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Abstract 
We have developed a simulation environment called 
CreatureSpace that allows us to test our agent theories on 
intelligent agents in a complex realistic environment.  We 
present the CreatureSpace architecture and our experiences 
in combining multiple artificial intelligence techniques in a 
uniform environment.  CreatureSpace is a combination of a 
realistic environment and intelligent agents that populate 
this environment using Half-Life as a rendering engine.  
The agents we create are deliberative agents with the ability 
to exist in a realistic environment.  They can process what 
they see and behave according to this and their own desires.  
We focus on how agents can manage large amounts of 
information and describe our embedded knowledge 
solution.  We have tested the ideas in the paper by using 
CreatureSpace to run fire evacuation simulations with 
synthetic characters developed using our embedded 
knowledge solution.  We find that combining embedded 
knowledge and sketchy planning results in simple solutions 
to potentially difficult problems in realistic environments. 

Introduction 
Simulations of the real world have many uses.  In 
computer games and films they are used to entertain, but 
they can also be used to demonstrate possibilities or as 
vehicles to explore scenarios. 
 We say that a virtual environment seeking to emulate the 
real world for one of these purposes is a realistic 
environment.  Such environments are required to appear 
realistic to the observer.  They must be immersive and it 
must be possible to populate the environment with 
intelligent agents.  Computer game technology has many 
of the required characteristics but the agents in the games 
are often not suitable as general purpose intelligent agents 
in such environments since they are often scripted for a 
particular behaviour and do not have general planning or 
problem solving knowledge. 
 We define synthetic characters (or artificial actors) as 
agents that operate in realistic environments and substitute 
for human players.  Figure 1 shows a synthetic character in 
a realistic environment.  When using realistic 
environments for scenario testing, complex simulations can 
be run using a combination of agents and human 
participants, with some real human participants and some 
artificial participants behaving in a rational manner.  

Realistic environments are also useful for testing agent 
theories. Realistic environments allow us to challenge our 
agents with real world problems and allow us to avoid 
developing agents in sterilised environments where many 
of the real challenges can be ignored.  The complexity 
inherent in realistic environments also highlights 
challenges that were not expected or may not have 
otherwise been considered.  Although robotics offers the 
ultimate testing ground for agents, realistic environments 
come a close second and at a much cheaper cost.  Some 
first person shooters, like Half-Life, provide advanced 
technology at a low cost and allow programmers access to 
those parts of the code required for creating a general-
purpose realistic environment. 

Figure 1: A synthetic character (artificial actor) 

In some cases (for example, running a simulation to 
explore fire safety) we may want to know what the agents 
were “thinking”.  For this reason we require our agents to 
not only appear to act rationally, but also to be able to 
explain their choices in a way that can be easily interpreted 
by humans.  
 Intelligent agent architectures can be categorised based 
on their trade-off between computation time and the 
realization of goal driven behaviour.  The least goal driven 
and fastest are reactive agents which use stimulus response 
rules, followed by triggering agents which are reactive but 
maintain an internal state.  Deliberative agents are the most 
goal driven and least efficient.  Hybrid agents are 



deliberative agents that use reactive systems for part of 
their operation.  In this project we consider deliberative 
planning to be important for goal driven behaviour and are 
not concerned if other parts of the agent’s operation are not 
deliberative.  Thus we define any agent which is driven by 
long-term goals as a deliberative agent, and do not 
distinguish them from hybrid agents. 

In the space of an eight month part-time research 
project, we have created a simulation environment capable 
of rendering realistic scenes populated with intelligent 
agents that plan and choose actions in a human-like 
fashion.  The basis for these agents is a knowledge 
management framework called embedded knowledge, 
which we describe below.  

Related Work 
There has been an increased interest in extending computer 
game environments.  For example, SOAR has been used to 
control agents playing Quake and Descent in the SOAR 
games project (Laird 2000).  We have taken a similar 
approach, but instead of focusing on researching game 
agents, or increasing the game agent’s capabilities, we 
have chosen to focus on creating a realistic simulation 
environment.  We have adopted a planning architecture 
similar to one described by James Firby (Firby 1989) that 
separates planning and execution.  Firby suggests that 
agents should plan at a higher level of abstraction and that 
a separate execution mechanism should take care of 
executing actions.  Execution can then be specified in a 
reactive fashion.  There can be more than one way to 
execute an action and the agent no longer needs to plan 
through the details of performing actions. 

 The CreatureSpace System 
An important part of developing techniques for intelligent 
agents is to create a working system.  This is required to 
demonstrate the concepts, to explore their effectiveness 
and to learn about and review the ideas developed.  
CreatureSpace is such a system; it consists of two 
interacting programs that combine to provide an 
environment based on computer game technology, and 
agents that populate the environment.  These agents can 
plan and act based on their own desires and what they see 
in the environment around them. 
 Part of our aim was to develop our agents in a realistic 
environment using existing technology.  We make use of 
computer game technology, which can provide very 
realistic environments that provide detailed information to 
the player and to the game controlled agents that populate 
them, at low cost and with little effort.  Half-Life can 
provide the agent with a body in the environment, 
including “eyes” and “ears” to see and hear its 
surroundings, giving it human-like capabilities in vision, 
hearing, and communication.  Turning Half-Life into the 
environment renderer for CreatureSpace involved 
modifying it slightly to ensure it interfaces correctly with 

the agents we wish to place in it.  This involves specifying 
instructions to the environment and responses to these 
instructions.   

Figure 2: CreatureSpace in action 

The ideal situation would be to have agents that can exist 
in any environment and always behave as a human would 
behave.  Since creating such an agent was well beyond the 
scope of this project, we focused on just one domain, fire 
evacuation.  Regardless, the agents are expected to exist in 
the environment as a human would, emulating human 
desires and responding appropriately to input.  To achieve 
this purpose, agents need to be able to interact with their 
environment in the same way as humans do in theirs.   
While our agents are restricted to a single domain, they do 
exhibit  
     •    Curiosity 
     •    Self-preservation 
     •    Social responsibility 
Agents exhibit curiosity by exploring their surroundings, 
social responsibility by warning others of danger and self-
preservation by following safety procedures in the event of 
a fire. 
 The evacuation simulations take place in a large 
building.  The building has a number of rooms that are all 
connected by doors.  Some of the doors are unreliable and 
can refuse to open, forcing the agents to find an alternative 
route.  The building has multiple routes from one room to 
another and there is a predefined safe area outside the 
building at one end.  During the simulations a fire breaks 
out somewhere in the building and we are able to observe 
what the agents do in response to this.  We can directly 
observe their behaviour on the screen and CreatureSpace 
generates logs so we can observe their “thought processes” 
in detail. 

Agents Operating in Realistic Environments 
One of the challenges that agents operating in the real 
world face is that of managing large amounts of 
information.  We begin with Firby's concept of situation 
driven execution (Firby 1989).  Agents plan at an abstract 
level, generating sketchy plans made up of higher level 



actions than those that can be directly executed in the 
environment.  Sketchy plans leave much of the detail of 
executing actions to a separate execution mechanism.   The 
execution mechanism then makes use of the situation at the 
time of execution (as distinct from the time of planning) to 
determine how to execute the actions from a given set of 
predefined options.  The execution mechanism does this in 
a reactive fashion. 
 In this project we have extended this distinction between 
planning and executing, from agent operation, to the 
management of an agent's knowledge.  We define a 
distinction between the knowledge needed for planning 
and that needed for execution.  The planning knowledge is 
used by a deliberative planner to generate sketchy plans 
and the execution knowledge is used by an execution 
mechanism in performing reactively specified actions.  We 
have called this split in knowledge embedded knowledge 
and discuss it in more detail in the next two sections.  
Embedded knowledge also allows for an organisation of 
detailed information, modular addition and deletion of 
knowledge, and maintains distinctive representations for 
the planning knowledge and execution knowledge.  The 
CreatureSpace system has been built around the embedded 
knowledge framework. We have found that this framework 
minimises costly planning and helps provide solutions to 
problems such as knowledge updating, agent attention, 
agent communication, re-planning and concurrent actions. 

Managing Knowledge 
An agent in the real world is bombarded by information 
and has to explicitly choose what information to 
incorporate into its knowledge base and which information 
to use at a particular time.  A simple act such as opening a 
door requires a great deal of numerical information 
regarding spatial locations of objects.  While the amount of 
information in a simulation is still less than what can be 
directly perceived in the real world, a good simulation has 
plenty of detail and as a result, large amounts of 
information for the agents to process.  An agent that does 
not filter information would need to maintain a large 
database of information that would become unwieldy for 
use in planning.   We seek agents that have a set of goals, 
can make multi step plans in response to those goals, 
execute multi-step plans and re-plan as a result of 
observation.  As the size of the knowledge base increases, 
making plans in real time becomes more difficult.  To 
solve this problem, we restrict the information that the 
agent makes use of when it does its planning.  When using 
sketchy plans, planning is abstracted to a higher level, so 
most of the information in the environment is needed only 
for the details of execution. 
 To facilitate this, some of the agent’s knowledge is 
labeled cognitive knowledge and the planner is restricted to 
working only with this knowledge.  As all the details of the 
environment are potentially required for execution, we 
choose not to exclude any knowledge from the knowledge 
the execution mechanism has access to.  We call this 
reactive knowledge and it is exactly all the knowledge an 

agent has about its environment.  We call this framework 
embedded knowledge because the cognitive knowledge is 
a subset of reactive knowledge; it is embedded within the 
reactive knowledge. 
 Consider the example of a door.  The cognitive 
knowledge about a door might be that it opens, and which 
rooms it leads to.  The reactive knowledge about this door 
would be that it opens, which rooms it leads to, what type 
of handle it has, where it is, how to open it, which 
direction it opens, etc.  The reactive knowledge contains 
all the details required for opening doors and walking 
through them, while the cognitive knowledge contains 
only the information needed for making plans that may 
include walking through the door.  Notice that the 
cognitive knowledge is a subset of the reactive knowledge. 

Extending Embedded Knowledge 
There are two additional concepts in embedded knowledge 
that improve the agent's ability to manage knowledge and 
add to the system's flexibility. These are: different 
representations for cognitive and reactive knowledge, and 
a contextual organisation of reactive knowledge.   
 Because the planner and the execution mechanism are 
different systems doing very different jobs, it is entirely 
possible for the two systems to need two different 
representations of knowledge.  For this reason, we define 
cognitive knowledge to be more than simply a subset of 
reactive knowledge; it is a subset of reactive knowledge 
that may then be transformed into a new form. 
 

Figure 3: The relationship between reactive and 
cognitive knowledge 

 We also define a special organisation for reactive 
knowledge.  It is a contextual organisation where related 
knowledge is kept in nodes and the various nodes are 
connected in a graph.  The connections in the graph denote 
relationships between nodes of information, similar to a 
semantic network.  We get two major advantages from this 
organization.  Firstly, information that is related is stored 
together so that access from one to another is fast and 
simple.  The second advantage is that each node now has a 
surrounding context, information that is related to it and 
can provide extra information about this node when it is 
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required.  An example of where we use this context is in 
knowledge updating.  The context in which knowledge is 
stored aids in choosing how to update it when conflicts 
occur.   
 This organization applies only to reactive knowledge.  It 
is not inherited by the cognitive knowledge that is derived 
from the reactive knowledge.  This is related to differing 
representations.  The reactive execution mechanism 
requires organized knowledge for fast access and for 
providing a context for knowledge updating.  On the other 
hand, the deductive planner specifically does not want to 
be constrained in how it can use cognitive knowledge, so it 
has no such organization.  

The CreatureSpace Architecture 
As described above, we created a system consisting of two 
interacting programs that is capable of running 
simulations.  In particular, we have focused on the 
evacuation of a building in case of fire.  The system 
consists of a rendering and basic mechanics engine (Half-
Life), and an agent controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Overall CreatureSpace architecture 

Half-Life is responsible for providing the environment and 
the representation (body) of the agents in that environment.  
The agent controller is responsible for providing the 
intelligence of the agents.  It sends instructions to its 
representation when it wants to perform some action.  It 
then receives information about how the action proceeded.  
 The two components communicate across sockets using 
a simple language that operates as a request-response 
system.  The agent controller will request something of the 
engine (perhaps “move my representation to position x, 
y”) and the environment (Half-Life) will respond.  
Normally responses are simply true or false indicating 
success or failure to perform the request.  When 
appropriate, the responses incorporate additional 
information on the success or failure.  For example, the 
failure response for walking is “failed - was stopped at 
position x, y”.  This simple system is powerful and has 
easily accommodated the functionality required for 
CreatureSpace.  Table 1 enumerates some of the possible 
request - response pairs. 
 

Request Response 

Walk for x meters True - finished at location x y 
False - finished at location x y 

Turn x degrees True 
False - stopped after x degrees 

Where is the closest 
agent? 

True - location x y 
False 

Open a door True - Door will take x seconds to 
open 
False 

Yell “sentence” True 

Look around this room True - positions of corners and 
doors in this room. 

Table 1: Part of the agent controller to Half-Life 
communication protocol 

The rendering and basic mechanics engine is provided by 
Half-Life.  A mod (modification and recompilation of the 
source code) of Half-Life was created with some new code 
specifying the agents that would populate the world as well 
as effects such as fire.  Half-Life provides a particularly 
realistic environment in which the agents can operate.  It is 
flexible, easy to extend and provides good quality 
rendering of scenes.  
 The agent controller can be further broken down into an 
action selector, a planner, a knowledge base and an 
execution mechanism. 

Figure 5: The agent controller organisation 

The action selector is responsible for executing the basic 
thinking loop for the agent.  This loop is an observe-> 
plan-> act loop.  The knowledge base provides an 
encapsulation of all the functionality for managing 
knowledge using embedded knowledge.  The planner is 
responsible for generating sketchy plans from cognitive 
knowledge and in this task it makes use of an inference 
engine.  In the CreatureSpace system planning is done with 
a STRIPS style planner (Fikes, Hart & Nilsson 1972).  We 
use a prolog-based system as the inference mechanism and 
as our STRIPS planner.  The execution mechanism defines 
a set of actions that the planner can use for planning and 
contains reactive specifications for executing each of the 
actions. 
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Easy Solutions 
In creating this simulation environment, a number of 
challenges arose.  Most of these were simpler to solve than 
would have otherwise been the case, because we were 
using the embedded knowledge framework and sketchy 
plans.  We were able to find solutions to the following 
challenges: 
     •    Updating knowledge 
     •    Re-planning 
     •    Uncertainty 
     •    Agent attention/agent communication 
     •    Concurrent actions 
Updating knowledge in this system is relatively easy 
because the execution mechanism is given direct access to 
the reactive knowledge in its context.  It requires this 
knowledge to tailor execution to the current situation.  
When the execution mechanism updates reactive 
knowledge, the cognitive knowledge derived from it is 
automatically updated.   
 Re-planning is relatively simple in this system because 
the execution mechanism has access to the reactive 
knowledge and can easily update it as described above.  
This means that after a plan has failed, the knowledge base 
has already been updated and a new plan can be generated 
from it.   
 Agent attention and communication are related problems 
because communicating with an agent first involves 
getting its attention.  In CreatureSpace all agents have a list 
of things that can grab their attention.  If any one of those 
things comes into their field of vision or within earshot, 
they will cease current execution, update the knowledge 
base to incorporate whatever drew its attention, and then 
re-plan based on this new information.   
 Concurrent actions are important for doing things like 
walking and talking at the same time.  In CreatureSpace we 
define two types of action, those that can be done 
concurrently with others and those that cannot.  The 
execution mechanism threads execution of actions together 
if concurrent actions are required.  At no stage does the 
planner need to plan for concurrent actions.   For example, 
the planner may generate a plan including walking and 
talking.  From the planner’s point of view they are being 
executed one after the other.  However the execution 
mechanism recognises that walking and talking can be 
done at the same time and interleaves the execution of the 
two actions.  Keeping the planner free from concurrent 
actions contributes to the simplicity and speed of the 
planner. 
 The execution mechanism also takes care of dealing 
with uncertainty.  This frees the planner from this difficult 
task, further simplifying planning.  The execution 
mechanism can recognise that some actions are particularly 
uncertain and force re-planning immediately after 
executing them. 
 A further advantage that the combination of embedded 
knowledge and sketchy planning affords us is that the 

plans generated by the agent are simpler to interpret.  The 
plans are not muddied by details, resulting in cleaner, 
easier to interpret plans.  The low level details can be 
investigated if required, by interrogating the execution 
mechanism. 

The Simulations 
The usefulness of embedded knowledge in deliberative 
agents has been demonstrated by running fire evacuation 
simulations.  The fire evacuations all involved the same 
building that had one or more agents in it.  The agents are 
assumed to be familiar with basic fire drill techniques and 
will evacuate the building to a safe area outside the 
building.  The scenarios of the fire evacuation that were 
run are as follows:  
     •    One agent who knows the layout of the building 
     •    One agent who must explore the building. 
     •    Multiple agents. 
     •    Broken doors that force the agents to rethink their 
         plans. 
     •    Trapping an agent to see how it copes. 
The simulations were run and recorded in a standard 
compressed digital video format.  Figure 6 is a snapshot 
from one of the recorded simulations.  The agent has just 
had a fire break out in front of him and is in the process of 
getting to the exit. 
 

Figure 6: Agent notices fire in front of him and 
evacuates the building 

As expected, in scenarios where the doors were broken, 
agents took longer to evacuate.  Similarly, more obstacles 
and more agents led to bottlenecks at the doors.  These 
bottlenecks slowed the evacuation quite significantly as 
agents jostled through the doors.  Agents in the simulations 
would yell warnings once they became aware of the 
emergency.  Their voices had a limited range, but anyone 
within that range would hear the warning and then decide 
whether or not to pay attention to it. We found that 
communication of the fire could travel ahead of the first 
agent to see it, meaning agents far from the fire would hear 



of it quickly and get out of the building first, even if the 
fire was a long way away. 
 While these specific results might be achieved with 
purely reactive agents, we could not as easily investigate 
why the agents chose particular actions and it would not be 
as simple to scale to more complex domains.  Furthermore, 
the rules for behaviour and the reactive systems behind 
them would be far more complex and more difficult to 
understand. 
 The combination of embedded knowledge and sketchy 
planning allows the agents in our simulations to plan in 
real time despite the complexity of the environment in 
which they exist.  We found that the amount of cognitive 
knowledge required for planning was far less than the 
reactive knowledge that needed to be maintained, allowing 
for real time planning.  High level actions were easily 
represented by a reactive specification in terms of lower 
level actions.  As a result of using embedded knowledge 
and sketchy planning for these agents we were able to take 
advantage of the simple solutions to the problems of 
concurrency, re-planning, attention and knowledge update.  
If we had not used embedded knowledge and sketchy plans 
it is expected that we would not have been able to 
implement all of these in the time available. 

Embedded Knowledge in Action 
Each of the simulations generated logs from the execution 
mechanism, the planner and the communications between 
the environment and the agent.  Extracts from these logs 
that demonstrate the deductive planner of the 
CreatureSpace agents are included below. 
 The following is a description of two iterations of the 
agent’s thinking loop.  This loop executes indefinitely as 
long as the agent exists and is responsible for the agent 
being autonomous.  The agent chooses a plan based on its 
current knowledge and executes it in each iteration.  In this 
case, the agent is standing in a building and there is 
nothing worth noting going on around it. 
 Initially, the agent has the following goals (with 
priorities) and cognitive knowledge, which together make 
up its state of mind.  The agent’s cognitive knowledge is 
captured as the planner uses it, so it is already in a form 
appropriate for the Prolog based inference engine. 
 
Goals : **************************** 

 exists(me) : 1 

 discover : 2 

  

***** My current cognitive knowledge is ***** 

burn(_):- 

 fail. 

clear_of_building:- 

 fail. 

contains(building1,room1). 

... 

contains(room2,obstacle1). 

contains(room3,door2). 

... 

directly_connected(room1,room2). 

... 

directly_connected(safe_area,room4). 

discover:- 

 fail. 

everyone_warned(_):- 

 fail. 

exists(me). 

first_name(person1,john). 

holds(contains(room1,me), init). 

job(person1,sparky). 

leadsTo(door1,room1). 

... 

leadsTo(door6,safe_area). 

outside_room(_):- 

 fail. 

outside_room(safe_area). 

room(room1). 

... 

room(room6). 

 
This shows quite a bit of detail that is required by the 
planning algorithm but is not of importance here.   
Although the cognitive knowledge has been abridged, for 
the sake of brevity, this agent is actually aware of all the 
rooms, doors, obstacles and people in the building it is in, 
and is aware of fire evacuation techniques.  Notice that the 
cognitive knowledge used by the planner is expressed at a 
very high level.  No details about the location or sizes of 
objects are included  since this information is present as 
reactive knowledge, but filtered out of cognitive 
knowledge.   
 Some of the rules, such as this one, seem strange. 
outside_room(_):- 

 fail. 

outside_room(safe_area). 

 

This rule set should be read as “if there are no outside 
rooms we fail.  The room called safe_area is a room”.  The 
redundancy in the cognitive knowledge is due to the fact 
that the agent is acquiring knowledge incrementally and 
the knowledge base is generated automatically.  Note that 
all this cognitive knowledge is in a form that can easily be 
used in traditional planning. 
 The goals labeled exist and discover, lead to the 
following query of the inference engine based on the 
agent’s strongest desire.  This query asks, “how do I 
discover things from my current situation?” and the 
answer from the planner is “explore your surroundings”.  
The desire to explore is built into the agents in 
CreatureSpace, as we desire curious agents, who are not 
content to sit around if their knowledge is incomplete.  
 

**************** Query results*************** 

Query of : achieve_goals([discover], init, S) 

Generated a plan of 

explore 

 



Now the agent must execute the action explore.  So the 
execution mechanism is called into operation.  This 
mechanism executes the explore action based on the 
reactive knowledge (the current situation).  In this case, the 
agent knows everything it wants to know about the 
building it is in, so it chooses to simply look around the 
room.  Depending on the actual situation, the agent may 
choose another action, for example, to investigate one of 
the other rooms. 
 In this particular case, the agent notices a fire, which 
interrupts the execution of the action.  The action of seeing 
a fire triggers a change in the agent’s reactive knowledge 
to include the information about the fire, and also triggers 
a change to the agent’s desires: 
 
Goals : **************************** 

 exists(me) : 1 

 discover : 2 

 contains(safe_area,me) : 3 

 everyone_warned(fire) : 3 

 clear_of_building : 3 

 
Note that these three new desires all possess a high 
priority.  The failure of an action always forces the agent 
to generate a new plan, as action failure often leads to a 
significant change in the agent’s knowledge or desires.   
 When re-planning, the agent’s cognitive knowledge 
reflects the change in its reactive knowledge by including 
one new piece of information: 
... 

burn(building1). 

... 

 
The query generated from the desires is “how do I get to 
the safe area, warn everyone of the fire and get clear of the 
builing?”.  The plan generated in response to this is: 
walk(room1,safe_area) 

yell(fire) 

clear_building 

 
These three actions are now executed by the execution 
mechanism.  In this example, the action yell can be 
executed concurrently with the other two actions.  The 
planner did not know this, and generated the plan as a 
linear sequence of actions.  At execution time, the 
execution mechanism notices that concurrency is possible 
and interleaves the actions. 
 In these two iterations of the thinking loop the agent  has 
used its cognitive knowledge, its surroundings and its 
desires to determine a plan.  It then acted out this plan 
based on its detailed reactive knowledge.  When the 
situation changed the agent re-planed based on the new 
information.  This was all executed in real time.  
 
 
 

Discussion 
This project has not been free of unexpected problems, 
although they were relatively few and far between.  One of 
the problems in specifying agents operating in such 
realistic environments is that any mistake in movement 
visually stands out.  Agents that turn a little left then right 
when they should have turned right straight away show up 
very clearly.  Using a reactive execution mechanism 
partially solves this problem but it still requires some very 
careful execution specifications to make agents perform 
actions without showing themselves up as computer 
controlled.  This project has managed to achieve an 
incomplete, but functional simulation environment with 
agents that plan and choose actions in a believable fashion 
and with a particularly realistic rendering of environments.  
The speed with which we were able to achieve this (four 
“man months”) shows the leverage we have been able to 
get from the computer game technology, the speed of 
development with CreatureSpace and the ease with which 
we were able to find solutions to difficult problems. 

Future Work 
We envision that the architecture would be scalable to 
more complex domains and more complex agents.  With 
agents that perform deliberative planning, we could build 
agents with differing planning capacities and knowledge.  
We could then examine how the differences between 
individual agents may influence the outcome of real life 
situations such as evacuations.  For instance, how the 
presence of delegated fire wardens facilitates orderly 
evacuation. 

Conclusion 
Creating a simulation environment using computer game 
technology and embedded knowledge has proven a useful 
combination.  The computer game solves many of our 
rendering and basic mechanics problems.  The embedded 
knowledge framework has proven itself capable of 
managing agent knowledge in an effective manner, and 
when combined with sketchy planning, has led to some 
unexpectedly easy solutions to problems we encountered. 
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