New Ideas In Pathfinding

Peter Yap
GAMES Research Group
Department of Computing Science
University of Alberta
Edmonton, Canada
T6G 2E8
peteryap@peteryap.com

Abstract

Pathfinding is a computationally expensive
component of many computer games. Typi-
cally, a (rectangular) tile grid is superimposed
over the region, then some sort of graph search
is used to find the optimal path. In this paper,
we mathematically prove and empirically show
that the hexagonal grid is superior to the
conventional tile grid for IDA*. Pathfinding
using a hexagonal grid will generate smoother
and shorter paths. Furthermore, searching on a
hexagonal grid instead of a tile grid will result
in exponentially faster searches. Although
the hexagonal grid is better than the tile grid
in many ways, it is difficult to implement
in practise. Consequently, we introduce the
tex grid which retains the advantages of a
hexagonal grid but is easier to implement.

1 Introduction

Pathfinding in computer games may be easy, but to
do it well is hard. Consider Diablo II, a successful
multi-player game. To be very brief, the player basically
runs around and kills hordes of demonic minions...
over and over again. To finish the game, the player
usually exterminates a few thousand minions. The game
involves quite a lot of pathfinding, since each of these
minions either chases the player, or (less commonly)
runs away from the player. In the meantime, the player
is rapidly clicking on the screen in an effort to either
chase the minion, or (more commonly) to run away
from the minion and company. All this frantic running
and chasing requires pathfinding computations. To
complicate the matter, the player is allowed to hire
NPCs (called hirelings) or play with other humans in
an effort to kill more minions. This significantly adds
to the complexity of the game in terms of pathfinding.
Consider this complicated situation, where a party of
human players with hirelings is attacked by a very
large horde of minions. Being very sensible, the human
players all independently run in different directions to
escape the horde. In this state, pathfinding is done

Copyright 2002, American Association for Artificial Intelligence

(www.aaai.org). All rights are reserved.

95

on each fleeing player by interpreting the player’s
mouse clicks, pathfinding must be done on each minion
so that they give chase to the human players, and
pathfinding must be done on each hireling so that
they flee with their respective employers. On a slow
computer or in a network game, this computationally
intensive scenario reduces the game to a slide show,
often leading to a player’s untimely death, since the
minions still attack even while the game appears
“frozen” to the human players. One of the solutions
applied by Blizzard was to magically transport the
hireling to beside the player instead of calculating
a path to move the hireling to the player. Another
solution was to program the minions such that they lose
interest in chasing the player if the player is too far away.

Consider The Sims, where the player controls a family
in a household environment. Often, the house is clut-
tered with obstacles like furniture, making pathfinding
slightly tricky. Typical pathfinding problems involve
deadlocks when two Sims are trying to occupy the same
space at the same time. A common situation is when a
Sim has just finished using the bathroom and is trying
to leave through the bathroom door. Simultaneously,
another Sim desperately needs to go and rushes towards
the bathroom. The two Sims collide at the bathroom
door and a deadlock ensues. Often the player must
personally resolve the issue. This situation could be
avoided if the pathfinding is better and if the Sims could
learn simple courtesy.

Many computer games like The Sims, the Civilization
series, and the Baldur’s Gate series conduct pathfinding
on a (rectangular) tile grid. Each tile has a positive
weight that is associated with the cost to travel into that
tile. Typically the pathfinding algorithm is some type
of A* search on the tiles. Some games like BioWare’s
upcoming Neverwinter Nights use IDA* (Iterative
Deepening A*), which avoids the open list used in
A* and its associated memory and maintenance costs.
While TDA* avoids the overhead of maintaining and
storing the open list, it is typically slower than A¥*.
For the rest of this paper, we assume all pathfinding
searches are done with IDA*.

There are two ways to conduct pathfinding searches
on tiles. Traditionally, one is allowed to move in the
four compass directions on a tile; however, it is possible
to also include the four diagonal directions (so eight
directions in total). We call the latter the octile grid
and the former the tile grid. We shall prove that the
octile grid is inferior to the tile grid for IDA* searches.
Other than the tile and octile grids, the hexagonal (or
hex) grid is also known, although it is only seen in war
strategy games. This is very unfortunate since choosing
the hexagonal grid instead of the tile or octile grid
results in exponentially faster pathfinding searches.

2 Tiles, Octiles, and Hexes. Oh my!

The speed of the IDA* search depends on the number
of nodes it needs to examine. Analysis has shown that
the size of the nodes to be searched is O(bP) [Korf et
al., 2001], where b is the average branching factor and
D is the depth of the search. Intuitively, this is because
IDA* checks every path of length D, and at each depth,
each node branches into b more nodes. A search on a
tile grid has four degrees of movement. Hence for a
pathfinding search, we need to check which of the four
adjacent tiles we wish to explore next. Since we never
backtrack in an optimal path, we need not check the
direction we came from. All in all, we need to check
at most three adjacent tiles at every tile except for the
start tile. We say the branching factor of a tile grid is
three, b = 3, since we need to check three adjacent tiles
per tile visited. If the length of the path from the start
tile to the goal tile is D, then we say the depth of the
search is D. In conclusion, the size of the nodes to be
searched in a tile grid is O(3%).

Now consider a hex grid with six degrees of move-
ment. Using a similar argument, one might deduce
that the branching factor of a hex grid is five; however,
we can do better and reduce the branching factor
to three. Let N, E, S, W be four hexagonal tiles
(corresponding to the compass directions) such that
every tile is adjacent to the other three. Clearly an
optimal path from S to E would not be SNE using
positively weighted edges. In terms of the graph search,
if one was to enter hex N from S, then the next search
would review the three hexes adjacent to N but not S.
Clearly, S can be omitted as an optimal path would
never backtrack. It follows easily that we need not
consider E or W because SNE or SNW are more
costly than SE or SW (and SE and SW were already
considered as path candidates when we searched at S).
In summary, at each non-root hex, we need only ex-
amine three hexes and hence a branching factor of three.

We have established that the branching factor of both
the tile grid and the hex grid is three. For comparison
purposes, we equate the area of the hex with that of
a tile. Given the same distance, on average, a path

96

GOAL GOAL GOAL

amm—— 7]

START START START

A Hex Path An Octile Path

Figure 1: Optimal Paths on Different Grids

represented by the hex grid is shorter than the path
represented by the tile grid. It follows that because the
hex path is shorter, one doesn’t need to search as deep.
In fact, one can mathematically show that given the
same distance, a tile grid will search with depth D while
a hex grid will search with depth 0.81D [Yap, 2002].
If we combine our knowledge of the branching factors
and the depths of both grids, it follows that if the tile
grid searches through O(3”) tiles in a search, then the
hex grid searches through O(3%%'P) ~ 0(2.427). This
result is very significant because it proves that a hex
grid is exponentially faster than a tile grid for an IDA*
search.

We can now consider the octile grid, which has eight
degrees of movement. Using similar arguments, we can
conclude that the branching factor of an octile grid is
five. One can also mathematically show that if the tile
grid is searched for D depth, then the octile grid is
searched for D/ V2 depth. Hence an octile grid searches

O(S%D) ~ 0(3.14P). Intuitively, the depth for the
octile should be less than that of a tile because one
diagonal octile move is equal to two tile moves (see
Figure 1). Although an octile grid need not search as
deep as a tile grid, it is clear that the octile grid is
the worst of the bunch due to its branching factor of
5. While one may claim that the octile grid produces
smoother and shorter paths, this can be accomplished
more efficiently by smoothing the tile path. A tile
search with path smoothing produces the same result
as an octile search but is exponentially faster. In terms
of IDA* search speed, tiles are better than octiles, and
hexes are better than tiles. Do hex grids have any
disadvantages? Well, a hex grid is slightly more difficult
than the rectangular grids to implement due to its
hexagonal shape.

3 Welcoming the Tex Grid

In addition to the exponential search advantage that
the hex grid enjoys over the tile and octile grids, hexes
have very nice geometric properties. For example, each
hex is perpendicular and equidistant to each adjacent

hex; furthermore, a hex shares exactly one side with
each adjacent hex. For these reasons, it is common to
see hexes used in war strategy games. Unfortunately,
because of the regular hexagon’s shape, the hex grid is
hard to implement. As such, we introduce the tex grid
which is topologically equivalent with a hex structure
but uses tiles. One can imagine a tex grid as a tile
grid such that the odd columns are moved up by half
the height of a tile (see Figure 2). A bricked wall is
another example of a tex grid. Tex grids are more
manageable than hex grids since space is represented
as rectangles. Additionally, each tex is equidistant
and share exactly one side to each adjacent tex; but
more importantly, texes have a branching factor of
three. Theoretically, texes are only slightly slower
than the hex grid on average; O(3°8%90) instead of
0O(39-895D) - Another obvious advantage that texes have
over hexes is that every tex path is shorter than a tile
path, whereas some hex paths are longer than some
tile paths (but on average is shorter). All in all, tex
grids are exponentially faster than tiles and octiles (and
slightly slower than the hex grid), produces smoother
and shorter paths, and are easy to work with. The
attributes for the choice of grid is summarized in Table 1.

Table 1: Summary of Grids

5 goal
6 7 goa 5
4
4 5 3
3
3 4 5 2 4
5
2 1
start A
1 start A 1

Figure 2: A tile grid and the corresponding tex grid

grids perform even better in the presence of obstacles
and variable terrain weights. One curious result from
these trials is the fact that the tex grid does better than
the tile grid on the 10x10 grid, but not as well on the
20x20 grid (in contrast to the theory); this is probably
because the small 10x10 grid limits the exponential size
of the search tree. In general, we would expect tex grids
to do better than tile grids exponentially as the grid size
increases.

Table 2: Empirical Results

Grid | Branching | Average Nodes
Type Factor Depth | Examined

Octile 5 0.71D | 0(3.147)
Tile 3 1.00D | O(3.007)
Hex 3 0.81D | 0O(2.42P)
Tex 3 0.81D | 0(2.43P)

4 Empirical Results

This paper has shown the asymptotic theoretical results,
but it is unclear how tex grids behave for the grid sizes
normally used in practise. This section contrasts the
costs of IDA* searches on tile grids, against comparable
tex grids. By comparable we mean that the tile grid
and its equivalent tex grid can be fairly compared. For
example in Figure 2, the tex grid can’t be compared to
the tile grid since the tile grid can not reach A while
the tex grid can. All test cases where the tex grid has
an unfair advantage over the tile grid are removed.

The tile grid and its comparable tex grid are com-
pared in 10* independent trials (see Table 2). In each
trial, a fixed number of obstacles are randomly placed on
the grid, after that the start and the goal are randomly
placed. Each tile or tex has a weight of either 1 or 2, to
denote the cost to enter that tile or tex. Additionally,
a path exists between the start and the goal in every

trial. A glance at the £¢2Eath column show that it reaf-

) Tile]?at{t TerNod
firms the theoretical prediction of 0.81. The 77=x2%%

and Zezlime loar]y show that searches on tex grids are

TileTime N)
faster and examine less nodes. It is also clear that tex

97

Size | Weights | Obstacles | Forhall | Tezholes | Terfime
102 1 20% 0.80 0.1 0.2
202 1 20% 0.81 0.3 0.4
102 1,2 10% 0.83 0.2 0.3
102 1,2 20% 0.82 0.001 0.002

5 Conclusion

While we have shown the many advantages of hexes in-
cluding its exponentially faster search speed, it is the
more manageable tex grid that we expect future games
to use. These results are only applicable to games which
use IDA*. Current research is focused on pathfinding on
grids using A*,

6 Acknowledgments

I am indebted to Mark Brockington of BioWare, who
patiently explained to me the problems of pathfinding
in commercial games. I would also like to thank
my supervisor, Jonathan Schaeffer, who helped with
everything despite his busy schedule.

Financial support was provided by NSERC and
iCORE.

References

[Korf et al., 2001] R. Korf, M. Reid, and S. Edelkamp.
Time complexity of iterative-deepenng-A*. Artificial
Intelligence, 129(2):199-218, 2001.

[Yap, 2002] P. Yap. Pathfinding on Different Grids. To
appear

	page1: 95
	page2: 96
	page3: 97
	copy right: Copyright 2002, American Association for Artificial Intelligence
	line2: (www.aaai.org). All rights are reserved.

