
 1

The FIRE Manual

FIRE Version 3.0

Kenneth D. Forbus

Tom Hinrichs

Johan de Kleer

Madeline Usher

Matt Klenk

Andrew Lovett

Praveen Paritosh

Qualitative Reasoning Group

Northwestern University

Version of 1/3/2017 3:37 PM

Please send feedback and suggestions to

forbus@northwestern.edu

 i

1 Introduction ... 3

2 Overview of FIRE ... 3

2.1 FIRE’s Knowledge Base .. 3

2.2 Reasoners ... 5

2.3 Reasoning in FIRE ... 5

2.4 Analogical processing in FIRE .. 8

2.5 Contexts in FIRE .. 9

3 Getting started ... 10

3.1 Testing your FIRE installation or port ... 12

3.2 Starting it up ... 12

3.3 Shutting it down ... 13

3.4 Setting up your environment during development ... 13

3.5 Queries ... 13

4 FIRE subsystems and APIs ... 14

4.1 Reasoners ... 14

4.1.1 Reasoner API .. 14

4.2 The Working Memory .. 16

4.3 Knowledge Base API ... 16

4.3.1 Setting up KB's ... 16

4.3.2 Storing and retrieving knowledge ... 17

4.3.3 Deleting knowledge .. 18

4.4 Loading knowledge from files ... 18

4.4.1 Structural queries .. 20

4.5 ASK .. 21

4.5.1 Effort and Advice .. 22

4.6 Analogy operations .. 24

4.6.1 Analogical matching ... 25

4.6.2 Working with Cases .. 28

4.6.3 Built-in Case Constructors .. 29

4.6.4 Analogical retrieval ... 30

4.6.5 Analogical generalization ... 32

4.7 QUERY .. 35

4.7.1 Controlling backchaining .. 36

4.7.2 Using backchaining effectively... 36

4.8 SOLVE ... 37

4.8.1 Representing suggestions .. 39

4.8.2 Customizing node cost strategies .. 41

4.8.3 Debugging tools for solve ... 42

4.9 The HTN Planner ... 42

5 Extending FIRE .. 44

5.1 Adding a new reasoning source ... 44

5.1.1 Deciding what predicates should be provided .. 44

5.1.2 Implementing the predicates ... 45

5.2 Adding new quantifiers .. 47

6 Extras .. 47

6.1 Human-Readable Namestrings ... 47

 ii

7 Tips, Tricks, Traps, and Troubleshooting ... 50

7.1 Problems while getting set up .. 50

7.2 Problems found during shakedown .. 50

7.3 Problems during development .. 51

8 References ... 51

9 Appendix A: Vocabulary of specialized predicates in ASK and QUERY 53

9.1 Predicates handled specially by ASK... 53

9.1.1 Structural knowledge from the KB ... 53

9.1.2 Structural predicates.. 53

9.1.3 Metaknowledge predicates .. 56

9.1.4 The Eval subsystem .. 57

9.1.5 Dynamic Update Predicates .. 58

9.1.6 Binding List Predicates ... 58

9.2 Predicates handled specially by QUERY ... 58

9.2.1 N-ary predication .. 59

9.2.2 Metaknowledge predicates handled by QUERY .. 59

10 Index ... 60

 3

1 Introduction
The FIRE reasoning engine is designed to support building general-purpose reasoning

systems operating over large knowledge bases. Here are the key features of FIRE’s

design:

• FIRE is a federated architecture where reasoning sources are used to provide access

to specialized facilities, such as spatial reasoners. Thus aspects of inference that are

best handled procedurally can be integrated smoothly with other kinds of reasoning.

Truth-maintenance services provide a uniform layer for drilling down into underlying

assumptions and for generating explanations.

• FIRE knowledge bases are implemented via a persistent object-oriented database,

rather than being part of a binary image. This facilitates scaling up, persistent

storage, and portability.

• FIRE is designed from the ground up to support analogical processing. That is,

support for analogical mapping (via the Structure-Mapping Engine, SME), similarity-

based retrieval (via MAC/FAC) and analogical generalization (via SAGE) are built

into the software from the beginning. For example, drawing an analogy in FIRE is

considered to be more primitive than backchaining. This inverts the usual place that

analogical processing is given in reasoning systems, where, if it is included at all,

analogy is treated as an extra, optional add-on that might be invoked when all else

fails.

• FIRE uses contexts to partition backchaining. Efficient reasoning over large

knowledge bases is still, in general, an unsolved problem. A common problem with

backchaining in reasoners is that it easily “gets lost” when working in a very large

KB. FIRE exploits the microtheory structure of the knowledge base to control which

Horn clauses are visible for backchaining. This enables fine-grained declarative

control over which axioms are used.

FIRE has been created in collaboration with PARC, Inc. The Plan B database that we use

to host the knowledge base was created by Ken Forbus and Johan de Kleer, using Franz

Inc.’s AllegroCache database as the persistent object store.

2 Overview of FIRE
This section provides a conceptual introduction to FIRE’s facilities, which will provide

the foundation needed for understanding the details. We discuss FIRE’s knowledge base,

the idea of reasoners, and reasoning mechanisms in turn.

2.1 FIRE’s Knowledge Base

The knowledge base provides persistent storage of ground facts and axioms. It supports

pattern-directed retrieval of facts, and provides rapid inference facilities for structural

queries (e.g., types of arguments for predicates, collection membership). The knowledge

bases used with FIRE tend to be reasonably large, ~106 facts. Given that many of our

 4

current experiments involve learning, the KB infrastructure is designed to scale up to

several orders of magnitude beyond that.

FIRE KBs use a Cyc-style microtheory structure to provide contextualization. That is,

every fact is stored in one or more microtheories. Most FIRE operations are carried out

with respect to some microtheory. Since microtheories can inherit from each other (via

the genlMt relationship), a microtheory in effect specifies a logical environment for the

reasoning being conducted.

The rest of this subsection goes into why we use a persistent object database for the KB

infrastructure, and can be skipped unless one is interested.

FIRE’s predecessor, DTE, was our group’s first large knowledge based reasoning engine.

DTE stood for “Domain Theory Environment”, and was built as part of the DARPA

HPKB program. One important advance in DTE was the use of a standard database to

store the contents of a KB and to support pattern-matching. Previous attempts to do this

either restricted the expressive power of the representation language (e.g., binary

relations in [1]) or stored a subset of the information in the database (e.g. storing a few

properties of a concept in a database and the rest as a string that had to be loaded when

the knowledge was to be used in [15]). Tom Mostek figured out an encoding that was

fully general and reasonably efficient, and thus we were able to use Microsoft Access to

store DTE’s knowledge bases.

Unfortunately, there were some significant problems with DTE’s KB infrastructure.

First, while Microsoft Access had great tools, the transaction testing, security facilities,

and ODBC calls caused considerable performance hits over what a simple flat-file

database could provide1. Our next solution was to use a streamlined flat-file database

(BDL) built by Bob Cheslow of PARC, who has adapted it for our purposes. Second, the

pattern to database table encoding used in DTE wasn’t quite as efficient as it might be,

and the pattern directed retrieval facilities were fairly simple and not optimized. The

DBEX system created by Reinhard Stolle2 and John Everett3, with consultation from us,

provided a more efficient encoding scheme and quite powerful pattern matching

facilities. To make structural queries efficient, a structural cache was pre-computed and

stored with the KB to speed up taxonomic queries. Data that would be inconvenient or

inefficient to store inside the assertion database itself was stored in a resources directory

associated with the KB (e.g., the binary files associated with sketches, including jpeg

backgrounds).

The DBEX solution worked much better, but still had its problems. First, BDL really

wasn’t designed to operate at this scale. This led to significant brittleness. Second, while

DBEX was fast some of the time, some of the time it ended up being quite slow. It did

not directly support microtheories, for example, and hence the number of database

queries performed was linear in the number of microtheories in the current logical

1 Jim Hendler warned us about this, and he was absolutely right.
2 Then at PARC, now at BMW.
3 Then at PARC, now at DARPA.

 5

environment. Third, the structural cache, while vital for efficiency, was itself something

of a memory hog (40MB slugged into the Lisp heap, which for 32 bit machines was

problematic) and brittle, since it was saved as a special-purpose binary file.

To overcome these problems, Forbus & de Kleer started from scratch, using

AllegroCache as a persistent object store. Structural facts (e.g., argument constraints,

arity, genls, genlPreds, and genlMt statements) were translated into pointers between

specialized objects that represented predicates, collections, and entities. General facts are

indexed via a coarse-coded bucket index scheme. Contextualization is handled via an

ATMS-like label, which provides essentially constant-time context filtering. This

knowledge base infrastructure, optimistically called “Plan B”, is what this version of

FIRE uses.

2.2 Reasoners

The working state associated with a system using FIRE is stored in one or more

reasoners. Reasoners include a working memory that stores the assumptions and results

specific to a particular session or use of an application (as distinct from the knowledge

base, which persists across sessions). Thus reasoners constitute a locus of activity in

FIRE-based systems. Some applications use a single reasoner (e.g., the Case Mapper

system for helping cognitive scientists experiment with analogy). Other applications use

multiple reasoners, as a way of keeping different contexts straight (e.g., each sketch in a

nuSketch system includes a separate reasoner that holds the results of the visual and

conceptual processing on it).

The working memory in FIRE is implemented using an industrial-strength version of the

LTRE from Chapter 10 of [3]. It includes two significant enhancements, both due to

John Everett, a discrimination-tree index for data and rule retrieval, and fact garbage

collection in the LTMS [2].

2.3 Reasoning in FIRE

The only way to build powerful general-purpose efficient reasoners seems to be to

organize their operation into layers, where primitive operations are used first to find

quick answers, and more complex and extensive reasoning is tightly controlled via

reflection. This section describes how FIRE’s reasoning systems are layered and

intended to be used.

The most primitive, low-level query mechanism is ask. Given a query, ask returns

answers to that query. The number and form of the answers is determined by keyword

arguments to ask, which are described in Section 4.5.1. Other keyword arguments

determine what context the information used is to be drawn from, and qualitatively

distinct levels of effort. Contexts are especially useful in working with cases. Effort

constraints are useful when a sub-query should be restricted to accessing working

memory only, or only doing KB lookup.

 6

All results from ask are fully justified in the Working Memory’s LTMS. For example,

results derived knowledge base lookup are justified via an assumption of the form

 (inKB <fact>)

that is added as part of ask’s processing. This provides a form of caching, since ask can

be restricted to looking for answers only in the working memory, for efficiency. FIRE

also supports procedural attachments, directly implementing specialized kinds of

reasoning in code. These are called outsourced predicates. One class of outsourced

predicates are structural predicates, concerning the structural properties of particular

facts (see Section 9.1.2). Another capability built into ask is the ability to evaluate

expressions, via the evaluate predicate (see Section 9.1.4).

FIRE developers can extend the capabilities of ask via adding reasoning sources to a

reasoner. A reasoning source provides procedural attachments that handle specific

queries, based on the predicate involved and what parameters in the query pattern do or

do not contain variables that need to be bound. This allows, for example, authors of

spatial reasoning systems to treat a query which asks whether or not a given object is

above another one or not quite differently from finding all objects which are above a

given object.

Reasoning sources can be quite simple or complex, depending on the functionality

provided. Analogical processing is implemented through a reasoning source, which

brokers the translation between working memory assertions and SME’s internal data

structures and the reasoning involved in dynamic case construction. Reasoning systems

can also provide interfaces to external resources: For example, in FIRE’s predecessor,

DTE, a reasoning source was used to provide interoperability to the ArcInfo geographic

information system, so that its computational facilities could be harnessed via reasoner

queries.

Reasoning sources are stored with reasoners because they often are implemented using

specialized software that maintains considerable state (e.g., spatial reasoners, geographic

information systems, analogical processing software) and this state must be directly tied

to the correct working memory.

ask is designed to be a primitive operation, not involving reflection on the part of the

reasoning system. Therefore what ask does when answering a query is presumed to be

reasonably bounded. “Reasonably bounded” does not always mean fast: For example,

asking for a comparison of two large analogs of a thousand propositions each takes time.

But those implementing reasoning sources are supposed to do the best they can to ensure

reasonable performance, given the complexity of what they are doing. In some cases,

this might involve decomposing a complex operation into a number of smaller, tightly

constrained queries which are driven by one of the more reflective layers of the system

(e.g., solve and the HTN planner), so that effective control can be maintained.

 7

The next level of query mechanism is backchaining, accessed via query. While the KB

can contain general-purpose axioms in any form whatsoever, the only axioms used in

backchaining are Horn clauses, whose form is

(<== <consequence> <antecedent1> …<antecedentN>)

General axioms can be converted into Horn clauses, of course, but FIRE deliberately

does not do that automatically. The reason is tractability: A general axiom can be used in

a wide variety of ways, but which ways are actually relevant and efficient will vary

according to task. It is assumed that whatever is using FIRE (either a system designer or

a system that is controlling its own reasoning) will ensure that the appropriate Horn

clauses will be available.

A query must always be made with respect to a microtheory, which is a subset of the

knowledge base that constitutes a set of relevant knowledge for some task. As noted

above, microtheories can inherit from other microtheories via the genlMt relation, and

hence the starting microtheory and those it inherits from constitute the logical

environment for the query. Only Horn clauses accessible within the current logical

environment are used in backchaining. Similarly, only ground facts accessible within the

current logical environment are used in backchaining. This puts the burden of

partitioning axioms and facts onto the microtheory mechanism, which, since it is

declarative, opens the door for learning systems to restructure their own knowledge for

more efficient inference. For instance, a common practice is to use a microtheory to

contain the set of axioms relevant to a particular form of reasoning (which may be one

large microtheory, or a small microtheory that inherits from others, for modularity) and

another microtheory to provide the background data needed for an inference (which,

again, can be one large microtheory or a whole set of them). FIRE’s mechanisms are

designed to handle microtheories efficiently in the KB, so do not be shy about using

them4.

The third layer in FIRE is a reflective mechanism, consisting of an agenda which

manipulates an and/or graph of goals and tasks. It is invoked via a call to solve. In

keeping with the layered structure of FIRE, solve starts by using query to see if the

result is immediately derivable. (Recall that query starts by calling ask.) If it is not,

query is called to find suggestions for how to proceed. Suggestions are basically

declarative fragments of knowledge that specify problem solving strategies. The initial

goal given to solve constitutes the root node of the and/or graph. Each suggestion is

instantiated as an OR subnode of a goal node, and are queued on the agenda. When a

suggestion on the agenda is processed, any subgoals representing information that it

requires are created as AND subnodes of the suggestion node, and themselves are queued

4 Microtheories in working memory are not as well supported at this writing, but that is something that we

plan to fix in the future.

 8

on the agenda. This process proceeds until either an answer to the goal node is found, or

resource bounds are reached. Items on the agenda can be processed in any order5.

The solve mechanism produces only one result by default because it is the deliberative

layer of the reasoning system. It is the part that is charged with determining whether or

not a given solution will be suitable and going back for more solutions if not. This means

that the and/or graph must incrementally produce new solutions, since a solution that

satisfies one parent goal might not, for example, satisfy another.

The fourth layer of FIRE is a Hierarchical Task Network (HTN) planner. It reduces high-

level, non-operational tasks to linear sequences of primitive operations. The methods for

achieving tasks are stored in the knowledge base as plans that expand a high-level task to

lower-level primitive tasks. The different methods have preconditions for determining

their applicability and preference rules for selecting among alternatives. The planner

searches among these methods and simulates the effects of primitives until it finds an

action sequence that successfully achieves the task.

The HTN planner provides FIRE-based systems with a means for taking actions. The

planner is very general, and relies on query for the reasoning involved in making its

decisions. Plan execution systems, on the other hand, tend to be application-specific.

2.4 Analogical processing in FIRE

Two of our research hypotheses about how common sense works are (1) it relies heavily

on within-domain analogical reasoning, and (2) abstract generalizations emerge from a

progressive alignment process that uses repeated analogical comparisons [13]. This

motivated building in analogical processing into FIRE in terms of its basic capabilities6.

The interaction with analogical processing facilities is carried out by using queries

expressed in the analogy ontology, a vocabulary of entities and predicates that reifies the

concepts of structure-mapping theory [12]. An overview of the concepts in it and how

they are used can be found in [11]. The details have changed here and there – for

example, constraints on matches are now expressed as part of a match query itself, rather

than being specified implicitly in the context surrounding the query, as the 2000 paper

describes. See Section 4.6.1 for details.

Analogical matching is carried out using SME, the Structure-Mapping Engine [3,4].

Each match between a base and target results in the creation of an SME object to

represent the match, which is returned as one of the variables bound by the query.

Subsequent queries about this object are be used to extract the mappings and their

correspondences and candidate inferences.

5 We plan to provide a declarative mechanism for specifying preferences, analogous to the goal preference

statements supported by SOAR, so that FIRE developers can provide pragma information and FIRE

applications can tune their behavior via machine learning.
6 Analogical processing is implemented as a reasoning source, but every FIRE reasoner includes it by

default.

 9

Similarity-based retrieval is carried out using MAC/FAC [8]. The contents of case

libraries are specified declaratively. Content vectors are computed on demand, so the

first retrieval will include the overhead for computing the content vectors for the

descriptions that constitute the case library.

Cases are specified via terms in queries. Cases can be stored explicitly, or constructed

dynamically based on the contents of the knowledge base and working memory. The

kind of method used to construct the case depends on the functor in the term specifying

the case. FIRE developers can hook in their own case construction methods by extending

a generic procedure with new methods. These methods can use ask and query freely.

Analogical generalization is carried out via SAGE, a descendant of SEQL [16]. SAGE

maintains a set of generalization contexts, one per concept. Each generalization context

takes as input a stream of examples of that concept. Each example is either assimilated

into a generalization, if it is sufficiently similar to it, or kept around to start a new

generalization if another example arrives that is sufficiently close to it. The

generalizations are probabilistic, with frequency information computed for each

relationship and attribute based on the number of occurrences in examples assimilated

into the generalization.

Generalization contexts can also be used as case libraries for retrieval with MAC/FAC.

Generalization contexts can be stored in the knowledge base, providing a persistent

learning mechanism for analogical models. Generalization contexts can also be created

in working memory, an innovation motivated by recent psychological results indicating

that generalization processes are also operating to support rapid learning [14]

2.5 Contexts in FIRE

FIRE uses the conventions of CycL, the representation language used in the Cyc

knowledge base, developed by Cycorp. Consequently, we have adopted a version of their

microtheory mechanism as a means of describing contexts and cases. Specifically,

• All queries are done with respect to some microtheory. If unspecified, it typically

defaults to EverythingPSC, that is, the global microtheory. This is generally not what

you want (see below).

• The logical environment for a query, which specifies what facts can be drawn upon in

reasoning, is defined to be the current microtheory plus all of the microtheories that

are genlMts of it. (As in Cyc, BaseKB and UniversalVocabularyMt are typically a

genlMt of every microtheory, but they don’t have to be.)

• New statements that are derived are installed in the current microtheory.

• The context can be open, i.e., a non-ground term, such as a variable. In that case, ask

treats the query as a pure retrieval query, subject to the constraints in the effort

specification. (The reasons for not doing inference on open contexts are that most of

the results would be incorrect given that many contexts are incompatible, it would be

very inefficient, and there would be no easily determined place to store the results.)

 10

• When a query can be answered by a reasoning source, the handler for the reasoning

source is executed in the logical environment provided by the query.

In assertions, we indicate membership in microtheories via ist-Information statements.

That is,

(ist-Information <context> <fact>) indicates that <fact> holds in <context>.

These ist-Information statements are stored explicitly in the WM. The only exception

is statements in BaseKB; by convention, no ist-Information statement is used when

stating facts that are in BaseKB. Moreover, some predicates are global predicates, that is,

they are true independent of microtheory. For example, genlMt is a global predicate7.

Structural predicates, i.e. those that are true about the form of a fact itself, also tend to be

global predicates. Statements involving global predicates are never wrapped in ist-

Information, i.e. they are treated like they are part of BaseKB.

Every FIRE KB has at least the following microtheories:

• BaseKB contains global facts, things that are true everywhere, such as arity.

• UniversalVocabularyMt is very similar.

• EverythingPSC is the microtheory that contains all other microtheories.

EverythingPSC is logically inconsistent, and hence should be used with extreme

caution in reasoning. It is useful only for looking up facts when finding out what

microtheory would best be used for some task.

• NothingPSC is the microtheory that can never contain any facts. Useful to

provide a default that does not cause errors, but will force someone to use

something more sensible if they want answers.

3 Getting started
FIRE requires Allegro Common Lisp, version 8.1 or higher, either for Windows or for

Linux. It may work on other ACL platforms, but we have only used it routinely on these.

Much of the code is standard Common Lisp, but AllegroCache is crucial, since it is used

to implement the knowledge base.

The source code tree is contained in a Zip archive. You’ll need to unpack it into a

directory on a hard drive with at least 6 gigabytes free (mostly for the KB’s). We

recommend using as the root for the tree <drive>:\qrg. Edit your startup.cl file to

load qrgsetup.lsp, and in that startup file bind the qrg path (i.e., the value of qrg:*qrg-

path*) to wherever you have unpacked everything.

You will need to create a case sensitive (i.e., Modern) image. Whether or not you use an

ASCII character set image is your choice, the knowledge base should no longer require

7 If you think about the possible consequences of genlMt statements that are themselves in contexts

conditioned on other genlMt statements, you can see that allowing genlMt statements to be contextualized

could become problematic.

 11

that. If you choose to create an ASCII image, the qrg\utils directory has a file that

describes step by step how to do this. (We have converted to case-sensitive code in QRG

to facilitate interfacing with other software and to live more harmoniously with Cyc

predicate naming conventions.)

Please make sure you have downloaded the latest ACL patches, and installed

AllegroCache. To install the current version of AllegroCache, type
 (require :update)

(system.update:install-allegrocache)

which will download the latest version from Franz, Inc. There are hard-coded version

numbers in the file planb\defsys.lsp; you may need to update these if the current

version is later than when those files were written.

To load and compile the code the first time, first make sure to load qrg/qrgsetup.lsp.

This will define the loading functions used by the defsystems. You will probably want to

load qrgsetup automatically by adding it to the startup.cl file in your acl installation

directory. Now load and compile FIRE by executing:
 (compile-sys “fire” :fire)

Then kill that lisp, start again, and just call:
 (require-module “fire” :fire)

in the future. If you get source code updates or have extended the system yourself,

periodically repeating the above procedure will ensure that everything is running

compiled, which is crucial for efficiency.

You will commonly want to use Rbrowse and Zgraph as well. Rbrowse is a web-based

system for inspecting knowledge bases and reasoning. You can load it via
 (require-module “rbrowse” :rbrowse)

Rbrowse supports browsing knowledge bases and the working memories of reasoners.

When ontologizing or writing axioms, it is wise to have a KB browser window open so

that you can more easily check for what predicates and collections are available and their

conventions for use.

Zgraph is our graph plotting and display system. It only works under Windows currently,

since it relies on ACL’s Common Graphics. You can load it via
 (require-module “zgraph” :zgraph)

Either of these systems can be compiled by using compile-sys, i.e.,
 (compile-sys <path> <module-name>),

where module-name is a keyword, such as :rbrowse or :zgraph. You can always force

a system to be reloaded by passing in the keyword argument :force-load to require-

module.

An additional note concerning Zgraph: As it happens, the problem of laying out graphs is

extremely complex. There is no single best algorithm, so Zgraph incorporates several

layout algorithms from the literature as well as a novel one developed by our group.

Some of them rely on a program from ATT called WinGraphviz. If you check under

zgraph\v9_resources, you'll find a .msi file that will install WinGraphviz on your

machine, if you don't have it already.

 12

3.1 Testing your FIRE installation or port

Ours is not a perfect world, and so it behooves one to test software once it has been

installed, and especially so for research software. Here is a test you can do to ensure that

your FIRE installation is operating appropriately. This tests determines if the basic

database mechanisms and analogy mechanisms are up and running.

1. Ensure you are in the cl-user package at the top level. (Franz defaults to cg-user,

which is suboptimal from our perspective since we are using cl-user as our data

package currently, because it simplifies development and debugging.)

2. Compile and load FIRE, as per the previous section.

3. Run the procedure (shakedown-fire).

If you see any warnings, errors reported, or (heaven forbid!) a Lisp error, then there is

something wrong. Please see Section 7 for help with specific problems. Otherwise,

everything is working normally.

N.B. These regression tests include the construction of a very lightweight KB, the

“smoke test KB”. This includes a very minimal subset of OpenCyc knowledge files (to

test structural inferences) and classic analogy examples (to test matching and retrieval).

KBs are stored in qrg/planb/kbs, so this directory must be writable by the Lisp.

3.2 Starting it up

Once you’ve loaded FIRE for a programming session, you need to create a knowledge

base. There are two aspects to this:

1. Creating a knowledge base from scratch using “flat files” that describe the KB

contents.

2. Creating a knowledge base in the lisp environment you are working in that refers

to a previously created knowledge base on disk.

Creating a KB from flat files rarely needs to be done; that’s the point of having a

persistent shared general-purpose KB. Generally you will be, in essence, opening up a

KB by creating a lisp object that serves as a connection to the underlying database

system. To create a kb use
 (fire::make-fire-kb <kb path>)

<kb-path> is a pointer to the directory where the KB is housed. For example, if your

QRG directory is c:\qrg, then the path for the OpenCyc-derived KB is typically

c:\qrg\planb\kbs\opencyc-kb\. While the KB is open, you will not want to do

move, write, or copy operations to that directory – doing so can lead to an undefined state

and break the KB. The global variable fire::*kb* points to the currently open KB.

Recall that reasoners are the locus of activity in FIRE. To create a reasoner, use this call:
 (fire::make-reasoner <string for title>)

There is a global variable, fire::*reasoner*, which is used by many procedures to

implicitly specify the reasoner. The cleanest way to set this variable is via this procedure:
 (fire::in-reasoner <reasoner>)

Alternately, to specify the reasoner to be used by default during the execution of a piece

of code, this macro can be used in your source code:
 (fire::with-reasoner <reasoner> . <code>)

 13

It is best if you encapsulate these calls as part of the code you are developing, so that you

don’t have to do this from scratch every time.

3.3 Shutting it down

It is very important that you close the KB before exiting Lisp, by calling

 (fire::close-kb)

If you don’t, it can corrupt the indices of the underlying database which leads to very

annoying errors. When designing FIRE-based applications, we strongly recommend

adding an error handler for desperate circumstances where the Lisp image is going down

that closes the KB. There is no close operation on reasoners, since these will be GC’ed

by the Lisp environment themselves when they are no longer in use.

3.4 Setting up your environment during development

We follow the usual Lisp programming practice of keeping some global variables around

in the environment that serve as “registers” for our working state. Two of the most

important ones obviously are
 fire::*kb*
 fire::*reasoner*

which are set up automatically when you call the procedures for making a KB and for

making a reasoner, respectively. As you become familiar with the API, you will find

others that are useful as well.

3.5 Queries

There are several macros and procedures designed for interactive use of FIRE. We

summarize a few of the most useful ones here, with more detail appearing in the API

information in the appendix.

(fire:ask-it <query> &key (reasoner fire::*reasoner*

 (context :all)
 (number :all)

 (facts :all)
 (env t)
 (transitive nil)

 (infer t)
 (response :pattern))

fire::ask has a large number of parameters to provide a decent amount of control over

reasoning. When interacting, one often just wants sensible defaults. fire::ask-it is a

procedure that provides this. Note that fire::ask-it does evaluate the <query>

argument, since backquoted substitutions into a pattern are common.

(fire::q <query> &key (context :all)
 (number :all)

 (depth 10)
 (response :bindings)

 14

 (reasoner *reasoner*))

invokes backchaining. The results are saved in the following global variables for easy

access:

cl-user::*results* List of results returned by query.

We use the rbrowse system as one means of inspecting results.

(explain-fact <fact>)

provides a simple interface to explore the reasons underlying a conclusion. Similarly,

(browse-kb)

points your browser to a page for exploring the current knowledge base contents. For

looking at results of analogical matches,

(browse-current-sme)

displays the details of the last match done in the environment, while

4 FIRE subsystems and APIs
This section describes FIRE's subsystems in detail, including their APIs and principles of

operation.

4.1 Reasoners

Reasoners are the main locus of processing in FIRE. They contain a Working Memory

(described in Section 4.2) which is private to that reasoner, and represents the declarative

component of its state. They have a pointer to the knowledge base they are using, which

is typically shared between multiple reasoners. They have a set of reasoning sources,

representing the procedural attachments associated with specific predicates. Since

reasoning sources often have significant internal state, instances of reasoning sources are

also private to particular reasoners. Reasoners always have at least one reasoning source,

an analogy reasoning source. Analogy is considered to be fundamental to FIRE's

operation.

4.1.1 Reasoner API

(make-reasoner <title> &key (kb *kb*) (ltre-debug-flags nil)
 (type 'reasoner)

 (analogy-source-type 'analogy-source))

Creates a reasoner whose title is the string <title>. The knowledge base defaults to the

global KB. It is useful for some applications to specialize the reasoner object and the

analogy source object, hence the keyword argument specifying them. The LTRE

debugging flags are passed into the working memory of the reasoner when it is created.

 15

reasoner

This global variable provides a register for accessing a reasoner associated with the

current task or module.

(in-reasoner <reasoner>)

Re-binds the value of *reasoner* globally. Use with caution.

(with-reasoner <reasoner> . <code>)

This macro lambda-binds *reasoner* for the scope of the execution of <code>, with

appropriate protection for non-local exits.

(add-source <source> <reasoner>)

Adds the reasoning source <source> to reasoner <reasoner>. The following procedures

are to be used in procedures that add a source to a reasoner:

(register-ask-source ((reasoner reasoner) (functor symbol)
 (source source)
 handler signature result-signature effort-type

 &key (ignore-cache? nil)
 (type 'source-registry-ask-entry))

Installs the procedure <handler> as a way to do a query on the predicate <functor>,

given the argument signature <signature>. <result-signature> describes the

bindings it provides values for, and <effort-type> is a heuristic indication of how hard

it will be to carry out. The ignore-cache? keyword tells FIRE to ignore any cached

values when constructing results; this is handy for dynamic predicates.

(register-tell-source ((reasoner reasoner) (functor symbol)

 (source source) handler signature
 &key (type 'source-registry-tell-entry))

Installs the procedure <handler> as something to call whenever statements whose

functor is <functor> are introduced to the working memory via tell.

(register-untell-source ((reasoner reasoner) (functor symbol)

 (source source) handler signature
 &key (type 'source-registry-untell-entry))

Installs the procedure <handler> as something to call whenever assumptions whose

functor is <functor> retracted working memory via untell.

Some of the information inferred in a reasoner may include structural properties of

entities that are also mentioned in the KB. To ensure that one is using both the structural

information in the reasoner's working memory as well as in the KB, the following

procedures are useful:

(collections-of (entity &key (kb *kb*)
 (reasoner *reasoner*)

 (context :all))

 16

Returns the list of collections of which <entity> is known to be a member. The keyword

argument context provides a means of limiting the search to the logical environment

implied by a given microtheory.

(instance-of? (entity col (reasoner reasoner))

Returns non-nil exactly when <entity> is an instance of <col> in <reasoner>.

4.2 The Working Memory

The working memory is built using a Logic-based Tiny Rule Engine (LTRE). It uses the

LTRE code in [5] as a starting point, so we strongly recommend reading the appropriate

chapters to find out in detail how it works if you need to know that. For scaling up, a

discrimination tree is used for indexing, and fact-level garbage collection [2] is

supported. The classic procedures for inspecting beliefs and the reasons underlying them

(e.g., fetch, fetch-trues, why?, assumptions-of, informant-of, and the like) are
available.

While the LTRE rule system is also available, with a few exceptions, we strongly advise

against using it. The only exceptions are when there is a very low-level, very automatic

kind of response needed to external events. For example, an LTRE rule is used in

nuSketch applications to do certain updates when a glyph is moved or changed. The

problem with using LTRE rules is that they are incompatible with systems whose focus

of reasoning changes radically over time, or which must continue to operate for long

periods (days, weeks, or months) since rule instances have indefinite extent. The other

reasoning facilities (ask, query, and solve) provide more powerful and more scalable

mechanisms than LTRE rules, and should be used instead.

Procedures that are useful when working with FIRE’s working memory include

• (ltre::facts-which-mention <obj> &optional (ltre *ltre*)

(believed-only? t)) returns the list of working memory facts that mention

<obj> within <ltre>. The LTMS label is used to filter those which are not

currently believed if the believed-only? flag is non-nil.

4.3 Knowledge Base API

4.3.1 Setting up KB's

• (make-fire-kb <file path>) creates a new KB in the directory denoted by <file

path>.

• (open-kb <file path>) establishes a connection with the KB stored at <file path>,

returning a handle to the KB.

• (in-kb <kb>) binds the default KB (*KB*) to <kb>.

• (with-kb <kb> . <expressions>) binds the default KB to <kb> and evaluates

<expressions> in that environment.

 17

• (close-kb <kb>) closes <kb>, that is, it closes the underlying database associated

with it. Subsequent calls to KB operations will result in errors.

In the rest of the API procedures, the optional keyword argument :KB denotes the KB to

use. If not supplied, it defaults to *KB*.

4.3.2 Storing and retrieving knowledge

• (kb-store <expression> &key (kb *kb*) (mt nil)) Stores <expression> in

<kb> with microtheory <mt>. <mt> must be provided – it will error out if not.

• (retrieve-it <pattern> &key

 (:number <default nil, integer or :ALL>)
 (:response <:pattern or :bindings>)

 (:context nil))

retrieves axioms matching <pattern> in <kb>. The number of items returned

depends on the :number keyword argument. If context is specified, retrieval is

restricted to that context.

• (retrieve-all <pattern>) like RETRIEVE, but with :number = :ALL.

• (retrieve-references <exp> &key mt) retrieves all axioms that contain <exp>

as a subexpression. If <mt> is non-nil, retrieval will be restricted to this particular

microtheory. This procedure is intended for use in interfaces, browsers, and

debugging, not inner loops of reasoning systems.

• (retrieve-nat-references <nat> &key mt) is like retrieve-references, but

retrieves all axioms that mention the non-atomic term <nat>.

The following procedures are useful for inspecting microtheories and their contents.

Some of them use microtheory objects, not forms, which can be found via

kb::retrieve-microtheory, whose :create? argument controls whether the object is

created if not already in existence.

• (immediate-genlmts <mt>) returns a list of all of the microtheories that <mt>

inherits from directly.

• (all-genlmts <mt>) returns a list of all of the microtheories that <mt> inherits

from, i.e. transitively.

• immediate-specmts, all-specmts, are like the above, but in the reverse

direction.

• (list-facts-in-mt <mt obj>) returns a list of fact objects (not forms) for all

of the facts in <mt obj>, a microtheory object

• (map-over-facts-in-mt <procedure> <mt obj>) calls <procedure> over

each fact object (not form) explicitly stored in <mt obj>.

• (count-facts-in-mt <mt obj>) returns the number of facts directly stored in

<mt obj>.

• (tabulate-mt-sizes) returns an alist whose entries have as their key a

microtheory name and as their value, the size of that microtheory.

For example, in the smoke test KB built via the FIRE regression test,

 18

cl-user(11): (kb::count-facts-in-mt (kb::retrieve-microtheory 'base-5))
40 ;; This should always be the same value

cl-user(12): (apply '+ (mapcar 'cdr (kb::tabulate-mt-sizes)))
6084 ;; This will change as the regression test evolves

cl-user(13): (length (kb::tabulate-mt-sizes))
141 ;; Ditto

The Plan B KB has a journaling facility built-in. Please see planb\journaling.lsp if

you need to use this. It is dusty.

4.3.3 Deleting knowledge

• (forget-fact <fact> <mt>) causes <fact> to be removed from <mt> in the KB.

• (forget-mt <mt>) causes all facts in a microtheory in the KB to be forgotten. All

genlMt statements involving that microtheory will remain intact (since genlMt

statements are global, i.e. not contextualized).

• (nuke-kb-item <entity>) removes the conceptual entity <entity> and all of the

facts which refer to it. If <entity> is a microtheory, all of the facts in that

microtheory are removed, as are all genlMt statements involving it.

4.4 Loading knowledge from files

Knowledge level programming is still programming, albeit at a higher level. When

adding knowledge by hand, the usual medium of files to store information and text

editors to manipulate them is used, rather than trying to do everything through a

specialized software environment. This is useful for three reasons:

1. It allows knowledge bases to be reconstructed from scratch. This is important

when there have been a lot of KB changes by many people, or when the

underlying FIRE software changes in an incompatible way.

2. It is closest to the standard workflow in programming, which reduces entry

barriers.

3. It allow archiving of learned knowledge and results produced by FIRE-based

systems in forms that can easily be analyzed.

We call such files flat-files, since they are textual precursors to what, inside a FIRE KB

and working memory, will be structured representations. The usual file extension for

these is “meld”, but other extensions will work as well. Lisp format for assertions is

assumed.

Flat files are loaded by the following procedure

• (meld-file->kb <file>) loads <file> into the currently open knowledge base.

Most expressions are interpreted directly as assertions to be stored in the knowledge base.

The following expressions are treated specially:

 19

• (in-microtheory <mt>) indicates that the expressions which follow should be

loaded into microtheory <mt>. <mt> is created if it does not always exist. There

can be multiple in-microtheory statements in a flat file, although this is relatively

rare, for reasons explained below.

• (defSuggestion . <contents>) indicates that <contents> is a SOLVE

suggestion (see Section 4.8.1). The loader expands these statements into multiple

assertions, as explained later.

Here is an example of a very simple flat file:

For efficiency, the database objects constructed for collections, predicates, and

microtheories are distinct. They cannot be overloaded. Consequently, the loading

process actually runs through a file several times, first extracting information that would

impact the internal type system, and then adding regular facts on top of that. If you see

an error of the form
 <constant> cannot be <type>, already <other type>

Then you have accidentally overloaded <constant>. You will have to figure out where

this problem is happening (using a combination of the KB browser and string search over

the flat files typically works well) and use kb::nuke-kb-item to wipe out that constant,

and reload the necessary flat files.

This raises an important difference between knowledge-level programming and

traditional programming. Expressions mentioning a predicate contribute to its meaning,

rather than there being a single definition of it. When one reloads a file with procedure

definitions, they replace the old definitions. When one reloads a flat file, the new

information is added to the old information. This can be very disconcerting when first

encountered. Appropriate use of microtheories can greatly simplify one’s workflow. A

common practice is to limit the contents of a flat file to a single microtheory, and for

simple systems, put all knowledge in that microtheory into that file. The process of

updating a microtheory consists of forgetting the current contents (see forget-mt in

Section 4.3.3) followed by reloading the flat file. Of course, for large bodies of

knowledge (e.g. the contents of FrameNet) this is too unwieldly, so defining load

procedures that first clear the contents of a microtheory (or those involved in a subsystem

of knowledge) and then reload a set of flat files is commonly done.

Another important practice is the convention of spindle microtheories. A spindle

microtheory is a microtheory that collects knowledge from others, and makes it available

for some purpose. There is nothing different about a spindle microtheory per se, it is a

matter of convention. Spindles (in the KB) can be nested without loss of efficiency, so

the improved modularity for debugging makes them almost always worthwhile.

Importantly, only two packages should ever be used in flat files:

;; A simple flat file

(in-microtheory NorthwesternUDataMt)
(isa NUSmartClassroom Collection)

(genls NUSmartClassroom Classroom)
(relationAllExists contains NUSmartClassroom DataProjector)
;; End of flat file

 20

• The data package is a synonym for cl-user. The vast majority of symbols live

in this package.

• Symbols from the keyword package are sometimes used as template variables for

assertions concerned with natural language processing, providing guides for

substitution (e.g. :agent, :object).

No other package qualifiers should be used in flat files.

4.4.1 Structural queries

Structural queries provide rapid, reflexive inference, based on structural information

(isa, genls, argNisa's and so on). Inheritance is the only supported inference

mechanism in these queries. The intent is that these queries are cheap, and used to help

suggest/weed out possibilities for simple questions and as subroutines used in more

complex reasoning.

In structural queries, when there is a positive result the second argument is a list of

axioms that are the antecedents which support the answer. This information is intended

to be used in TMS justifications and in the construction of argument structure. These

queries all return nil to indicate a false value.

The structural queries include:

• (instance-of? <entity> <collection>) returns t iff (isa <entity>

<collection>) is either explicitly known in the KB or is derivable from inheritance.

No other reasoning is allowed.

• (subset-of? <collection1> <collection2>) returns t iff (genls

<collection1> <collection2>) is either explicitly known or is derivable via

inheritance. No other reasoning is allowed.

• (arity <predicate>) returns an integer indicating the arity of predicate

<predicate>, unless the predicate is n-ary. If the predicate is n-ary, the value is the

symbol :n-ary.

• (arg-isa <predicate> <integer or :all>) If the second argument is an integer,

returns the collection that the corresponding argument to <predicate> must be.

(N.B. if the argument is not a member of that collection, then in the case of an

attribute or relation the statements must be false. For functions, it means that the

result is undefined.) If the second argument is the symbol :all, then a list of

collections is returned, one for each argument position. In the case of n-ary

predicates or functions, the list returned contains a single element, the collection that

all arguments must be members of.

• (result-isa <function>) returns the collection that serves as the range of the

function <function>. (N.B. we are assuming that overloading, if it were to be used,

does not change the range. Otherwise, we would have to specify the collection

signature of the arguments as well to specify the range.)

• (n-instances-of <col> &key (kb *kb*) (reasoner *reasoner*)

 (context EverythingPSC)
 (stop-number -1))

returns the number of instances of <col> within <context> found both within the KB

 21

and in working memory. If <stop-number> is other than -1, this procedure will

return the number of instances up to <stop-number>, for circumstances where one

only cares that there are at least n instances accessible from some context. When

<context> is :all, all microtheories are used. If you want to only look at working

memory or the KB, the subroutines n-instances-of-in-kb (with required second

argument of the KB) and n-instances-of-in-wm (with required second argument of

the reasoner) carry out those duties, with the other keyword arguments being the

same.

• (n-instances-of-transitive <col> &key (kb *kb*)
 (reasoner *reasoner*)

 (context EverythingPSC)
 (stop-number -1))

is exactly like n-instances-of, except that it conducts its tally to include all

subcollections of <col>.

• (n-statements-of <pred> &key (kb *kb*)

 (reasoner *reasoner*)
 (context EverythingPSC)

 (stop-number -1))

is analogous to n-instances-of, except for top-level statements involving the

predicate <pred>.

• (n-statements-of-transitive <pred> &key (kb *kb*)

 (reasoner *reasoner*)
 (context EverythingPSC)
 (stop-number -1))

is exactly like n-statements-of, except that its tally includes all top-level statements

involving specPreds of <pred>.

4.5 ASK

Ask provides the lowest-level, “reflexive” reasoning facility. Because of the large

number of arguments to ask, it is assumed that applications will call ask-it in order to

use keyword arguments.

(ask-it <query> &key <reasoner> <context>

 <number> <coverage> <facts> <env>

 <transitive> <infer> <response>)

The arguments to ask-it have the following meanings:

• <query> is the pattern that is being asked about.

• <reasoner> is the FIRE reasoner which the query is put to.

• <context> is the case or microtheory about which the query is made. Default is

:all, meaning the global environment.

• <number> is either :all, indicating all solutions should be found, or a positive

integer, indicating the number of solutions desired.

• <response> controls the form of solutions returned. :bindings indicates that the

list of variable bindings for each solution should be returned. :pattern indicates

that the returned solutions should be the original pattern, with variable

 22

substitutions made. Otherwise, the value is treated as a new pattern that will be

returned, with appropriate substitutions, for each solution.

• The remaining arguments indicate how much work the system should do. This is

described in Section 4.5.1 below.

ask works roughly as follows:

1. Check for already-known facts in the working memory

2. Check the KB

3. If the predicate is a specialized predicate (e.g., structural), use special-

purpose methods to handle it.

4. Check sources to see if they can handle it.

When given a context to work in, ask first looks for information in that local context, and

then checks with the global environment (i.e., the WM contents and the BaseKB

microtheory in the knowledge base).

4.5.1 Effort and Advice

There are four basic controls pertaining to the amount of effort that ask will expend in

carrying out a query.

1. Work only in local context, or use the full logical environment? Generally one wants

to use the full logical environment, as described in the section on contexts. However,

sometimes it is important to focus on one specific context by itself.

2. Use inference as well as looking up facts, or just look up facts? Generally one wants

to use the inference supplied by sources as well as looking up facts. However,

sometimes it is useful to examine what is already known, and restricting the system to

lookup allows one to do that.

3. When looking up facts, use just the working memory, just the KB, or both? Generally

one wants to use both, but sometimes when reasoning about the state of the system's

knowledge or processing, it can be useful to restrict consideration to just WM or just

the KB.

4. When reasoning about collections where open variables are involved, should

solutions be generated by walking up (or down, as appropriate) the lattice of the

appropriate relationships, or only generate answers corresponding to a single level?

For queries where there are no open variables, i.e., (isa <constant1>

<constant2>), (genls <constant1> <constant2>), and (genlPreds

<constant1> <constant2>), lattice-walking is always used since we are looking for

a single yes-no answer. But if one of the arguments for these predicates is an open

variable, lattice-walking can lead to huge numbers of solutions, few of which are

actually relevant.

There are two ways to describe effort:

1. Declaratively, as part of a query. This uses special predicates, ask advice predicates,

that describe control information. Ask advice predicates are treated specially, in that

they are never stored as top-level statements in working memory. This special

treatment is accorded because we want to split "how" from "what" in WM

 23

justifications. Clauses whose terms use ask advice predicates will still be found in the

justification, to support FIRE-based systems reasoning about how to modify their

own operation via changing the advice used on particular terms.

2. Procedurally, in calls to ask and ask-it. This is for FIRE developers who need fine-

grained control over the inference machinery in ask.

We describe each in turn.

4.5.1.1 Ask Advice Predicates

Here are the Ask predicates that are currently supported, grouped according to

functionality.

Controlling whether full logical environment is used:

• (localOnly <query>) <term> is to be solved using only information in the

current context.

• (contextEnvAllowed <query>) The entire logical context specified by the

current context can be used when solving for <query>.

Controlling whether queries involve inference or retrieval:

• (lookupOnly <query>) Only fact lookups will be carried out in solving for

<query>.

• (inferenceAllowed <query>) Inference via reasoning sources will be allowed

in addition to fact lookup when solving for <query>.

• (nonTransitiveInference <query>) Open variables in <query> that are

arguments to the structural predicates isa, genls, and genlPreds will be solved only

by looking at the specific facts known in the appropriate context(s).

• (useTransitiveInference <query>) Open variables in <query> that are

arguments to the structural predicates isa, genls, and genlPreds will be solved by

finding all of the possibilities involved by walking the lattice of the appropriate

relationship(s).

Controlling where facts for queries are sought:

• (wmOnly <query>) Only working memory can be accessed to look for facts to be

used in solving <query>)

• (kbOnly <query>) Only the KB can be accessed to look for facts to be used in

solving <query>.

• (outsourcedOnly <query>) Consult outsourced handlers only, ignoring the KB

and working memory cache

• (allFactsAllowed <query>) Facts from both the working memory and the

KB can be used in solving <query>.

• (exactMatchOnly <query>) Require retrieved facts to exactly match the query.

No unification is performed.

• (groundOnly <query>) Only return ground statement (no variables in results).

 24

Controlling effort:

• (numAnswers <number> <query>) Specify the number of answers sought.

Equivalent to binding the :number argument to ask.

• (cacheComplete <query>) Cut off KB retrieval and backchaining inference if

results are found in working memory.

• (ignoreTimestamps <query>) Return all results, including cached results

justified by stale timestamps.

• (honorTimestamps <query>) Filter out cached results justified by stale

timestamps.

• (withTimeout <seconds> <query>) Terminate the query after <n> seconds,

whether or not it has completed.

• (withBackchainingDepth <depth> <query>) Binds the maximum

backchaining depth to <depth>

Controlling abduction:

• (withAbduction <query>) allows abductive assumptions to be made while

proving <query>.

• (withAbductivePredicates <predicate list> <query>) enables statements

involving predicates on <predicate-list> to be assumed as needed when trying to

show <query>.

• (withAbductivePolicy <policy> <query>) uses abductive policy <policy>

when trying to prove <query>. <policy> can either be MinimalAssumptions,

AllAssumptions, NoAssumptions, or a procedure corresponding to a scoring

policy to maximize.

• (withCounterfactual <asn> <query>) attempts to prove <query> while

temporarily assuming <asn>. Justifications for <query> are created by

discharging their dependence on <asn>.

For controlling analogy operations, the following query wrappers are the most common:

• (reverseCIsAllowed <query>) For analogical matches, compute candidate

inferences in both directions.

• (useMinimalAscension <query>) For analogical matching, allow minimal

ascension to find non-identical relation matches.

• (noMinimalAscension <query>) For analogical matching, don’t use minimal

ascension to look for non-identical relation matches.

• (entitySupportedInferencesAllowed <query>),

(entitySupportedInferencesNotAllowed <query>) control whether entity

correspondences are sufficient to enable candidate inferences.

4.6 Analogy operations

Analogy operations are invoked as queries to ask, but they are so central to FIRE’s

operation that we summarize them here.

 25

4.6.1 Analogical matching

Analogical matching is implemented via SME8. To compare two descriptions, the

predicate

(matchBetween <base> <target> <constraints> <match>)

requires that <base>, <target>, and <constraints> be provided as input, with <match>

being open and hence produced as output when ask is called. <base> and <target> are

either microtheories or terms denoting cases. Microtheories used when the contents of

the case are already explicitly known, e.g. a theory, model, or episodic memory might be

stored as the contents of a microtheory. Terms denoting cases are used for dynamic case

construction [18], where facts satisfying the criteria specified by the term are gathered

and treated as a case. Dynamic case construction is useful for comparing concepts or

entities. For example,

(fire:ask-it '(matchBetween solar-system rutherford-atom (TheSet) ?m))

When evaluated with respect to the smoke test KB produces the classic solar

system/Rutherford atom analogy9, while

(fire:ask-it '(matchBetween (CaseFn Cat) (CaseFn Dog) (TheSet) ?m))

compares the concept of Cat with the concept of Dog.

There is a translation process applied to convert CycL statements into SME’s standard

form. In particular, statements of the form

 (isa <entity> <collection>)

are automatically translated into attribute statements inside SME, i.e.,
 (<collection> <entity>)

These statements are automatically translated back into isa statements at the level of

FIRE, although when browsing the SME internals, you will see attribute statements

instead of isa statements.

<constraints> is a set of constraints that are applied to the match. The supported set of

constraints is:

• (requiredCorrespondence <bi> <tj>) indicates that base item <bi> must

match target item <tj> in every mapping created for this match.

• (excludedCorrespondence <bi> <tj>) indicates that base item <bi> must not

match target item <tj> in any mapping created for this match.

• (identicalFunctions) indicates that non-identical function matches, which

SME normally permits when suggested by a larger matching structure, are

8 The version of SME used in FIRE is the standard portable SME source code, with no FIRE-specific

changes. We use the dynamic properties of CLOS to define FIRE KBs as a new kind of SME vocabulary,

so that SME-level operations work transparently.
9 The smoke test KB diverges from CycL conventions because it includes a number of classic analogy

examples, including the Karla the Hawk stimulus set [8].

 26

disallowed. This is useful for within-domain reasoning, e.g., solving physics or

thermodynamics problems, where the equations apply to quite specific quantities.

• (excludedCross-PartitionCorrespondences <set of partitions>)

indicates that any entity which is a member of one of the collections of a partition

(i.e., has that attribute) cannot match with any entity that has an attribute from one

of the other partitions. Only explicitly known attribute statements in the base and

target are used.

• (requireWithinPartitionCorrespondences <partition>) indicates that

entities for whom one of the attributes in <partition> holds can only match with

entities with one of the same attributes. This is useful in within-domain

mappings.

There are three analogy control predicates that are very important for keeping analogical

reasoning tractable and appropriate:

• (notForAnalogy <thing>) means that predicate or function <thing> indicates a

statement or term that should not be included in any analogical reasoning. This is

commonly used for bookkeeping information (e.g., comment).

• (ubiquitousForAnalogy <thing>) indicates that statements whose predicate is

<thing> should not be automatically placed into alignment, unless a pair of such

statements is part of a larger structure that suggests aligning them. The idea is

that there are some kinds of statements that are extremely common in a

description (e.g., equations in a physics problem), so common that trying every

combination of them would make the size of the match hypothesis forest that

SME computes become bloated. If such statements were irrelevant to the purpose

of the analogy, they could be filtered out (via notForAnalogy), but often such

statements are important (again, equations in a physics problem).

• (atomicAnalogyNat <function>) indicates that non-atomic terms using

<function> should be treated as atomic entities. This is in contrast with SME’s

usual policy of placing corresponding arguments of non-atomic terms into

correspondence. This allows NATs with different functions, or NATs and atomic

terms, to correspond.

FIRE evaluates these predicates within the context provided for doing the match using

ask, so that systems can dynamically adjust them by changing what microtheories are

included in the logical environment used for the query.

The open variable provided for <match> will be bound to a term which represents the

match computed by SME. The form it takes is
 (MatcherFn <id> <count>)

where <id> is an integer representing how many SMEs have been created in that

environment so far, and <count> indicates the number of times that SME has been

updated10. The match can be used to access the mappings that SME computed for that

base and target. Mappings are reified in FIRE as non-atomic terms as well, e.g.,
 (MappingFn <id> <match>)

10 SME can operate incrementally, extending the mappings as items are added to the base and target. See

[6,7] for details.

 27

where <id> is an integer that identifies the mapping with respect to that particular match,

denoted by the non-atomic term <match>. Correspondences and candidate inferences

are reified similarly

The analogy ontology provided with FIRE is based on [11], but it has been extended

considerably since then. Here are some of the most useful predicates to serve as a

starting point, the rest can be found in fire/flat-files/analogy-ontology.lsp:

• (bestMapping <match> <mapping>) indicates that <mapping> has the highest

structural evaluation score of those computed for <match>. SME computes up to

three mappings by default, if they are sufficiently close to the best one.

• (baseOfMatch <match> <case>), (targetOfMatch <match> <case>) indicate

that <case> is the base or target of <match>, respectively.

• (structuralEvaluationScoreOf <mapping or mh> <number>) indicates that

<number> is the structural evaluation score computed for the mapping or

correspondence (aka match hypothesis, or MH) <mapping or mh>.

• (numberOfCorrespondences <match or mapping> <number>) indicates that

when <match or mapping> is a mapping, then <number> is the number of

correspondences in the mapping. When <match or mapping> is a match, then

<number> indicates the size of the match hypothesis forest computed during

SME’s early processing.

• (correspondsInMapping <mapping> <base item> <target item>) indicates

that base entity or statement <base item> corresponds to target entity or

statement <target item> in mapping <mapping>.

• (candidateInferenceOf <ci> <mapping>),

(reverseCandidateInferenceOf <ci> <mapping>) indicates that candidate

inference <ci> is a surmise about the target or base suggested by the

correspondences of <mapping>, respectively.

• (candidateInferenceContent <ci> <expression>) indicates that the

candidate inference <ci> has the propositional content <expression>. Note that

candidate inferences can include analogy skolems, entities conjectured in the base

or target in order to satisfy structural consistency. Analogy skolems are reified as

non-atomic terms of the form (AnalogySkolemFn <original>), where

<original> is the entity being projected from the original description. For

example, (AnalogySkolemFn Pressure) should be read as “something like

Pressure.”

• (candidateInferenceSupportScore <ci> <number>) indicates that candidate

inference <ci> has a support score of <number>. The support score is the degree

to which the candidate inference is grounded in the mapping, and can range

between zero and 1. See [9] for details.

• (candidateInferenceExtrapolationScore <ci> <number>) indicates that

candidate inference <ci> has an extrapolation score of <number>. The

extrapolation score is the degree to which the candidate inference is conjectural.

It can range from 0 to 1, and directly trades off against the support score. See [9]

for details.

 28

Minimal ascension is supported in FIRE as a means of relaxing the identicality constraint.

The following query wrappers are provided to control this:

• (noMinimalAscension <query>) means minimal ascension is not used. This is

the default.

• (useMinimalAscension <query>) means minimal ascension should be used.

• (withMinimalAscensionMultiplier <weight> <query>) means that each

level moved up the predicate or collection (for attributes) hierarchy needed to find

a match, deprecate the score by <weight>.

4.6.2 Working with Cases

Cases are sets of facts used in analogical processing. Broadly speaking, there are two

kinds of cases:

• Stored cases. However they were generated originally, the set of facts in them is

typically assumed to be fixed. They might represent the episodic memory of a

problem-solving episode, something learned by reading, or background

knowledge.

• Dynamic cases. These cases are generated from the contents of the knowledge

base for particular purposes. For example, cases might be based on all of the facts

that mention an entity, or filtered based on task constraints (e.g. “economic

aspects of Germany”). Filtering is often used on stored cases to focus analogical

reasoning on a subset of a larger experience, e.g. just the conceptual information

in a sketch illustrating a physical principle.

In FIRE, cases are implemented as microtheories. This means that they can be stored

persistently in the knowledge base, for example. Recall that the facts available when

reasoning in a microtheory include all of the facts which are part of its logical

environment, as specified by genlMt statements. This is not true for cases: It is only

those statements literally in that particular microtheory that are considered to be among

the contents of a case.

The arguments to analogy predicates are often just the names of microtheories. However,

for dynamic cases, a subset of logical functions, called case constructors, are used to

denote cases. The first time an analogy operation is carried out on a non-atomic term

involving a case constructor, its facts are generated and stored in an SME description

object. (Often they are reified in the working memory as well, via an ist-Information

statement with that case name.) The following predicates support manipulation of cases:

(constructCaseInWM <case term>)

<case term> is a non-atomic term involving a case constructor. When used via tell, it

both creates an SME description object in the analogy source in the current reasoner, and

reifies the statements in the working memory. This is useful for inspecting cases aside

from doing matching, retrieval, or generalization – those predicates automatically

construct cases as needed, relying on cached versions otherwise.

(copyWMCase <from> <to>)

 29

(copyWMCaseToKB <from> <to>)

When asserted via tell, these predicates cause the contents of the case <from> to be

copied to <to>. <from> must have already been constructed, by using it in an analogy

operation or via constructCaseInWM. The prior contents of <to> are not cleared, so that

one can accumulate the combination of information from multiple cases via repeated

copying. If this is not desired, it is important to forget their contents first.

(caseMentionsEntity <case term> <entity>)
(caseMentionsPredicate <case term> <predicate>)

These statements hold if <entity> or <predicate> is mentioned in a statement in <case

term>. <case term> must be ground, but the other arguments can be variables, to

generate the appropriate answers. Note that the <predicate> argument includes the

higher-order case of the predicate itself being used as an argument to a statement, not just

that it is used as the predicate in a case in the statement.

(caseFact <case term> <fact>)

(numberOfCaseEntities <case term> <#ents>)
(numberOfCaseFacts <case term> <#facts>)

The predicate caseFact can be used to test if a fact is in <case term>, or as a (less

preferred) way to generate the facts in a case. The other two predicates compute the

number of entities or facts in a case, respectively.

(matchHypothesisForestEstimate <base> <target> <size>)

This predicate estimates the size <size> of the match hypothesis forest that SME would

construct, if given <base> and <target> to match. This is handy for detecting when a

match is too large to tackle, and more filtering is needed.

4.6.3 Built-in Case Constructors

FIRE has a number of built-in case constructors that are generally useful.

(ExplicitCaseFn <mt>)
(CanonOrderExplicitCaseFn <mt>)

These constructors create a case from what is explicitly known in <mt>, in both the

working memory and the KB. CanonOrderExplicitCaseFn further sorts the facts

during the insertion process, to facilitate order-specific regression tests. These put facts

into the WM as well as creating an SME description.

(KBCaseFn <mt>)

(KBCaseFn-Probability <mt>)

 30

These construct cases out of the facts in the knowledge base for microtheory <mt>. They

do not include facts in WM, as ExplicitCaseFn does. KBCaseFn-Probability also

filters out facts that have zero probability, which can happen due to SAGE’s operation.

(MinimalCaseFn <term>)
(MinimalCaseFromMtFn <term> <mt>)

These constructors gather all of the facts that mention <term> either in the current logical

environment or found explicitly in <mt>, respectively. The analogy control predicates in

the current logical environment are respected, e.g. notForAnalogy and

atomicAnalogyNat. Because many microtheories inherit from BaseKB and/or

UniversalVocabularyMt, MinimalCaseFromMtFn is often the more useful constructor.

(CaseFn <term>)

(CaseFromMtFn <term> <mt>)

Exactly like their minimal counterparts, except that they also add collection information

about the entities in them, which often improves matching.

(AskCaseFn <query>)

Constructs a case out of the answers found for <query>. Handles TheSetOf explicitly,

treating it as an extensional query.

(CaseUnionFn <set>)
(CaseIntersectionFn <set>)

(CaseComplementFn <set>)

Creates a case from the union, intersection, or complement of the cases specified by the

case terms in the set <set>, respectively.

4.6.4 Analogical retrieval

Analogical retrieval is implemented via MAC/FAC. The basic predicate for invoking

retrieval via ask is:

(reminding <probe> <library> <constraints> <case> <match>)

<probe> is a case, which can be a microtheory or a dynamically specified case, as with

matching. <constraints> are match constraints that will be used by SME during the

FAC stage of MAC/FAC. <case> and <match> are the case retrieved and the SME

match from the FAC stage, respectively. Only <case> and <match> can be open in

reminding queries, the other arguments must be ground terms.

 31

<library> is the case library used. Case libraries are stored in the knowledge base,

since they represent a persistent aspect of a reasoner’s memory. Whether or not a case is

in a case library is controlled by facts of the form

(caseLibraryContains <library> <case>) indicates that case library <library>

contains case <case>. caseLibraryContains is a global predicate, i.e. the contents of a

case library are the same, independent of microtheory. It is implemented as a special

fact, so that storing and retracting statements of this form in the KB cause the appropriate

updates to be made in the persistent KB data structures.

The following modifiers are supported for case libraries:

• (CaseLibrarySansFn <library> <case>) denotes the case library consisting

of the contents of the case library <library> without the case <case>. This is

useful when the first reminding is not quite appropriate, and one wants to see the

next reminding.

• (CaseLibraryMinusFn <library> <case set>) denotes the case library

consisting of the contents of case library <library> once the cases in <case

set> are removed. This supports searching through memory multiple times.

• (CaseLibraryUnionFn <library set>) denotes the case library consisting of

the union of all of the cases found in the set of case libraries <library set>.

This is useful when combining case libraries.

CaseLibrarySansFn and CaseLibraryMinusFn are fully compositional. For simplicity

of implementation, CaseLibraryUnionFn is not: It can appear inside one of the other

modifiers, but neither of them can appear in the list of cases inside the set of case

libraries, and unions have to be flat, not nested.

Case libraries can contain other case libraries. This is designed to support using SAGE

for classification, e.g. the generalization pools for a task (which are themselves case

libraries) can be sub-libraries of the case library representing that task. This is the case

library analog of spindle microtheories. Storing or retrieving the following assertions

makes one case library a sub-library of another:

• (subCaseLibrary <sub> <super>) indicates that case library <sub> is a

sublibrary of case library <super>.

The following predicates are useful for inspecting properties of case libraries:

• (caseLibraryLocalSize <lib> <n>) indicates that there are <n> cases in case

library <lib>, ignoring any contained case libraries.

• (caseLibrarySize <lib> <n>) indicates that case library <lib> has <n> cases

in it, including all of the contained case libraries.

Because case libraries can be quite large, the internals of retrieval operations are not

reified by default. If one is debugging retrieval problems, the global variable *record-

retrievals* can be set to non-nil, which will cause a datastructure per retrieval to be

cached with the reasoner’s analogy source. Please be cautious in using this facility, since

it can easily accumulate enough memory to cause heap blow-outs.

 32

The following Lisp procedures are useful in dealing with case libraries:

• (kb:list-case-libraries) generates a list of all case libraries.

• (kb:map-over-case-objects <procedure> <lib term>) applies

<procedure> to each case within <lib term>. <procedure> must take two

arguments, the first the case object, the second the case library itself. The second

argument is useful for determining which nested case library a case was found in,

e.g. in classification.

• (kb:map-over-cases <procedure> <lib term>) is like map-over-case-

objects, except that <procedure> takes only one argument, the lisp form of the

case.

• (kb:show <lib> &key (details? t) (stream *standard-output*))

provides a concise printed summary of information about <lib>.

MAC/FAC can exploit multiple cores, when the switch fire::*use-multicore-

macfac* is non-nil, which is the default. The procedure (fire::estimate-number-of-

cores) is used to automatically ascertain how many cores a Lisp has.

4.6.5 Analogical generalization

Analogical generalization is carried out with SAGE. SAGE maintains a list of

generalizations and examples associated with a concept, which are called a generalization

pools. Generalization pools are implemented as a subclass of case libraries, so that

MAC/FAC can be used on them. Examples are microtheories from the KB, i.e., cases.11

SAGE operates slightly differently in working memory versus the knowledge base (i.e.

long-term memory). We start with the persistent memory version, and then describe the

working memory version.

Here are the basic SAGE operations, which are invoked via fire::tell:

• (sageSelectAndGeneralize <e> <gpool>) adds example <e> to generalization

pool <gpool>. The most similar item already in the pool is found via analogical

retrieval, using MAC/FAC. If the most similar item is a generalization, the

example is added to that generalization. If the most similar item is an example,

the examples are merged to form a new generalization. Otherwise, <e> is added

to the set of unassimilated examples. The degree of similarity required is

determined by that generalization pool’s assimilation threshold, which is between

0 and 1. Similarity scores are normalized by the mean of the self-similarity scores

for the base and target.

11 There has been a change in terminology: Generalization pools used to be called “generalization

contexts”, which caused unfortunate confusions with other notions of context. This has been changed in

the API but some of the internal procedures still use the old terms, including data structure definitions (e.g.

gpool) for backward compatibility with KBs. Similarly, “example” is now the preferred term, not

“exemplar” – the latter means exemplary example, whereas the unassimilated examples in a generalization

pool are outliers.

 33

• (sageSelect <e> <gpool> <reminding> <mapping>)given an example <e>

and a generalization pool <gpool>, returns the most similar generalization or

outlying example as the binding of <reminding>, with <mapping> bound to the

mapping between them.

• (SageInstatiateGeneralization <gmt> <bindings> <instMt>)treats

generalization <gmt> as a schema, and adds all of the facts of <gmt> to

<instMt> with the substitutions of <bindings>.

It is sometimes more convenient to access SAGE in the course of a query:

• (sageAddExampleToGpool <gpool> <case> <g>) with generalization context

<gpool> and case <case> binds <g> to the generalization that <case> was

assimilated to, if any. If <case> was not assimilated, then <g> will be the case

itself.

Often it is clear from context which generalization pool a case should be added to.

However, the decision of where to add an example can also be made automatic.

Generalization pools can have entry conditions that indicate when a case should be added

to it. Using the following predicate via tell invokes this mechanism:

• (sageAddExample <case>) adds <case> to every generalization context whose

entry pattern is satisfied by <case> and is relevant in the current logical

environment. Note that the set of generalization pools is potentially very large, so

we do not provide any return value.

Classification is accomplished by the following query:

• (sageClassify <case> <gpools> <gpool> <item> <sme>) uses analogical

retrieval with example <case> as the probe and the union of generalization pools

<gpools> as the case library. The example or generalization <item> is what

MAC/FAC retrieves, with generalization pool <gpool> being where <item> came

from. The label associated with <gpool> is thus the classification for the

example. The match between the two is also returned, since this can be used to

extract a score and also similarities/differences involving them.

Several other predicates are provided for breaking up SAGE operations, either for

debugging or for using in larger-scale systems, like Companions, where operations are

more distributed. These predicates include sageGeneralize,

sageGeneralizeWithMapping, and sageAddUngeneralized. You should use these

predicates instead of the above only if you are very familiar with SAGE.

Generalization pools can be inspected with the following predicates:

• (gpoolExample <gpool> <e>) indicates that <e> is an unassimilated example

in generalization pool <gpool>.

• (gpoolGeneralization <gpool> <g>) indicates that <g> is a generalization in

generalization pool <gpool>.

 34

The following predicates allow the parameters of a generalization pool to be inspected or

set, depending on whether the second argument is an open variable or a value:

• (gpoolRelevanceContext <gpool> <mt>) indicates that generalization pool

<gpool> is potentially relevant in any logical environment which includes

microtheory <mt>, and irrelevant otherwise.

• (gpoolEntryPattern <gpool> <pattern>) means that <pattern> is the entry

pattern for <gpool>.

• (gpoolEntryPatternCriterion <gpool> <test>) means that <test> is

used to evaluate the entry pattern. The two options are :ask and :contains-

pattern. :ask checks to see if the entry pattern is satisfied by a top-level

expression in a candidate example. :contains-pattern checks to see if there

is a subexpression in any of example’s facts that matches the pattern, which is

useful if the pattern in question only occurs in the context of a conjunction or a

higher-order relation.

• (gpoolStrategy <gpool> <token>) sets the strategy used by SAGE. The

possible values are :gel, :bestgel, :slowrad, and :macfac.

• (gpoolUseProbability <gpool> <token>) if <token> is True then

probabilities are used, and if False, then they are not.

• (gpoolAssimilationThreshold <gpool> <value>) sets the assimilation

threshold used in <gpool> to <number>.

To clean things up:

• (nukeGpool <gpool>) wipes out <gpool>.

Generalizations can be inspected with the following queries:

• (gmtNExamples <gmt> <n>) indicates that <n> examples have been assimilated

into generalization <gmt>.

• (gmtEntityHistory <gmt> <e> <info>) indicates that within generalization

<gmt>, generalized entity <e> has historical info <info>. Currently this is a list of

the specific entities it was derived from, but this is likely to change in the future,

e.g. calculating statistics when there are numerical entity values, setting a limit on

how far back the history goes.

• (sageConstituent <example> <gmt> <gpool>) indicates that case

<example> is one of the constituents of generalization <gmt>.

For archiving and accumulating knowledge across KB builds, it is useful to save out

generalization pools as meld files:

• (kb::gpool->meld-file <gpool> <file name>) constructs a file <file

name> (a fully qualified path, name, and extension) based on the contents of

generalization pool <gpool>. This includes its generalizations and examples.

Note that, like other meld file load operations, this will be additive: If you load

these files into a KB where changes have been made to any of the examples, facts

may be added to them. Using fire::meld-file->kb should be sufficient to

reconstruct the generalization pool.

 35

The Working Memory version of SAGE, which constructs interim generalizations, is

very similar. Here is how to set up working memory gpools12, via fire::tell:

• (setWMGpoolAssimilationThreshold <wmg> <n>) sets the assimilation

threshold for working memory generalization <wmg> to <n>, assumed to be a float

between 0.0 and 1.0. 0.0 means everything will be assimilated into a single

generalization, 1.0 means only if they are identical structure (i.e. the entities could

be different).

• (setWMGpoolMaxSize <wmg> <n>) puts an upper bound of <n> on the number of

items in <wmg>.

• (sageWMSelectAndGeneralize <e> <wmg>) adds example <e> to <wmg>.

The following queries provide information about a working memory generalization pool:

• (wmGpoolThreshold <wmg> <n>) binds <n> to the assimilation threshold for
<wmg>.

• (wmGpoolMaxSize <wmg> <n>) binds <n> to the maximum size of <wmg>.

• (wmGpoolExample <wmg> <e>) indicates that <e> is an example in <wmg>.

• (wmGpoolGeneralization <wmg> <g>) indicates that <g> is a generalization in
<wmg>.

• (wmSageSelect <c> <wmg> <item> <m>) runs the WM select operation (linear

search of items, ordered by recency) over <wmg> with <c> as the probe, returning

the closest example or generalization <item>, and its mapping <m> indicating how

<c> and <item> align.

4.7 QUERY

The procedural interface is

(query formula &key
 (reasoner *reasoner*)
 (context NothingPSC)

 (number :all)
 (coverage :specs)

 (facts :all)
 (env t)
 (transitive t)

 (infer t)
 (depth 10)

 (response :bindings))

Query uses all Horn clauses visible from the logical environment given for the query, via

the argument context. (The default argument for context, NothingPSC, contains no

facts, as an inducement to provide something more reasonable.) The depth argument sets

the maximum depth bound for inferences. The other keyword parameters are essentially

the same as for ask.

12 There is an asymmetry in the APIs for the working memory versus long term memory because in the

latter parameters are stored as special facts in datastructures, as opposed to explicit assertions.

 36

The command-line procedure q is just like query, except that it also sets up a global

parameter, *results*, for convenient debugging.

4.7.1 Controlling backchaining

For tractability, query is restricted to using Horn clauses. This is not as much of a

limitation as it might first appear, as the impressive body of systems built in Prolog

attests. Many axioms can be turned into a set of Horn clauses that captures most or all of

their original meaning (although it might require skolemization if the original axiom

involves existential quantification). Recall that the syntax used for Horn clauses is
 (<== <consequent> . <antecedents>)

i.e., using the KIF backchain operator.

A major source of control for backchaining is the use of logical environments in

reasoning. Recall that all queries are with respect to a microtheory. Only the Horn

clauses accessible within this microtheory will be used in making that query.

Many of the efficiency tricks that work in crafting Horn clauses for efficient reasoning in

Prolog are relevant for crafting Horn clauses in FIRE. For example, the ordering of

antecedents in a rule can make a substantial difference in terms of performance.

However, there are some key differences:

1. FIRE’s backchaining does not operate as a generator, like Prolog does. Instead, it

produces all answers that satisfy the query (although this can be modified somewhat

via the :number keyword). Consequently, there is no notion of cut.

2. In Prolog, the order in which clauses are used in a query are determined by the order

in which they appear in a program listing. This sequentiality, combined with cut,

provides a means of describing conditionals, among other things. In FIRE, since the

Horn clauses are all drawn from the current logical environment, there is no way to

impose an order on them.

3. Prolog defaults to negation by failure. That is, if something cannot be proven, then it

is assumed to not be true. FIRE does not do this by default. Negation by failure can

be implemented for particular predicates using uninferredSentence if

necessary. Enabling the backchainer to use the full notion of negation used in the

LTRE is something for a future version.

4.7.2 Using backchaining effectively

• It’s typically a good idea to put the axioms for some specific purpose in a separate

microtheory, and define the axioms in a separate flat file (or more than one, if

there are a lot of them). That way it can be reloaded as often as needed without

redefining other predicates (see Section 4.4 for details).

• All Horn clauses are stored in the KB. Horn clauses in WM are ignored. This is

for efficiency, and might change in a future version.

• Microtheories provide an extremely useful form of modularity. You can debug

sets of axioms independently of each other, and control their composition to do

more sophisticated reasoning, simply by making and retracting genlMt

 37

statements. This declarative form of control has been useful in building learning

systems on top of FIRE.

• It is important to remember that the reasoning services in FIRE form a hierarchy.

ask may be freely called by query, but not the other way around. In doing some

kinds of complex reasoning, this may mean doing some queries before others, to

ensure that information is correctly set up when needed. An exception to this is

the evaluatable function TheClosedRetrievalSetOf, which no longer needs this

sort of pre-query. Although technically it is invoked from an ask handler, it can

recursively invoke query when called from a query with non-zero stack depth.

• A common mistake in writing Horn clauses is not considering which variables

might be open in a query. FIRE allows variables to be bound to other variables,13

and so the inattentive rule author can produce rules which, in practice, lead to

queries with all parameters open. This is typically a bug, e.g. there are over

600,000 isa statements in some KBs. If you want to enforce that a particular rule

has a particular variable in its logical signature bound, the structural predicate

groundExpression should be used as one of the first antecedents to ensure this.

4.8 SOLVE

As described in Section 2.3, solve is the first level of reasoning in FIRE-based systems

that is designed to be interruptible. That is, given their resource limits, ask and query

will always run to completion; there is no chance of intervening in their operation (at

least without dropping into the Lisp code internals). solve is different. solve uses an

and/or tree to incrementally construct solutions. Even during the process of constructing

a single solution, whether or not to proceed is a choice that can be made by external

systems, by using flags and by controlling the agenda that solve uses to carry out its

work. There is also a “pause button” that can be used to suspend effort, even if there are

more things that could be tried.

The principles underlying solve are summarized in Chapter 8 of [5]. The key

differences between that code and the implementation in FIRE are

• Multiple solutions can be generated incrementally, rather than only providing one

solution. This is why it is a tree rather than a graph, as was used in [5]; sharing

subgoal nodes does not work when nodes essentially become generators of solutions.

Fortunately, the use of an LTMS in WM ensures that relevant work is shared

whenever possible.

• Suggestions about how to solve problems are found via query, rather than antecedent

rules. This enables the set of solution plans to be expanded declaratively, which is

important for building learning systems.

There are two ways to invoke the solve subsystem. The first, and simplest, creates an

and/or tree and runs it until either the first solution is found or resources are exhausted.

The second way is to operate it incrementally, allowing additional processing to be done

between each agenda item. Note that, even with incremental operation, solve uses

13 Unification in FIRE does an occurs-check, and most unification is done via the method of left/right

binding lists.

 38

query to attempt to directly prove each subgoal and to find suggestions, and these uses of

query, like any other, are considered to be atomic at the level of FIRE operations and

hence cannot be interrupted without diving down to the Lisp level.

Here is the simple way of invoking the solve subsystem:

(solve <goal> &key (reasoner *reasoner*) (context :all)

 (response :pattern)
 (max-depth *solve-max-depth*)
 (max-agenda-work *solve-max-agenda-work*)

 (suggestions-mt *default-suggestions-mt*)
 (single-solution nil)

 (fail-duplicates nil))

This is the non-incremental way of invoking this subsystem. solve returns the first

solution it finds to goal (if any) and a pointer to the and/or tree. The keyword arguments

context, response, and effort have the same meanings as they do for ask and query.

max-depth is the maximum depth for the and/or tree, and max-agenda-work is the

maximum number of agenda items that will be allowed during this run. The

suggestions-mt parameter indicates the microtheory which is used for finding

suggestions. fail-duplicates, when non-nil, invokes the heuristic that if a new goal

has the same content as another goal that earlier failed in problem-solving, then that new

goal is immediately failed. This is sound only in some domains, and hence is off by

default. single-solution is a similar heuristic: if a node has been solved one way, no

further effort to generate solutions for that node is allowed. This, too, is only sound in

some domains, and is turned off by default.

(get-solution <ao-tree>)

Generates the next solution from the and/or tree ao-tree, if any. This may involve both

using alternate bindings found previously and processing new agenda items. The same

limits on agenda work and depth specified when the and/or tree was created are still in

force. This procedure runs until the next solution is found or it runs out of resources, i.e.,

it is not incremental in its use of the agenda.

The next four procedures support incremental operation:

(setup-solve-aotree <goal>

 &key (reasoner *reasoner*)(context :all)(response :pattern)
 (effort :all)(max-depth 5)(max-agenda-work 100)
 (single-solution nil)(fail-duplicates nil)

 (suggestions-source :KB))

returns an and/or tree whose root node goal is goal, but does not attempt to solve it. The

arguments are interpreted the same way as in solve.

(next-solve-step <ao-tree>)

processes the next item on the agenda of ao-tree, if any. It returns two arguments. The

first is a flag which takes on one of the following values:

• :solved means that the second argument is a solution. The form of the solution is

determined by the :response parameter given when the and/or tree was created.

• :failed means that no more solutions could be found.

 39

• :agenda-empty means there is nothing else that can be done.

• :in-progress means there are still more agenda items to process, and hence a

solution might yet be found.

The second result, the solution, is nil unless the flag returned is :solved.

(run-solver-n-steps <n> <ao-tree> &key (monitor-procedure nil))

Run up to n items from the agenda of ao-tree, stopping earlier if either a new solution

has been found or if resource limitations have been reached. If non-nil, the keyword

argument monitor-procedure must be a procedure that will be called after each

processing of an agenda item. This procedure will be called with three arguments, ao-

tree, the flag returned from processing the current agenda item (as defined for next-

solve-step), and the solution, which is nil if no solution was just found.

(run-to-solution <ao-tree> &key (monitor-procedure nil))

runs ao-tree until the next solution, or failure, or running out of resources.

The following procedures enable work on a particular and/or tree to be paused or

unpaused:

(pause-ao-tree <ao-tree>)

sets the pause flag for ao-tree. All of the procedures above respect the pause flag, and

will process no further agenda items once it is set, returning after the current item is fully

processed.
(unpause-ao-tree <ao-tree>)

resets the pause flag for ao-tree, allowing processing of it to continue, if one of the

procedures above is used to do so.

4.8.1 Representing suggestions

Ultimately suggestions are translated into axioms in the KB. These axioms are the

reference form for suggestions. However, it is useful to have a civilized format that can

easily be read by people as well. We will start with the human-readable form, show what

axioms it expands into, and then describe some specialized goals recognized by the solve

subsystem.

(defSuggestion <name> <goal>
 &key documentation test subgoals result-step cost-function)

This form can be used in any FIRE flat file, and when loaded via meld-file->kb, will be

translated into the appropriate assertions. name is the term used to refer to this suggestion

in the KB. goal is the pattern of problem that it is applicable to. subgoals are the goals

which need to be solved in order to apply this suggestion. (A value must be supplied for

:subgoals, but all other keywords are optional.) result-step is a query that is made

once the subgoals have been solved, if further computation is needed to construct an

answer from them. documentation is a string that serves as a comment for the

suggestion. cost-function provides goal-specific advice on estimating cost for an

instantiated suggestion of this type.

 40

The following predicates are used in defining suggestions in the KB:

(suggestionGoalForm <name> <goal-pattern>)

indicates that the suggestion name can be used for goals of the form goal-pattern.
(suggestionSubgoals <name> <subgoals>)

indicates that the suggestion name requires the list of subgoals to be solved.
(suggestionResultStep <name> <result-query>)

indicates that some of the bindings used in the goal pattern for the suggestion name are

computed by the query pattern result-query.

Here is an example of how a suggestion is transformed into axioms:
(defSuggestion VolumeStrategyForCount
 (CountContained ?contained ?container ?count)
 :documentation "strategy for finding the count using volumes"

 :test (and (containsExpression ?criteria
 (physicallyContains ?container ?contained))

 (hasAttributes ?container Volume)
 (hasAttributes ?contained Volume))
 :subgoals ((volumeOfObject ?container ?vol-container)

 (volumeOfObject ?contained ?vol-contained))
 :result-step (evaluate ?count (QuotientFn

 ?vol-container ?vol-contained)))

results in the following axioms being placed in the KB:

(comment VolumeStrategyForCount
 "strategy for finding the count using volumes")

(suggestionResultStep VolumeStrategyForCount
 (evaluate ?count (QuotientFn ?vol-container ?vol-contained)))

(suggestionSubgoals VolumeStrategyForCount
 (TheList (volumeOfObject ?container ?vol-container)
 (volumeOfObject ?contained ?vol-contained)))

(suggestionGoalForm VolumeStrategyForCount
 (CountContained ?contained ?container ?count))

(<== (suggestFor (CountContained ?contained ?container ?count)
 VolumeStrategyForCount)
 (containsExpression ?criteria

 (physicallyContains ?container ?contained))
 (hasAttributes ?container Volume)

 (hasAttributes ?contained Volume))
(isa VolumeStrategyForCount Suggestion)

The context used for storing these assertions is defined by whatever microtheory is in

force during the loading of that portion of the flat file. Thus what suggestions are

available during a problem-solving task can be controlled based on the logical

environment it is performed in.

The following special types of goals are recognized by solve:

(solveAll <binder-form> <subgoal-form>)

 41

is a means of specifying conjunctive goals when you cannot know in advance how many

conjuncts there are, because it is data-dependent. binder-form is a pattern that must

bind one or more variables. subgoal-form must be solved for each of those sets of

variable bindings.

For example, in solving an equation,
(solveAll (equationFormulas ?equation ?x ?quantity) (nvalue ?x ?value))

indicates that, for each of the variables in the equation, one must find its numerical value.

(solveSequentially <var> <list> <subgoal-pattern>)

is like solveAll, in that it finds a solution for <subgoal-pattern> with <var> bound

sequentially for each item in <list>. <var> is assumed to be free in ?subgoal-pattern.

Other free variables in <subgoal-pattern> are uniquified in all but the last subgoal.

This enables the last full set of bindings to be passed back, while avoiding conflicting

bindings within earlier subgoals. For example, in implementing QP theory, the

following solve suggestion handles influence resolution:

(defSuggestion ResolveInfluences-Main
 (resolveInfluencesIn ?state)
 :subgoals

 ((findInfluencesInState ?state ?quantities)
 (solveSequentially ?q ?quantities

 (dsValue ?q ?value))))

The predicate findInfluencesInState binds ?quantities to a list of quantities in

the state, ordered causally, so that the solveSequentially subgoal can then walk

through them, finding how quantities are changing in that state.

4.8.2 Customizing node cost strategies

Learning what strategies pay off for different kinds of problems is a classic machine

learning issue. Being able to exploit such knowledge requires the cost evaluation

mechanism in solve to somewhat flexible. This flexibility is provided by using the

following two methods in the computation of costs, e.g.,

(estimate-ao-node-cost <ao-node>)

returns a numerical estimate for the cost of and/or node ao-node.

(default-estimate-ao-node-cost <ao-node>)

returns a default estimate for the cost of and/or node ao-node.

Both of these methods can be specialized on the type of and/or node. The default method

for estimate-ao-node-cost simply calls default-estimate-ao-node-cost. There

are two built-in cases for default-estimate-ao-node-cost, one for suggestion nodes

and one for goal nodes. These defaults are arranged so that deeper nodes are more costly

than shallower nodes, and goals involving more easily evaluated predicates are slightly

cheaper. This biases the default operation of solve towards shorter, simpler solutions, in

a breadth-first fashion.

 42

By subclassing default-estimate-ao-node-cost, different default problem-solving

strategies can be implemented, e.g., depth-first operation. By subclassing estimate-ao-

node-cost, knowledge that has been learned about the utility of different methods may

be exploited (by using ask or query to calculate costs, using evaluate). When no

learned knowledge is available, some default stratagem is still required, hence the

separate definition of the two methods.

4.8.3 Debugging tools for solve

A number of useful tools can be found in fire\v3\tools\solve-debug-utils.lsp.

There is also a zgraph display for AO trees, defined in fire\v3\graph-types\aotree-

graph.lsp that is extremely handy for debugging. The displays it produces are color-

coded, with green meaning that the subgoal succeeded, red meaning that it failed, and

grey meaning that it was rendered moot. Another useful zgraph display can be found in

fire\v3\graph-types\suggestions-graph-display.lsp, which shows

the connections between suggestions available from the current microtheory. This is

helpful to see what is already there in the current logical environment.

4.9 The HTN Planner

The HTN planner is invoked via

(plan <query> &key context reasoner facts
 depth return-reasons?

 coverage env transitive infer stack)

where

• <query> is a task specification, of the form (actionSequence (TheList

<task> … <optional other tasks>)), where the query is in the data package

and the task predicates are defined as ComplexActionPredicates.

• context should be a PlanSpecificationMicrotheory that inherits from the

domain context containing facts and plans. This context is almost entirely

ephemeral. The planner takes an initial set of facts cached in working memory in

this context and treats them as the initial state. As it searches for plan expansions,

it retracts state facts that are no longer true and justifies new state facts with the

new state.

• facts tells the planner where to look for plans and static domain facts. Although

state facts are all cached in working memory, the plans are generally stored in the

knowledge base. The default value of the :facts argument is :kb. For

efficiency reasons, it is often a good idea to pre-cache domain plans and facts in

working memory so that the planner doesn’t keep returning to the kb for methods.

• reasoner is the reasoner the work is performed in.

• depth is the maximum expansion depth the planner will use.

• return-reasons? produces an explanation for the plan, as well as the expanded

action sequence.

 43

• coverage, env, transitive, infer are all the same as in ask or query.

Their default values are reasonable for the planner, and should only be changed if

you know what you are doing.

When it succeeds, the planner returns a plan in the same format as the query it is passed,

except that the complex tasks are all replaced with ground primitive tasks. So a plan has

the form (actionSequence (TheList <primitive action1> <primitive action

2> …)). If it fails, the planner returns :fail.

If the :return-reasons? argument is true, the planner will also return a second value

containing the hierarchical plan justifications for the plan steps. This is actually not the

hierarchical plan, but the inverted plan that associates each plan step with its parent task.

Although the planner can be configured to return the plan tree, the inverted plan turned

out to be more useful in explaining and adapting plans.

As an example, the first Blocks World problem defined in the HTN planner flat files

returns the following flat plan:

(actionSequence
 (TheList
 (doPickup Block2)

 (doStack Block2 Block3)
 (doPickup Block1)

 (doStack Block1 Block2)))

The 2nd returned value is the reasons for these steps:

(TheList
 (reasonForTask (doPickup Block2) (moveBlock (TheSet)))

 (reasonForTask (doStack Block2 Block3) (moveBlock (TheSet)))
 (reasonForTask (doPickup Block1)

 (reasonForTask (moveBlock (TheSet Block2))
 (moveBlock (TheSet))))
 (reasonForTask (doStack Block1 Block2)

 (reasonForTask (moveBlock (TheSet Block2))
 (moveBlock (TheSet)))))

There are several global variables that are useful for getting insights into how the planner

works and for debugging plans:

• *debug-htn* causes status messages to be printed, if non-nil.

• *break-on-backtrack* will cause a breakpoint when the planner backtracks, if

non-nil.

• *trace-tasks* will cause tasks that unify with members of *trace-tasks* to

be traced, as will their subtasks.

• *optimize-htn* causes optimized Lisp code to be used for choosing the best

expansion method, if non-nil. The default is nil, so that query is used to reason

about what expansions are preferred.

For more details, please see the HTN planner documentation that comes with the FIRE

installation.

 44

5 Extending FIRE
FIRE is designed to be flexible. To that end, we have built in considerable support for

extending its reasoning abilities. This section describes what you need to know in order

to tinker “under the hood”.

5.1 Adding a new reasoning source

The purpose of a reasoning source is to extend the capabilities of the reasoner, via a

technique known as procedural attachment. That is, queries in essence invoke

procedures, which do work that would be inconvenient, inefficient, or impossible to do

entirely within the reasoner. When should one use a reasoning source?

• When interfacing an external system to FIRE. Examples include SME, sketching

systems, geographic information systems, and web scrapers.

• When operations are heavily procedural. Just because reasoning systems can in

principle do anything doesn’t mean that one should make them do everything. An

important engineering principle is to use the right tool for the right job.

• When there are substantial amounts of information that doesn’t need to be in the

KB. Large databases, for instance, don’t need to be completely absorbed into a

KB.

• When one is building a distributed reasoning system. Reasoning sources enable

queries to access remote resources.

Reasoning sources should be organized around a set of related operations. For example,

the analogy source, which is built into FIRE, provides an interface to SME and integrated

implementations of MAC/FAC and SAGE. By using a reasoning source, specialized data

structures (dgroups, smes, content vectors, case libraries, and retrievals) can be cached

and incrementally reified on demand.

5.1.1 Deciding what predicates should be provided

The first decision is what predicates should be provided. This is an interesting tradeoff

between two concerns: What the underlying system naturally provides, and what will

lead to the most efficient queries. For example, suppose one is converting an old LTRE-

based system to FIRE. LTRE rules often invoked procedures, via the :test keyword.

Such procedures are good candidates for becoming predicates. Operations that cause the

creation of data structures are another source of good candidates. Operations that retrieve

information from complex data structures need to be considered with care, since their

results will be reified in the reasoning system. Focusing exclusively on low-level

accessors may lead to unnecessary cluttering of WM. What orders of computation should

be supported becomes an important question. Some of the redundant predicates in the

analogy ontology (see fire/flat-files/analogy-ontology.meld) exist to avoid

excessive reification in queries, by compressing what would be several antecedents into

one.

 45

Predicates are defined in terms of procedures in the reasoning source. How many

procedures one needs depends on what parameters will be provided as inputs versus

produced as outputs. Suppose we want to define a unary predicate

(massNoun <x>)

which is true exactly when <x> is a mass noun. Logically, there are two cases we might

handle here:

1. <x> is bound to something. The procedure has to test the argument, and signal

true if it is indeed a mass noun.

2. <x> is a variable. The procedure returns a list of all the mass nouns.

The first one is clearly essential. The second one would make the system more logically

complete, but also more likely to fail: There are a lot of mass nouns in a reasonable

lexicon, and someone rarely means to list them all. It is better to be relatively incomplete

and avoid costly failures than it is to be more complete. In general, if listing a large

amount of information is going to be a necessary operation, it is wiser to provide a

different predicate for doing that, so that it is very clear what one is doing.

Typically there are three patterns that procedures which implement predicates follow:

1. Test. The arguments are all bound, and the procedure tests to see if the property

holds (if a unary predicate) or if the relationship holds (if multiple arguments).

2. Generate. All but one argument are bound, and the unbound variable is provided

with value(s) that will satisfy the relationship.

3. List. Getting all of the alternatives. The results are bound as a list to the unbound

variable.

Once you’ve decided what orders of computation to support, you’re ready to begin

implementing your reasoning source.

5.1.2 Implementing the predicates

As with many kinds of programming, careful study of an example yields rewards. We’ll

use examples from the analogy source to illustrate the principles involved.

5.1.2.1 Creating the interface

When an instance of a source gets created, the procedure which does this job has to call

register-ask-source, which ties procedures to queries. There are two macros defined

which simplify this process: register-simple-handler and register-mc-handler.

 46

The only difference is that register-mc-handler takes both a mixed-case and

hyphenated predicate14. For example, in macfac-accessors.lsp,

 (register-simple-handler d::reminding
 run-macfac (:known :known :known :variable :variable) t)

binds the procedure run-macfac to the predicate data::reminding, assuming that the

first three arguments (probe, case library, match constraints) are bound and the last two

arguments (retrieved dgroup, matcher) are produced by the procedure. Similarly,

 ;; (caseLibraryContents ?library ?set)

 (register-mc-handler
 d::caseLibraryContents d::case-library-contents

 ;; Accessor

 case-library-contents-find (:known :variable))

implements the ability to retrieve the contents of a case library, using

caseLibraryContents. Once you’ve got the forms installed for each of the directions of

computation for all of your predicates, it’s time to write the procedures.

5.1.2.2 Creating the handler procedures

The procedures for implementing an order of computation are called handler procedures,

since they handle part of the semantics of a predicate. They have a variable number of

arguments – FIRE’s internals will call them with

(<handler name> <rsource> <context> <number> <response> <effort>
 <query> . <other args>)

Where <handler name> is the procedure specified in the registration process, <rsource>

is a pointer to the reasoning source instance itself (so that state internal to the source can

be accessed, and the reasoner and KB can be accessed, although these are also bound by

the usual default variables). <response> indicates the kind of response expected,

<effort> is an effort specification, and <query> is the original form of the query. <other

args> is the list of values that are passed into the query.

Since most of these are stereotyped, another macro is provided to simplify things:

defsource-handler. All you have to provide are <other args>. Please see

sources.lsp and examples in the FIRE source code for details.

Given that FIRE’s working memory uses an LTMS, results from reasoning sources must

be appropriately justified. If a result depends on other facts in the working memory, you

should be sure to justify conclusions based on them. If a conclusion might change with

subsequent incoming data, installing a closed-world assumption is a wise idea. Again, see

14 Mixed-case predicate conventions are deprecated, and are unlikely to show up in future versions of FIRE.

 47

the FIRE source code for details – for instance, metaknowledge.lsp and

planner\htn.lsp.

5.1.2.3 Doing the ontological work

You also must define the structural properties of your new predicates, weaving them into

the ontology appropriately. At minimum, you need to include the appropriate isa

statements, a comment assertion, and arity plus argument constraints. It is also wise to
provide specPred information, plus any other axioms that are needed to pin down the

logical implications of your predicates. Should your predicates show up in analogical

operations? If not, then it is important to add the appropriate analogy control predicates

into an appropriate microtheory. These flat files need to be loaded once in the KB used

by whatever system(s) are using your reasoning source. Since predicates are essentially

global, it is important to keep to the conventions of the KB when choosing predicate

names, and avoid conflicts.

5.2 Adding new quantifiers

FIRE’s federated architecture means that it must carefully analyze query terms, so that

the input and result signatures of predicates are respected. This means that its analysis

routines must provide correct information about the predicates they encounter. One has

to tell the system when adding a new quantifier, so that the local variable introduced is

treated as a local variable, rather than as a free variable in the expression. One does this

by extending the method fire::introduces-local-variable?, which returns t if a

predicate introduces a local variable and nil otherwise. FIRE already defines this method

over standard quantifiers, e.g.,

(defmethod introduces-local-variable? ((pred (eql 'data::forAll))) t)

(defmethod introduces-local-variable? ((pred (eql 'data::thereExists)))
t)

It is assumed that the quantifier will introduce a single local variable, and that local

variable will be declared as the first argument in the expression. If you wish to introduce

quantifiers that declare multiple local variables at once, or define them in some other

location, you will have to modify the code in formulas.lsp more extensively.

6 Extras

6.1 Human-Readable Namestrings

Most applications eventually have to present information to users. The knowledge-bases

we use have several facts assigning human-readable strings to concepts (prettyString-

Canonical, prettyString, prettyName, preferredNameString, and nameString

being the most common). Since fetching these namestrings occurs often in apps with

user-interfaces, FIRE provides a few utilities for this purpose.

(get-namestring <source> <term> &key context)

 48

get-namestring is the main public function for fetching user-readable

namestrings for concepts. It returns two values:

1) The namestring associated with the given object. This will always return a string. If

no namestring could be found, (namestring-fallback <source> <term> <context> will

be called.

2) Non-nil iff a namestring was actually found for the obj. In other words, this will be

nil if namestring-fallback had to be called.

The source parameter for get-namestring can be a reasoner or a KB. This is a method, so

it can be specialized for other sources of information as well. For example, nuSketch

defines get-namestring methods where the source is a sketch.

(get-namestring-from-source <source> <obj> <context>)

This method is used internally by get-namestring. You will probably never need to call

this yourself, but it may be useful to specialize it for different sources or terms. Using

nuSketch as an example again, because of its specializations, one make calls like (get-

namestring <sketch> <glyph>) and it will correctly fetch the namestring associated with

the given glyph.

(default-namestring-context <source> <obj> <context>)

Again, you will probably never call this method directly, but you can specialize it for

various kinds of sources and objects.

(namestring-fallback <source> <obj> <context>)

This is called by get-namestring when get-namestring-from-source fails to find a

namestring. Normally it just writes obj to a string, but you might find it useful to

specialize it for other behaviors.

namestring-cache-mixin

This optional mixin class can be used with reasoners (and other sources of namestring

information) to cache namestrings to speed up lookup. Fetching namestrings from the

KB is slow enough that user-interfaces that present several namestrings at once will

probably seem sluggish. This mixin caches the namestrings once they have been found.

To use, include it in your class definition and give it precedence over the reasoner, KB, or

other namestring source. For example, the reasoner class used by nuSketch is defined as

follows:

 49

(defclass ns-reasoner (fire:namestring-cache-mixin

 fire:reasoner)

 ((sketch

 :documentation "This slot is optional since not all

 reasoners created within nuSketch are

 for a specific sketch, but since every

 sketch has its own reasoner, this slot

 can be useful."

 :accessor sketch :initarg :sketch :initform nil)

 …))

Note that in the above definition, the namestring-cache-mixin is listed before reasoner in

the parent classes of ns-reasoner. This ensures that the namestring-cache-mixin’s get-

namestring methods will be called instead of the normal ones used by the reasoner.

One downside of caching the namestrings is that the cache isn’t smart enough to know

when the namestring has changed. So you have to call the following whenever you

change a namestring:

(reset-cached-namestring <source> <obj> <context>)

In nuSketch, for example, whenever a user renames a glyph (i.e. assigns a new

namestring to it), nuSketch calls reset-cached-namestring.

 50

7 Tips, Tricks, Traps, and Troubleshooting

7.1 Problems while getting set up

Problems in opening a new knowledge base: While the Plan B database is a lot more

robust, it is still possible to trash it if you or your code work hard enough at it. In that

case, you’ll need to reinstall a new copy of the KB. It is important to delete the old KB

first, since adding an arbitrary file from another KB to the database files in that directory

will lead to undefined results. If you have been making substantial changes to a KB, it is

advisable to back it up, by making a compressed archive periodically. There is also a

journaling system that tracks changes to a KB, so it is possible to reinstall the KB you

used as a starting point and reconstruct your changes with the journaling information.

Generally this is done by systems not people (e.g., Companions internals), so please see

the source code for more information.

Determining whether the KB is loaded into RAM or runs from disk: This was

something that had to be set by hand with the old BDL database, but now AllegroCache

is handling caching automatically. For some very intense KB changes, it can be worth

fiddling with AllegroCache’s parameters – see the KB build procedure (planb\kb-

build.lsp) for an example. However, aside from KB building, we’ve not yet found

places where changing the parameters from what we’ve set them to be by default makes a

difference.

7.2 Problems found during shakedown

Problems are found with the evaluation subsystem: The most likely cause of such

problems is that the assertions in the knowledge base that link Lisp handlers to specific

evaluatable predicates are out of synch. The following procedure will handle these

problems:
(fire::reinstall-fire-default-evaluation-info)

This procedure clears the old handler information out of the KB and reloads both the

axioms and the code from the current source files. These source files are created

automatically from the file evalfns.lsp in the fire\v3 source directory. evalfns.lsp

contains calls to a specialized macro that produces code and axioms for each evaluatable

function. If you (or someone else) has updated evalfns.lsp, you need to call
 (fire::create-fire-default-evaluation-files)

before calling the reinstallation procedure above, to ensure that the source code and

axiom files are up to date.

Problems are found with analogical matching: Dehydrated copies of SME are stored

in the tests subdirectory; comparing the current comparison against the latest known good

one is an excellent way to figure out these problems. Use of rbrowse::browse-sme is

strongly recommended.

 51

7.3 Problems during development

You get a method not found error when calling fire:ask: Please make sure that you

have opened a knowledge base and have created a reasoner. Having forgotten one or

both of these steps is the primary cause of such errors.

There are missing predicates: You are probably missing a flat file. Axioms for FIRE

KBs are loaded from ASCII text files. FIRE-based systems typically make a number of

additions to the KB, since it is good programming style in this context to use declarative

mechanisms as much as possible. Most FIRE-based systems have loaders that

automatically load the correct set of flat files.

You’ve reloaded a file of rules and the old rules are still there: The model in FIRE is

that adding a flat file does not remove old contents. In programming languages, loading

a new definition of a procedure removes the old one. In logic, adding more axioms about

a predicate only increases the specificity of what it means. If you want axioms removed,

you have to remove them explicitly. This is yet another reason why it is good practice to

segregate rules for a particular purpose into a distinct microtheory, so that the contents of

that microtheory can be deleted and then reconstructed via loading updated flat files. See

Section 4.4 for details.

You added knowledge to the KB, but it isn’t there anymore after getting an updated

KB: Periodically we rebuild the KB from scratch, using flat files that define the contents.

If you didn’t edit one of those files, or included your changes in a file that isn’t part of the

build process for that KB, it will not show up in the next version. If you have been

making changes to the KB directly and journaling is turned on, you should be able to use

the contents of the journal file to construct a flat file for more convenient reloading.

However, we recommend that most development proceed by using flat files, checking

predicate information using Rbrowse, to minimize errors. For example, while FIRE

applications tend to not use the comments associated with the predicate, including

comment statements is a crucial form of documentation for others reading through the

KB or your flat files.

8 References

1. Anderson, W., Hendler, J., Evett, M. and Kettler, B. 1994. Massively parallel

matching of knowledge structures. In Kitano, H. and Hendler, J. (Eds.) Massively

Parallel Artificial Intelligence, MIT Press, pp. 52-72.

2. Everett, J. and Forbus, K. 1996. Scaling up logic-Based truth maintenance

systems via fact garbage collection. Proceedings of the 13th National

Conference on Artificial Intelligence.

3. Falkenhainer, B., Forbus, K., Gentner, D. ``The Structure-Mapping Engine:

Algorithm and examples'' Artificial Intelligence, 41, 1989, pp. 1-63.

 52

4. Falkenhainer, B., Forbus, K., and Gentner, D. The Structure-Mapping Engine.

Proceedings of AAAI-86, Philadelphia, PA, August, 1986

5. Forbus, K. and de Kleer, J., Building Problem Solvers, MIT Press, 1993.

6. Forbus, K., Ferguson, R. and Gentner, D. (1994). Incremental Structure-Mapping.

Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society,

August.

7. Forbus, K., Ferguson, R., Lovett, A., & Gentner, D. (in press). Extending SME to

handle large-scale cognitive modeling. Cognitive Science.

8. Forbus, K., Gentner, D. and Law, K. 1995. MAC/FAC: A model of Similarity-

based Retrieval. Cognitive Science, 19(2), April-June, pp 141-205.

9. Forbus, K., Gentner, D., Everett, J. and Wu, M. (1997). Towards a computational

model of evaluating and using analogical inferences. Proceedings of CogSci97.

10. Forbus, K., Hinrichs, T., de Kleer, J., and Usher, J. (2010). FIRE: Infrastructure

for Experience-based Systems with Common Sense. AAAI Fall Symposium on

Commonsense Knowledge, Arlington, VA.

11. Forbus, K., Mostek, T. and Ferguson, R. (2002). An analogy ontology for

integrating analogical processing and first-principles reasoning. Proceedings of

IAAI-02, July.

12. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy.

Cognitive Science, 7, 155-170.

13. Gentner, D. & Namy, L. L. (2006). Analogical processes in language learning.

Current Directions in Psychological Science, 15(6), 297-301.

14. Kandaswamy, S., Forbus, K., and Gentner, D. (2014). Modeling Learning via

Progressive Alignment using Interim Generalizations. Proceedings of the

Cognitive Science Society.

15. Karp, P. and Paley, S. 1995. Knowledge Representation in the Large.

Proceedings of IJCAI-95.

16. Kuehne, S., Forbus, K., Gentner, D. and Quinn, B. (2000). SEQL: Category

learning as progressive abstraction using structure mapping. Proceedings of

CogSci 2000, August.

17. McLure, M.D., Friedman S.E. and Forbus, K.D. (2015). Extending Analogical

Generalization with Near-Misses. Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence, Austin, Texas

18. Mostek, T., Forbus, K, and Meverden, C. (2000). Dynamic case creation and

expansion for analogical reasoning. Proceedings of AAAI-2000. Austin, TX.

 53

9 Appendix A: Vocabulary of specialized predicates in
ASK and QUERY

Some predicates are “hard-wired” into ASK and QUERY. This appendix describes them.

9.1 Predicates handled specially by ASK

9.1.1 Structural knowledge from the KB

genls and isa statements are treated specially by ASK. These procedures use FIRE

internals for efficiency. Special things to note for genls:

• (genls <var> <var>) will current grab every genls statement. This is

almost always a mistake, and unless this is limited to a specific microtheory (see

Section 4.5.1), FIRE treats it as a failure.

• (genls <var> <constant>) and (genls <constant> <var>)

will only get immediate genls or specs. Use genlsTransitive or

genlPredsTransitive if you really want the entire sublattice or superlattice.

Regarding isa,

• Like all variables input to genls, (isa <var> <var>) will seriously hurt

you, unless this is limited to a single microtheory and lookup only. We will

probably change this to return failure in the future.

• (isa <constant> <var>) will return the explicitly known collections for

<constant>, rather than the deductive closure.

• (isa <constant> <constant>) does the appropriate chaining in the

genls lattice, but does not invoke other axioms. More complex derivations of

attributes/collection membership should be done through backchaining.

9.1.2 Structural predicates

Structural predicates are those which process the structure of assertions themselves.

Most of this vocabulary has been drawn from the Cyc KB conventions, but we have

introduced several new predicates to better support our work.

9.1.2.1 Equality and ordering on statements
(equals <a1> <a2> … <an>)

is true exactly when <a1> through <an> are all Lisp EQUAL.

(equalp <a1> <a2> … <an>)

is true exactly when <a1> through <an> are all Lisp EQUALP. (This does case-

insensitive string comparisons, where equals does case-sensitive comparisons.)

 54

(different <a1> <a2> … <an>)

is true exactly when none of <a1> through <an> are Lisp EQUAL.

(alphalessp <a1> <a2>)

is true exactly when <a1> is less than <a2>, in the ordering defined by the FIRE

procedure alphalessp.

9.1.2.2 Accessing the structure of statements

Where predicates come from the Cyc KB, we have included their comments in the

descriptions below, since they capture their designers’ insights. Information about

implementation is specific to FIRE.

(assertedTermSentences TERM SENTENCE)

means that SENTENCE, which is found in the KB, contains TERM.

Cases:

1. constant TERM, constant SENTENCE: Check to see that SENTENCE is in KB,

and if so, does it contain term.

2. variable TERM, constant SENTENCE: Check if sentence is in KB, and extract all

terms.

3. constant TERM, variable SENTENCE: Retrieve all references to TERM in KB,

remove those where it doesn't appear as a term (i.e., when it is used only as a

predicate).

(formulaArgument FORMULA N TERM)

means that TERM appears as the Nth argument in FORMULA.

Cases:

1. All constants: test if true.

2. Formula variable: punt, this is local.

3. N variable only: See if TERM is one of the args, and bind it appropriately.

4. TERM variable only: Bind it to Nth argument.

5. Both N, TERM variable: Generate solutions for each argument.

(justificationForStatementIn <statement> <expression>
<antecedents>)

is true exactly when <expression> contains a justification for <statement>,

indicating that <statement> should be believed as a consequence of the set of

statements <antecedents>.

(natArgument NAT N TERM)

means that TERM is in the Nth argument position of the non-atomic term NAT. For

example, (natArgument (JuvenileFn Dog) 1 Dog). Note that

(termOfUnit NAT (FUNCTION ... ARGN ...)) implies (natArgument

NAT N ARGN). This predicate exists to make it easier and more efficient to write arity-

independent rules about functional terms without having to resort to dotted variable

syntax such as (termOfUnit ?NAT (?FUNCTION . ?ARGS)).

 55

(natFunction NAT FUNCTION)

states that FUNCTION is the function used in the non-atomic term NAT. For example,

(natFunction (JuvenileFn Dog) JuvenileFn). More precisely,

(termOfUnit NAT (FUNCTION ...)) implies (natFunction NAT

FUNCTION). This predicate exists to make it easier and more efficient to write arity-

independent rules about functional terms without having to resort to dotted variable

syntax such as (termOfUnit ?NAT (?FUNCTION . ?ARGS)). Note:

natFunction is like operatorFormulas, but its arguments are reversed.

(noArgumentHasPredicate ?fact ?pred)

is true iff there is no subexpression of an argument of ?fact such that ?pred is its

functor. That is, it goes down the tree, not just one level. This is the negation of

someArgumentHasPredicate.

(operatorFormulas TERM FORMULA)

means that TERM is the operator of FORMULA, i.e., it appears in the zeroth position.

Cases:

1. constant term, constant formula: test

2. constant term, variable formula: Don't do anything. See

assertedTermSentences instead.

3. variable term, constant formula: bind to operator of the formula.

(rationaleForOccurrenceIn <occurrence> <expression>
<relation> <antecedents>)

is true exactly when the event or situation type <occurrence> is connected to

enabling/disabling conditions <antecedents> by some subexpression of

<expression>. <relation> is the relationship that holds between them, this is

needed to determine the type of connection between the occurrence and the antecedents.

<relation> will always be a specPred of explains-Generic. Currently

<relation> and <antecedents> must be variables that will be bound via ASK.

(someArgumentHasPredicate ?fact ?pred)

is true iff there is some subexpression of an argument of ?fact such that ?pred is its

functor. That is, it goes down the tree, not just one level

(subexpressionMatching <pattern> <expression>
<subexpression>)

is true exactly when <subexpression>, which must unify with <pattern>, is a

subexpression of <expression>.

(termFormulas SENTENCE TERM)

means that TERM appears somewhere in SENTENCE. This is a purely local query, hence

it doesn't need to check to see if something is in the reasoner.

 56

Cases:

1. Variable term, constant sentence: Generates assertions for each term in the

sentence.

2. Constant term, sentence: True or false depending on whether term is in sentence.

The Cyc documentation is ambiguous about whether or not this is recursive. In FIRE we

treat it as recursive.

(unifies <expression1> <expression2>)

is true exactly when its arguments unify.

(containsPattern <pattern> <expression>) is true exactly when some

subexpression of <expression> unifies with <pattern>. The bindings of the

pattern are available as part of the results.

(containsExpression <subexpression> <expression>) is true exactly when

<subexpression> is a member of <expression>. This does not unify or bind variables.

(containsUnifyingArgument <expression> <pattern> <result-var>)

provides bindings for <result-var> such that they are arguments of <expression> or

arguments of its subexpressions, recursively. Any variables appearing in <pattern> are

also available as a result for each solution.

(individualRepresenting <defining contents> <string> <var>)

When used the first time, generates a unique symbol, prefixed by <string> and binding it

to <var>. Subsequent queries within the same reasoner with the same defining contents

will return the same symbol. This provides the equivalent to the “find or make”

functionality when introducing new atomic terms.

9.1.3 Metaknowledge predicates

Metaknowledge predicates provide information about the state of knowledge in the

system. The metaknowledge predicates implemented in ASK are:

(knownSentence <sentence>)

is true exactly when <sentence> can be found in the WM or KB through lookup

alone.

(unknownSentence <sentence>)

is true exactly when <sentence> cannot be found in the WM or KB.

(uninferredSentence <sentence>)

is true exactly when <sentence> cannot be derived by current means. Open variables

in <sentence> are not allowed.

(trueSentence <sentence>)

is true exactly when <sentence> can be derived.

 57

(falseSentence <sentence>)

is true exactly when <sentence> is either known to be false or cannot be derived by

current means.

(consistentThat <sentence>)

is true exactly when <sentence> is not already known to be false.

One use of these predicates is handling negation by failure, which is an approximation to

true negation, as per uninferredSentence and unknownSentence above.

9.1.4 The Eval subsystem

Sometimes it is wise to render unto procedures what is procedural. Arithmetic operations

on numbers, list operations, and closed-world assumptions are all good examples.

FIRE’s Eval subsystem supports this via ASK through a specialized predicate evaluate

which takes two arguments, a value and an expression to be evaluated. When the value is

a variable, the result of evaluating the expression is bound to that result. When the value

isn’t a variable, the result of evaluating the expression is compared to the value, and if

they are the same the evaluate statement is justified as true15.

The functions and relations handled by the Eval subsystem are those which in Cyc are

considered evaluatable-functions. The subset we have implemented includes the

following:

• Procedures on sets and lists: LengthOfListFn, CardinalityFn, ListFn,

MemberFn, SublistFromToFn, NthInListFn, PositionInListFn,

RestOfListFn, TheList, TheSet, JoinListsFn, ReverseListFn,

SortFn, SetOrCollectionUnion,

SetOrCollectionIntersection, MapFunctionOverList,

FormulaArgListFn, MakeFormulaFn.

• Procedures on numbers: PlusFn, TimesFn, DifferenceFn, QuotientFn,

AbsoluteValueFn, ExponentFn, ExpFn, LogFn, MaximumFn,

PlusAll, Average

• Higher-level procedures: FunctionToArg

• Non-monotonic predicates: TheClosedRetrievalSetOf. (Not in Cyc.

Value denotes the construal of set, based on statements explicitly known when the

evaluation occurs. A timestamped CWA is provided for later reasoning about

whether or not the construal should be recomputed.

This list is not exhaustive, the current set is in evalfns.lsp. This file is processed by

FIRE internal procedures to construct two files, evaluate-handlers and

evaluate-axioms, using the procedure (fire::create-fire-default-

evaluation-files). Calling the procedure (fire::reinstall-fire-

15 If the values do not match, via the Lisp EQUAL predicate, the ASK fails. We do not install the failed

evaluation in the working memory as false.

 58

default-evaluation-info) causes the procedure definitions in evaluate-handlers

to be loaded, and for the axioms in evaluate-axioms to be installed in the kb.

If you want to quickly try out an expression to see what it will do, the lisp procedure

fire-evaluate takes an expression (i.e. the second argument to evaluate) and an

optional microtheory, and returns the value that the evaluate subsystem computes for that

expression.

9.1.5 Dynamic Update Predicates

Dynamic Update predicates always compute their results and never look for results in

working memory. Dynamic update predicates implemented directly in ask are:

(currentUniversalTime <time>)

binds <time> to the lisp-encoding of the current universal time. Because this is a lisp-

specific opaque representation, storing such values in the kb is discouraged.

(wmAntecedentOf <consequent> <antecedent>)

checks working memory justifications to either verify that <antecedent> is a

justification for <consequent>, bind the antecedents of <consequent>, or bind the

consequences of <antecedent>. At least one of the arguments must be bound, and all

bound arguments must be believed true.

9.1.6 Binding List Predicates

Binding lists inside the FIRE and Plan B implementations are implemented as alists, and

reified via terms constructed using TheSet and TheList. Reified binding lists are

typically produced via outsourced predicates, given the use of a truth maintenance system

in working memory, implementing elementary list operations via Horn clauses is not

recommended (see the eval subsystem above). The following predicates are useful for

testing binding lists:

• (sameBindings <bl1> <bl2>) holds when <bl1> and <bl2> are both

the same binding list.

• (differentBindings <bl1> <bl2>) holds when <bl1> and <bl2>

differ in some binding (or the presence of a binding).

• (subsetOfBindings <bl1> <bl2>) holds when <bl1> is a subset of

the bindings found in <bl2>.

9.2 Predicates handled specially by QUERY

Like ASK, QUERY handles conjunctions expressed via and.

 59

9.2.1 N-ary predication

There are times when one wants the reasoning equivalent of EVERY and SOME in Lisp.

For instance, evaluating when an action is possible requires gathering the set of its

preconditions and establishing whether or not they hold. These predicates provide this

service.

(everySatisfies <var> <list or set> <statement>)
(someSatisfies <var> <list or set> <statement>)

everySatisfies holds if for every element of <list or set>, substituting it for

<var> in <statement> is provable.

someSatisfies holds if this is true for any element of <list or set>.

Example:
cl-user(93): (fetch-trues '(foo ?x))

((foo b))

cl-user(94): (fire:q '(someSatisfies ?x (TheSet a c) (foo ?x)))

nil

cl-user(95): (fire:q '(someSatisfies ?x (TheSet a b) (foo ?x)))

((nil (someSatisfies ?x (TheSet a b) (foo ?x)) :step (:WM (foo b))))

cl-user(96): (why? '(someSatisfies ?x (TheSet a b) (foo ?x)))

(someSatisfies ?x (TheSet a b) (foo ?x)) is true via bc on

 (foo b) is true

<N-3>

cl-user(97):

Current Limitations:

1. It will bail if there are any free variables in <statement> besides <var>. I didn’t

want to deal with multiple solutions.

2. Negations still aren’t handled.

3. It is agnostic with regard to TheList or TheSet for <list or set>, but the

functor of that term must be one of them.

9.2.2 Metaknowledge predicates handled by QUERY

(forEffectOnly <sentence>)

forEffectOnly is used to run a query prior to collecting elements in a closed retrieval

set, or for establishing preconditions when using solve.

 60

10 Index

break-on-backtrack............. 43

debug-htn 43

default-suggestions-mt 38, 40

kb... 13

optimize-htn 43

reasoner ... 13

record-retrievals 31

results .. 14, 36

solve-max-agenda-work 38

solve-max-depth 38

trace-tasks 43

<== .. 36

AbsoluteValueFn 57

actionSequence 42, 43

add-source ... 15

AllAssumptions 24

AllegroCache parameters 50

allFactsAllowed......................... 23

alphalessp .. 54

Analogical matching 25

Analogical retrieval 30

analogy ontology 8

AnalogySkolemFn......................... 27

arg-isa .. 20

arity ... 20

ask ... 13

controlling effort 22

ask-it .. 13, 21

assertedTermSentences 54

assumptions-of 16

atomicAnalogyNat 26

Average ... 57

BaseKB .. 10

baseOfMatch 27

bestMapping 27

Blocks World 43

browse-current-sme............................. 14

browse-kb .. 14

candidateInferenceContent. 27
candidateInferenceExtrapola

tionScore 27

candidateInferenceOf............. 27

candidateInferenceSupportSc

ore ... 27

CardinalityFn 57

Case libraries 31

caseLibraryContains 31

CaseLibraryMinusFn 31

CaseLibrarySansFn 31

CaseLibraryUnionFn 31

close-kb ... 13, 17

collections-of....................................... 15

ComplexActionPredicate 42

consistentThat 57

containsPattern 56

contextEnvAllowed 23

correspondsInMapping............. 27

cost evaluation 41

create-fire-default-evaluation-files 57

currentUniversalTime 58

debugging

analogical matching 50

ask ... 51

corrupt KB 50

evaluation subsystem 50

missing knowledge.......................... 51

missing predicates 51

old rules/knowledge persisting 51

overloading constants...................... 19

plans .. 43

too many open variables 37

default-estimate-ao-node-cost 41

default-namestring-context 48

defSuggestion 39

DifferenceFn 57

different ... 54

dynamic update predicates 58
entitySupportedInferencesAl

lowed... 24
entitySupportedInferencesNo

tAllowed 24

equals .. 53

estimate-ao-node-cost 41

evaluate ... 57

evaluate-axioms 57

 61

evaluate-handlers 57

evaluating expressions 57

everySatisfies 59

EverythingPSC 10

exactMatchOnly 23

excludedCorrespondence 25
excludedCross-

PartitionCorrespondences 26

ExpFn .. 57

explain-fact ... 14

ExponentFn ... 57

falseSentence....................................... 57

fetch... 16

fetch-trues ... 16

fire-evaluate 58

Flat files .. 18

forEffectOnly 59

forget-fact 18

forget-mt 18

FormulaArgListFn 57

formulaArgument 54

FunctionToArg 57

genls .. 53

get-namestring..................................... 47

get-namestring-from-source 48

get-solution ... 38

groundOnly..................................... 23

handler procedures 46

honorTimestamps......................... 24

human-readable strings 47

identicalFunctions 25

ignoreTimestamps 24

individualRepresenting 56

inferenceAllowed 23

informant-of .. 16

in-kb .. 16

inKB .. 6

in-microtheory..................................... 19

in-reasoner... 15

instance-of? 16, 20

introduces-local-variable? 47

isa .. 53

ist-Information......................... 10

JoinListsFn .. 57

justificationForStatementIn................. 54

Karla the Hawk 25

kbOnly .. 23

kb-store ... 17

knowledge-level programming 19

knownSentence 56

LengthOfListFn................................... 57

ListFn .. 57

localOnly 23

LogFn .. 57

lookupOnly..................................... 23

MAC/FAC... 30

make-fire-kb 12, 16

MakeFormulaFn 57

make-reasoner See

MapFunctionOverList 57

MappingFn 26

matchBetween 25

MatcherFn 26

MaximumFn .. 57

meld-file->kb 18

MemberFn ... 57

microtheories... 7

MinimalAssumptions 24

namestring-fallback............................. 48

namestrings ... 47

natArgument 54

natFunction ... 55

negation ... 36

negation by failure 57

next-solve-step 38

n-instances-of 20

n-instances-of-transitive 21

noArgumentHasPredicate 55

NoAssumptions 24

noMinimalAscension 24, 28

nonTransitiveInference 23

notForAnalogy 26

NothingPSC..................................... 10

n-statements-of 21

n-statements-of-transitive 21

NthInListFn ... 57

nuke-kb-item 18

numAnswers..................................... 24

numberOfCorrespondences 27

ontology

extending ... 47

 62

open-kb ... 16

operatorFormulas 55

outsourced predicates 6

outsourcedOnly 23

Overloading constants 19

packages .. 19

pause-ao-tree 39

plan ... 42

PlusAll... 57

PlusFn ... 57

PositionInListFn 57

procedural attachment 44

Prolog

comparison with 36

q 36

QP theory .. 41

qrgsetup.lsp ... 10

quantifiers ... 47

query

details .. 35

QuotientFn .. 57

rationaleForOccurrenceIn 55

Rbrowse .. 11

reasoning sourc 44

register-ask-source 15, 45

register-tell-source 15

reinstall-fire-default-evaluation-info ... 58

reminding 30

requiredCorrespondence 25
requireWithinPartitionCorre

spondences................................. 26

Resource limits

backchaining depth bound 35

RestOfListFn 57

result-isa .. 20

retrieve-all ... 17

retrieve-it ... 17

retrieve-references 17
reverseCandidateInferenceOf

... 27

reverseCIsAllowed 24

ReverseListFn 57

run-solver-n-steps 39

run-to-solution..................................... 39

SAGE .. 32

sageAddExemplar......................... 33

sageAddExemplarToContext ... 33

sageEntryPattern 34

sageExemplars 33

sageGeneralizations 33

sageStrategy 34

sageThreshold 34

sageUseProbability 34

SetOrCollectionIntersection 57

SetOrCollectionUnion......................... 57

setup-solve-aotree 38

shakedown-fire 12

SME .. 8

solar system/Rutherford atom analogy 25

solve... 37, 38

debugging .. 42

solveAll ... 40

solveSequentially 41

someArgumentHasPredicate 55

someSatisfies....................................... 59

SortFn .. 57

spindle microtheory 19

Structural queries 20
structuralEvaluationScoreOf

... 27

subexpressionMatching....................... 55

SublistFromToFn 57

subset-of? .. 20

suggestionGoalForm 40

suggestionResultStep 40

suggestionSubgoals 40

targetOfMatch 27

termFormulas 55

termOfUnit .. 54

TheClosedRetrievalSetOf 57

TheList .. 57

TheSet ... 57

TimesFn .. 57

trueSentence .. 56

ubiquitousForAnalogy............. 26

unifies .. 56

uninferredSentence 56

UniversalVocabularyMt 10

unknownSentence 56

unpause-ao-tree 39

useMinimalAscension 24, 28

 63

useTransitiveInference 23

why? .. 16

withAbduction 24

withAbductivePolicy 24

withAbductivePredicates 24

withBackchainingDepth 24

withCounterfactual 24

with-kb .. 16

withMinimalAscensionMultipl

ier ... 28

with-reasoner...................................... See

withTimeout 24

wmAntecedentOf 58

wmOnly .. 23

Zgraph ... 11

