
Artificial Actors for Real World Environments

Matthew Roberts

Department of Computing
Macquarie University

Sydney NSW 2109 Australia
mattr@ics.mq.edu.au

Abstract
We have developed a simulation environment called
CreatureSpace that allows us to test our agent theories on
intelligent agents in a complex realistic environment. We
present the CreatureSpace architecture and our experiences
in combining multiple artificial intelligence techniques in a
uniform environment. CreatureSpace is a combination of a
realistic environment and intelligent agents that populate
this environment using Half-Life as a rendering engine.
The agents we create are deliberative agents with the ability
to exist in a realistic environment. They can process what
they see and behave according to this and their own desires.
We focus on how agents can manage large amounts of
information and describe our embedded knowledge
solution. We have tested the ideas in the paper by using
CreatureSpace to run fire evacuation simulations with
synthetic characters developed using our embedded
knowledge solution. We find that combining embedded
knowledge and sketchy planning results in simple solutions
to potentially difficult problems in realistic environments.

Introduction
Simulations of the real world have many uses. In
computer games and films they are used to entertain, but
they can also be used to demonstrate possibilities or as
vehicles to explore scenarios.
 We say that a virtual environment seeking to emulate the
real world for one of these purposes is a realistic
environment. Such environments are required to appear
realistic to the observer. They must be immersive and it
must be possible to populate the environment with
intelligent agents. Computer game technology has many
of the required characteristics but the agents in the games
are often not suitable as general purpose intelligent agents
in such environments since they are often scripted for a
particular behaviour and do not have general planning or
problem solving knowledge.
 We define synthetic characters (or artificial actors) as
agents that operate in realistic environments and substitute
for human players. Figure 1 shows a synthetic character in
a realistic environment. When using realistic
environments for scenario testing, complex simulations can
be run using a combination of agents and human
participants, with some real human participants and some
artificial participants behaving in a rational manner.

Realistic environments are also useful for testing agent
theories. Realistic environments allow us to challenge our
agents with real world problems and allow us to avoid
developing agents in sterilised environments where many
of the real challenges can be ignored. The complexity
inherent in realistic environments also highlights
challenges that were not expected or may not have
otherwise been considered. Although robotics offers the
ultimate testing ground for agents, realistic environments
come a close second and at a much cheaper cost. Some
first person shooters, like Half-Life, provide advanced
technology at a low cost and allow programmers access to
those parts of the code required for creating a general-
purpose realistic environment.

Figure 1: A synthetic character (artificial actor)

In some cases (for example, running a simulation to
explore fire safety) we may want to know what the agents
were “thinking”. For this reason we require our agents to
not only appear to act rationally, but also to be able to
explain their choices in a way that can be easily interpreted
by humans.
 Intelligent agent architectures can be categorised based
on their trade-off between computation time and the
realization of goal driven behaviour. The least goal driven
and fastest are reactive agents which use stimulus response
rules, followed by triggering agents which are reactive but
maintain an internal state. Deliberative agents are the most
goal driven and least efficient. Hybrid agents are

deliberative agents that use reactive systems for part of
their operation. In this project we consider deliberative
planning to be important for goal driven behaviour and are
not concerned if other parts of the agent’s operation are not
deliberative. Thus we define any agent which is driven by
long-term goals as a deliberative agent, and do not
distinguish them from hybrid agents.

In the space of an eight month part-time research
project, we have created a simulation environment capable
of rendering realistic scenes populated with intelligent
agents that plan and choose actions in a human-like
fashion. The basis for these agents is a knowledge
management framework called embedded knowledge,
which we describe below.

Related Work
There has been an increased interest in extending computer
game environments. For example, SOAR has been used to
control agents playing Quake and Descent in the SOAR
games project (Laird 2000). We have taken a similar
approach, but instead of focusing on researching game
agents, or increasing the game agent’s capabilities, we
have chosen to focus on creating a realistic simulation
environment. We have adopted a planning architecture
similar to one described by James Firby (Firby 1989) that
separates planning and execution. Firby suggests that
agents should plan at a higher level of abstraction and that
a separate execution mechanism should take care of
executing actions. Execution can then be specified in a
reactive fashion. There can be more than one way to
execute an action and the agent no longer needs to plan
through the details of performing actions.

 The CreatureSpace System
An important part of developing techniques for intelligent
agents is to create a working system. This is required to
demonstrate the concepts, to explore their effectiveness
and to learn about and review the ideas developed.
CreatureSpace is such a system; it consists of two
interacting programs that combine to provide an
environment based on computer game technology, and
agents that populate the environment. These agents can
plan and act based on their own desires and what they see
in the environment around them.
 Part of our aim was to develop our agents in a realistic
environment using existing technology. We make use of
computer game technology, which can provide very
realistic environments that provide detailed information to
the player and to the game controlled agents that populate
them, at low cost and with little effort. Half-Life can
provide the agent with a body in the environment,
including “eyes” and “ears” to see and hear its
surroundings, giving it human-like capabilities in vision,
hearing, and communication. Turning Half-Life into the
environment renderer for CreatureSpace involved
modifying it slightly to ensure it interfaces correctly with

the agents we wish to place in it. This involves specifying
instructions to the environment and responses to these
instructions.

Figure 2: CreatureSpace in action

The ideal situation would be to have agents that can exist
in any environment and always behave as a human would
behave. Since creating such an agent was well beyond the
scope of this project, we focused on just one domain, fire
evacuation. Regardless, the agents are expected to exist in
the environment as a human would, emulating human
desires and responding appropriately to input. To achieve
this purpose, agents need to be able to interact with their
environment in the same way as humans do in theirs.
While our agents are restricted to a single domain, they do
exhibit
 • Curiosity
 • Self-preservation
 • Social responsibility
Agents exhibit curiosity by exploring their surroundings,
social responsibility by warning others of danger and self-
preservation by following safety procedures in the event of
a fire.
 The evacuation simulations take place in a large
building. The building has a number of rooms that are all
connected by doors. Some of the doors are unreliable and
can refuse to open, forcing the agents to find an alternative
route. The building has multiple routes from one room to
another and there is a predefined safe area outside the
building at one end. During the simulations a fire breaks
out somewhere in the building and we are able to observe
what the agents do in response to this. We can directly
observe their behaviour on the screen and CreatureSpace
generates logs so we can observe their “thought processes”
in detail.

Agents Operating in Realistic Environments
One of the challenges that agents operating in the real
world face is that of managing large amounts of
information. We begin with Firby's concept of situation
driven execution (Firby 1989). Agents plan at an abstract
level, generating sketchy plans made up of higher level

actions than those that can be directly executed in the
environment. Sketchy plans leave much of the detail of
executing actions to a separate execution mechanism. The
execution mechanism then makes use of the situation at the
time of execution (as distinct from the time of planning) to
determine how to execute the actions from a given set of
predefined options. The execution mechanism does this in
a reactive fashion.
 In this project we have extended this distinction between
planning and executing, from agent operation, to the
management of an agent's knowledge. We define a
distinction between the knowledge needed for planning
and that needed for execution. The planning knowledge is
used by a deliberative planner to generate sketchy plans
and the execution knowledge is used by an execution
mechanism in performing reactively specified actions. We
have called this split in knowledge embedded knowledge
and discuss it in more detail in the next two sections.
Embedded knowledge also allows for an organisation of
detailed information, modular addition and deletion of
knowledge, and maintains distinctive representations for
the planning knowledge and execution knowledge. The
CreatureSpace system has been built around the embedded
knowledge framework. We have found that this framework
minimises costly planning and helps provide solutions to
problems such as knowledge updating, agent attention,
agent communication, re-planning and concurrent actions.

Managing Knowledge
An agent in the real world is bombarded by information
and has to explicitly choose what information to
incorporate into its knowledge base and which information
to use at a particular time. A simple act such as opening a
door requires a great deal of numerical information
regarding spatial locations of objects. While the amount of
information in a simulation is still less than what can be
directly perceived in the real world, a good simulation has
plenty of detail and as a result, large amounts of
information for the agents to process. An agent that does
not filter information would need to maintain a large
database of information that would become unwieldy for
use in planning. We seek agents that have a set of goals,
can make multi step plans in response to those goals,
execute multi-step plans and re-plan as a result of
observation. As the size of the knowledge base increases,
making plans in real time becomes more difficult. To
solve this problem, we restrict the information that the
agent makes use of when it does its planning. When using
sketchy plans, planning is abstracted to a higher level, so
most of the information in the environment is needed only
for the details of execution.
 To facilitate this, some of the agent’s knowledge is
labeled cognitive knowledge and the planner is restricted to
working only with this knowledge. As all the details of the
environment are potentially required for execution, we
choose not to exclude any knowledge from the knowledge
the execution mechanism has access to. We call this
reactive knowledge and it is exactly all the knowledge an

agent has about its environment. We call this framework
embedded knowledge because the cognitive knowledge is
a subset of reactive knowledge; it is embedded within the
reactive knowledge.
 Consider the example of a door. The cognitive
knowledge about a door might be that it opens, and which
rooms it leads to. The reactive knowledge about this door
would be that it opens, which rooms it leads to, what type
of handle it has, where it is, how to open it, which
direction it opens, etc. The reactive knowledge contains
all the details required for opening doors and walking
through them, while the cognitive knowledge contains
only the information needed for making plans that may
include walking through the door. Notice that the
cognitive knowledge is a subset of the reactive knowledge.

Extending Embedded Knowledge
There are two additional concepts in embedded knowledge
that improve the agent's ability to manage knowledge and
add to the system's flexibility. These are: different
representations for cognitive and reactive knowledge, and
a contextual organisation of reactive knowledge.
 Because the planner and the execution mechanism are
different systems doing very different jobs, it is entirely
possible for the two systems to need two different
representations of knowledge. For this reason, we define
cognitive knowledge to be more than simply a subset of
reactive knowledge; it is a subset of reactive knowledge
that may then be transformed into a new form.

Figure 3: The relationship between reactive and
cognitive knowledge

 We also define a special organisation for reactive
knowledge. It is a contextual organisation where related
knowledge is kept in nodes and the various nodes are
connected in a graph. The connections in the graph denote
relationships between nodes of information, similar to a
semantic network. We get two major advantages from this
organization. Firstly, information that is related is stored
together so that access from one to another is fast and
simple. The second advantage is that each node now has a
surrounding context, information that is related to it and
can provide extra information about this node when it is

cognitive
knowledge

>>> tra
nsform >>>

reactive
knowledge

required. An example of where we use this context is in
knowledge updating. The context in which knowledge is
stored aids in choosing how to update it when conflicts
occur.
 This organization applies only to reactive knowledge. It
is not inherited by the cognitive knowledge that is derived
from the reactive knowledge. This is related to differing
representations. The reactive execution mechanism
requires organized knowledge for fast access and for
providing a context for knowledge updating. On the other
hand, the deductive planner specifically does not want to
be constrained in how it can use cognitive knowledge, so it
has no such organization.

The CreatureSpace Architecture
As described above, we created a system consisting of two
interacting programs that is capable of running
simulations. In particular, we have focused on the
evacuation of a building in case of fire. The system
consists of a rendering and basic mechanics engine (Half-
Life), and an agent controller.

Figure 4: Overall CreatureSpace architecture

Half-Life is responsible for providing the environment and
the representation (body) of the agents in that environment.
The agent controller is responsible for providing the
intelligence of the agents. It sends instructions to its
representation when it wants to perform some action. It
then receives information about how the action proceeded.
 The two components communicate across sockets using
a simple language that operates as a request-response
system. The agent controller will request something of the
engine (perhaps “move my representation to position x,
y”) and the environment (Half-Life) will respond.
Normally responses are simply true or false indicating
success or failure to perform the request. When
appropriate, the responses incorporate additional
information on the success or failure. For example, the
failure response for walking is “failed - was stopped at
position x, y”. This simple system is powerful and has
easily accommodated the functionality required for
CreatureSpace. Table 1 enumerates some of the possible
request - response pairs.

Request Response

Walk for x meters True - finished at location x y
False - finished at location x y

Turn x degrees True
False - stopped after x degrees

Where is the closest
agent?

True - location x y
False

Open a door True - Door will take x seconds to
open
False

Yell “sentence” True

Look around this room True - positions of corners and
doors in this room.

Table 1: Part of the agent controller to Half-Life
communication protocol

The rendering and basic mechanics engine is provided by
Half-Life. A mod (modification and recompilation of the
source code) of Half-Life was created with some new code
specifying the agents that would populate the world as well
as effects such as fire. Half-Life provides a particularly
realistic environment in which the agents can operate. It is
flexible, easy to extend and provides good quality
rendering of scenes.
 The agent controller can be further broken down into an
action selector, a planner, a knowledge base and an
execution mechanism.

Figure 5: The agent controller organisation

The action selector is responsible for executing the basic
thinking loop for the agent. This loop is an observe->
plan-> act loop. The knowledge base provides an
encapsulation of all the functionality for managing
knowledge using embedded knowledge. The planner is
responsible for generating sketchy plans from cognitive
knowledge and in this task it makes use of an inference
engine. In the CreatureSpace system planning is done with
a STRIPS style planner (Fikes, Hart & Nilsson 1972). We
use a prolog-based system as the inference mechanism and
as our STRIPS planner. The execution mechanism defines
a set of actions that the planner can use for planning and
contains reactive specifications for executing each of the
actions.

Half Life

Agent
Controller

Sockets

Sockets

Instructions
Information

Socket Controller

Action Selector
Knowledge

Base
Planner

in
st

ru
ct

io
n
s

in
fo

rm
a
ti
o
n

Execution
Mechanism

Inference
Engine

a
ct

io
n
s/

re
su

lt
s

kb

plan

go
al

up
da

tes

updates/queries

query results

query

response

Easy Solutions
In creating this simulation environment, a number of
challenges arose. Most of these were simpler to solve than
would have otherwise been the case, because we were
using the embedded knowledge framework and sketchy
plans. We were able to find solutions to the following
challenges:
 • Updating knowledge
 • Re-planning
 • Uncertainty
 • Agent attention/agent communication
 • Concurrent actions
Updating knowledge in this system is relatively easy
because the execution mechanism is given direct access to
the reactive knowledge in its context. It requires this
knowledge to tailor execution to the current situation.
When the execution mechanism updates reactive
knowledge, the cognitive knowledge derived from it is
automatically updated.
 Re-planning is relatively simple in this system because
the execution mechanism has access to the reactive
knowledge and can easily update it as described above.
This means that after a plan has failed, the knowledge base
has already been updated and a new plan can be generated
from it.
 Agent attention and communication are related problems
because communicating with an agent first involves
getting its attention. In CreatureSpace all agents have a list
of things that can grab their attention. If any one of those
things comes into their field of vision or within earshot,
they will cease current execution, update the knowledge
base to incorporate whatever drew its attention, and then
re-plan based on this new information.
 Concurrent actions are important for doing things like
walking and talking at the same time. In CreatureSpace we
define two types of action, those that can be done
concurrently with others and those that cannot. The
execution mechanism threads execution of actions together
if concurrent actions are required. At no stage does the
planner need to plan for concurrent actions. For example,
the planner may generate a plan including walking and
talking. From the planner’s point of view they are being
executed one after the other. However the execution
mechanism recognises that walking and talking can be
done at the same time and interleaves the execution of the
two actions. Keeping the planner free from concurrent
actions contributes to the simplicity and speed of the
planner.
 The execution mechanism also takes care of dealing
with uncertainty. This frees the planner from this difficult
task, further simplifying planning. The execution
mechanism can recognise that some actions are particularly
uncertain and force re-planning immediately after
executing them.
 A further advantage that the combination of embedded
knowledge and sketchy planning affords us is that the

plans generated by the agent are simpler to interpret. The
plans are not muddied by details, resulting in cleaner,
easier to interpret plans. The low level details can be
investigated if required, by interrogating the execution
mechanism.

The Simulations
The usefulness of embedded knowledge in deliberative
agents has been demonstrated by running fire evacuation
simulations. The fire evacuations all involved the same
building that had one or more agents in it. The agents are
assumed to be familiar with basic fire drill techniques and
will evacuate the building to a safe area outside the
building. The scenarios of the fire evacuation that were
run are as follows:
 • One agent who knows the layout of the building
 • One agent who must explore the building.
 • Multiple agents.
 • Broken doors that force the agents to rethink their
 plans.
 • Trapping an agent to see how it copes.
The simulations were run and recorded in a standard
compressed digital video format. Figure 6 is a snapshot
from one of the recorded simulations. The agent has just
had a fire break out in front of him and is in the process of
getting to the exit.

Figure 6: Agent notices fire in front of him and
evacuates the building

As expected, in scenarios where the doors were broken,
agents took longer to evacuate. Similarly, more obstacles
and more agents led to bottlenecks at the doors. These
bottlenecks slowed the evacuation quite significantly as
agents jostled through the doors. Agents in the simulations
would yell warnings once they became aware of the
emergency. Their voices had a limited range, but anyone
within that range would hear the warning and then decide
whether or not to pay attention to it. We found that
communication of the fire could travel ahead of the first
agent to see it, meaning agents far from the fire would hear

of it quickly and get out of the building first, even if the
fire was a long way away.
 While these specific results might be achieved with
purely reactive agents, we could not as easily investigate
why the agents chose particular actions and it would not be
as simple to scale to more complex domains. Furthermore,
the rules for behaviour and the reactive systems behind
them would be far more complex and more difficult to
understand.
 The combination of embedded knowledge and sketchy
planning allows the agents in our simulations to plan in
real time despite the complexity of the environment in
which they exist. We found that the amount of cognitive
knowledge required for planning was far less than the
reactive knowledge that needed to be maintained, allowing
for real time planning. High level actions were easily
represented by a reactive specification in terms of lower
level actions. As a result of using embedded knowledge
and sketchy planning for these agents we were able to take
advantage of the simple solutions to the problems of
concurrency, re-planning, attention and knowledge update.
If we had not used embedded knowledge and sketchy plans
it is expected that we would not have been able to
implement all of these in the time available.

Embedded Knowledge in Action
Each of the simulations generated logs from the execution
mechanism, the planner and the communications between
the environment and the agent. Extracts from these logs
that demonstrate the deductive planner of the
CreatureSpace agents are included below.
 The following is a description of two iterations of the
agent’s thinking loop. This loop executes indefinitely as
long as the agent exists and is responsible for the agent
being autonomous. The agent chooses a plan based on its
current knowledge and executes it in each iteration. In this
case, the agent is standing in a building and there is
nothing worth noting going on around it.
 Initially, the agent has the following goals (with
priorities) and cognitive knowledge, which together make
up its state of mind. The agent’s cognitive knowledge is
captured as the planner uses it, so it is already in a form
appropriate for the Prolog based inference engine.

Goals : ****************************

 exists(me) : 1

 discover : 2

***** My current cognitive knowledge is *****

burn(_):-

 fail.

clear_of_building:-

 fail.

contains(building1,room1).

...

contains(room2,obstacle1).

contains(room3,door2).

...

directly_connected(room1,room2).

...

directly_connected(safe_area,room4).

discover:-

 fail.

everyone_warned(_):-

 fail.

exists(me).

first_name(person1,john).

holds(contains(room1,me), init).

job(person1,sparky).

leadsTo(door1,room1).

...

leadsTo(door6,safe_area).

outside_room(_):-

 fail.

outside_room(safe_area).

room(room1).

...

room(room6).

This shows quite a bit of detail that is required by the
planning algorithm but is not of importance here.
Although the cognitive knowledge has been abridged, for
the sake of brevity, this agent is actually aware of all the
rooms, doors, obstacles and people in the building it is in,
and is aware of fire evacuation techniques. Notice that the
cognitive knowledge used by the planner is expressed at a
very high level. No details about the location or sizes of
objects are included since this information is present as
reactive knowledge, but filtered out of cognitive
knowledge.
 Some of the rules, such as this one, seem strange.
outside_room(_):-

 fail.

outside_room(safe_area).

This rule set should be read as “if there are no outside
rooms we fail. The room called safe_area is a room”. The
redundancy in the cognitive knowledge is due to the fact
that the agent is acquiring knowledge incrementally and
the knowledge base is generated automatically. Note that
all this cognitive knowledge is in a form that can easily be
used in traditional planning.
 The goals labeled exist and discover, lead to the
following query of the inference engine based on the
agent’s strongest desire. This query asks, “how do I
discover things from my current situation?” and the
answer from the planner is “explore your surroundings”.
The desire to explore is built into the agents in
CreatureSpace, as we desire curious agents, who are not
content to sit around if their knowledge is incomplete.

**************** Query results***************

Query of : achieve_goals([discover], init, S)

Generated a plan of

explore

Now the agent must execute the action explore. So the
execution mechanism is called into operation. This
mechanism executes the explore action based on the
reactive knowledge (the current situation). In this case, the
agent knows everything it wants to know about the
building it is in, so it chooses to simply look around the
room. Depending on the actual situation, the agent may
choose another action, for example, to investigate one of
the other rooms.
 In this particular case, the agent notices a fire, which
interrupts the execution of the action. The action of seeing
a fire triggers a change in the agent’s reactive knowledge
to include the information about the fire, and also triggers
a change to the agent’s desires:

Goals : ****************************

 exists(me) : 1

 discover : 2

 contains(safe_area,me) : 3

 everyone_warned(fire) : 3

 clear_of_building : 3

Note that these three new desires all possess a high
priority. The failure of an action always forces the agent
to generate a new plan, as action failure often leads to a
significant change in the agent’s knowledge or desires.
 When re-planning, the agent’s cognitive knowledge
reflects the change in its reactive knowledge by including
one new piece of information:
...

burn(building1).

...

The query generated from the desires is “how do I get to
the safe area, warn everyone of the fire and get clear of the
builing?”. The plan generated in response to this is:
walk(room1,safe_area)

yell(fire)

clear_building

These three actions are now executed by the execution
mechanism. In this example, the action yell can be
executed concurrently with the other two actions. The
planner did not know this, and generated the plan as a
linear sequence of actions. At execution time, the
execution mechanism notices that concurrency is possible
and interleaves the actions.
 In these two iterations of the thinking loop the agent has
used its cognitive knowledge, its surroundings and its
desires to determine a plan. It then acted out this plan
based on its detailed reactive knowledge. When the
situation changed the agent re-planed based on the new
information. This was all executed in real time.

Discussion
This project has not been free of unexpected problems,
although they were relatively few and far between. One of
the problems in specifying agents operating in such
realistic environments is that any mistake in movement
visually stands out. Agents that turn a little left then right
when they should have turned right straight away show up
very clearly. Using a reactive execution mechanism
partially solves this problem but it still requires some very
careful execution specifications to make agents perform
actions without showing themselves up as computer
controlled. This project has managed to achieve an
incomplete, but functional simulation environment with
agents that plan and choose actions in a believable fashion
and with a particularly realistic rendering of environments.
The speed with which we were able to achieve this (four
“man months”) shows the leverage we have been able to
get from the computer game technology, the speed of
development with CreatureSpace and the ease with which
we were able to find solutions to difficult problems.

Future Work
We envision that the architecture would be scalable to
more complex domains and more complex agents. With
agents that perform deliberative planning, we could build
agents with differing planning capacities and knowledge.
We could then examine how the differences between
individual agents may influence the outcome of real life
situations such as evacuations. For instance, how the
presence of delegated fire wardens facilitates orderly
evacuation.

Conclusion
Creating a simulation environment using computer game
technology and embedded knowledge has proven a useful
combination. The computer game solves many of our
rendering and basic mechanics problems. The embedded
knowledge framework has proven itself capable of
managing agent knowledge in an effective manner, and
when combined with sketchy planning, has led to some
unexpectedly easy solutions to problems we encountered.

Acknowledgments
I would like to acknowledge the help of the entire
Computing Department at Macquarie University for their
contributions to this project. Particular thanks go to my
supervisor Yusuf Pisan, whose ideas began this work and
whose advice throughout the year was invaluable.

References
Firby, R. J. 1989. Adaptive Execution in Complex Dynamic
Worlds. Ph.D. thesis, Yale University.

Laird, J. 2000. It knows what you’re going to do: adding
anticipation to a Quakebot. In Proceedings of the AAAI
Spring Symposium on Artificial Intelligence and
Interactive Entertainment Menlo Park, Calif.: AAAI Press.

Fikes, R. E., Hart, P. E., and Nilsson, N.J. 1972 Learning
and Executing Generalized Robot Plans. Artificial
Intelligence, 3:251-288.

	page1: 87
	page2: 88
	page3: 89
	page4: 90
	page5: 91
	page6: 92
	page7: 93
	page8: 94
	line2: (www.aaai.org). All rights are reserved.
	copy right: Copyright 2002, American Association for Artificial Intelligence

