliography

J. R. Anderson. Rules of the Mind. Lawrence
Erlbaum Assciated, Hill sdale NJ, 1993.

Forgy “RETE: a Fast Algorithm for the Many
Pattern/Many Objed Pattern Match Problem”,
Artificial Intelligence, 19, 1982.

Y. Labrou, Semantics for an Agent
Communication Language, PhD Thesis,
University of Baltimore MA, 1997

J. Laird and M. van Lent, “Human-level Al's
Killer Application: Interadive Computer Games’,
AAA12000Invited Talk, Austin TX, 2000.

A. Newdl. Unified Theories of Cognition.
Cambridge University Press Cambridge MA,
1991.

R. M. MadGregor. “A Deductive Pattern
Matcher”. In Procealings of the Seventh
National Conference on Artificial Intelli gence,
(AAAI 88), pp. 403408, 1988.

Yen, “CLASP Integrating Term Subsumption
System and Production Systems” |IEEE
Transadion on Knowledge and Data
Engineaing, 3(1) 1991.

