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Abstract 

It is notoriously difficult to simultaneously deal 
with both probabilistic and structural 
representations in A.I., particularly because 
probability necessitates a uniform representation 
of the training examples.  In this paper, we show 
how to build fully-specified probabilistic models 
from arbitrary propositional case descriptions 
about terrorist activities.  Our method facilitates 
both reasoning and learning.  Our solution is to 
use structural analogy to build probabilistic 
generalizations about those cases.  We use these 
generalizations as a framework for mapping the 
structural representations, which are well-suited 
for reasoning, into features, which are well-suited 
for learning, and back again.  Finally, we 
demonstrate how probabilistic generalizations are 
an excellent bridge for joining reasoning and 
learning by using them to perform a traditional 
machine learning technique, Bayesian network 
modeling, over arbitrarily high order structural 
data about terrorist actions, and further, we 
discuss how this might be used to facilitate 
automatic knowledge acquisition. 

Introduction 

Both propositional representations of data and feature-
value representations are each useful for different tasks.  
"Flat" feature vectors are useful in representing 
uncertainty, and therefore are very appropriate for doing 
learning tasks.  However, structured representations are 
more useful when dealing with the range of information 
that people learn and manipulate.  Plans, explanations, and 
arguments are among the kinds of important information 
that often require explicit representation of relationships.  
Indeed, there is evidence suggesting that the use of 
language and analogy to accumulate relational knowledge 
is why humans are so smart compared to other animals 
(Gentner, 2003).  Understanding how to learn the same 
breadth of knowledge, with the same flexibility and 

robustness as people do, requires understanding how 
relational learning works. 
 
While both representations are useful, what is lacking is a 
simple way of converting from one to the other.  Working 
with both structure and probability has proven to be quite 
difficult, as it is not clear how to combine the two.  
Probability requires a single, uniform representation of 
each case.  That is, there must be a guarantee that the 
values for which one is aggregating probabilities 
correspond to the exact same feature or concept in every 
record or case.  This guarantee is made implicitly when 
doing learning from flat, table-like data.  However, when 
the data is represented as arbitrary structured assertions, 
this guarantee is much more difficult to make. 
 
Analogy is an excellent tool for bridging this gap.  By 
making an analogy, one is postulating that many of the 
assertions in one case correspond to the same or similar 
concept as many of the assertions in another case.  As we 
will show, it is this notion that allows us to generate 
probabilistic information even when dealing with large 
amounts of high-order, highly-interconnected structural 
data. 
 
In this paper, we demonstrate how it is possible, using 
analogy, to build fully specified probabilistic models from 
structural case descriptions about terrorist attacks.  The 
process consists of two stages: generalization and 
flattening.  We describe each of these stages in the next 
two sections.  In the fourth section, we present an example 
of how the procedure was used to build a real probabilistic 
model.  Finally, in the last two sections, we discuss related 
work and possible future directions. 

Probabilistic Generalizations 

Formalizing probability over expressions 

It is often unclear exactly what probability should convey 
when dealing with relations of arbitrarily high order.  
Therefore, we first present a formal definition of how we 



use probability in these scenarios.  For example, should the 
notion of probability for an expression like: 

(EVENTOCCURSAT TERRORISTATTACK-1997-SRILANKA COLOMBO) 

be different from the notion of probability for an 
expression like: 

(THEREEXISTATLEAST 2 ?X  

 (AND ((CITIZENSFN UNITEDSTATESOFAMERICA) ?X) 

  (ORGANISMKILLED TERRORISTATTACK-1997-SRILANKA ?X)))? 
 
In the first expression, it is not useful to talk about the 
probability of whether such an expression occurs in the 
case at all.   In fact, if the case knowledge is complete, 
such an expression should occur in every case, since every 
terrorist attack should be tied to some location.  Instead, it 
is much more useful to talk about the probability 
distribution of the various locations.  We therefore create a 
random variable, ‘Location’, for this expression.  The 
variable can take on different values over different cases.   
 
Note that it is necessary to make two critical simplifying 
assumptions in order to do this: first, that there is a finite 
number of possible locations; and second, that each 
location is mutually exclusive.   Neither assumption is 
strictly true.  Locations can be arbitrarily well-specified 
(e.g., a city, a country, or a three foot radius), and an event 
can occur in multiple locations at once (e.g., the September 
11th attacks in the United States).  Since we only analyze 
the distribution of values that have been actually observed 
by the system during training, we do not worry about 
violating the first assumption as long as one value is not a 
specification of another.  This introduces an experiential 
bias, but it has been shown that such a bias is often useful 
(Kahneman & Tversky, 1979).  We discuss how to handle 
other violations of these non-specificity and mutual 
exclusivity assumptions later in the paper. 
 
In the second expression however, it is most useful to talk 
simply about the probability of whether the fact is present 
in the case knowledge or not.  Although it may be tempting 
to Curry this expression, so that we instead examine 
something like the probability distribution of the 
citizenship of the victims, note that in this context, 
citizenship is not mutually exclusive: there could well be 
both American and Sri Lankan victims of the attack.  
Therefore, for each possible citizenship, we would need to 
create a separate random variable to represent its existence.  
As long as this expression is matched only to other 
expressions describing American casualties during the 
analogical matching process (as our process does), this is 
identical to creating a random variable for the existence of 
the expression itself in a given case. 
 
We thus have two separate notions of probability, each 
useful for different relations.  We refer to the first as 
characteristic probability and the second as existential 
probability.  During the generalization stage, we generate 
only existential probabilities.  Then during the flattening 

stage, we use knowledge of the semantics of each predicate 
in a given expression to determine whether to partition 
these into characteristic probabilities instead.  

Constructing Generalizations  

We build probabilistic generalizations over the input case 
descriptions as a means of providing a uniform 
representation (aka relational schema) for all of the cases.  
This is done by using analogy to determine which concepts 
in one case best correspond to the concepts in another case.  
We can then use the probabilistic generalization as a 
framework for flattening the case descriptions down into 
features.  This provides a natural way to easily transform 
descriptions from propositions into features and back 
again. 
 
Our approach to analogy is based on Gentner's (1983) 
structure-mapping theory of analogy and similarity.  In 
structure-mapping, analogy and similarity are defined in 
terms of structural alignment processes operating over 
structured representations.  The output of this comparison 
process is one or more mappings, constituting a construal 
of how the two entities, situations, or concepts (called base 
and target) can be aligned.  A mapping consists primarily 
of a set of correspondences and a structural evaluation 
score.  A correspondence maps an item (entity or 
expression) from the base to an item in the target.  The 
structural evaluation score indicates overall match quality.   
 
We use the Structure-Mapping Engine (SME) to do 
analogical mapping and compute structural evaluation 
scores (Falkenhainer, Forbus, & Gentner, 1986).  SME 
uses a greedy algorithm to compute approximately optimal 
mappings in polynomial time (Forbus & Oblinger, 1990).  
The base and target descriptions can be pre-stored, or they 
can be dynamically computed based on queries to a large 
knowledge base (Mostek, Forbus, & Meverden, 2000).   
 
The generalization algorithm itself is a probabilistic 
implementation of SEQL (Kuehne, Forbus, et. al).  SEQL 
is designed to produce generalizations incrementally from 
a stream of examples.  It uses SME to compare each new 
example to a pool of prior generalizations and exemplars.  
If the new example is sufficiently close to one of the 
generalizations, it is assimilated into that generalization.  
Otherwise, if it is sufficiently close to one of the prior 
exemplars, it is combined with it to form a new 
generalization.  By "sufficiently close", we mean that the 
structural evaluation score (after normalization, to account 
for differences in the size of descriptions) exceeds a pre-set 
threshold.  In our probabilistic implementation, this 
process of constructing or extending generalizations is 
done by taking the union of the expressions in the two 
descriptions, and adjusting the probability of each 
according to whether or not it was in the overlap as found 
by SME.  Matching entities that are identical are kept in 
the generalization, and non-identical entities are replaced 
by new entities that are still constrained by all of the 



statements about them in the union.  Should no sufficiently 
close match be found, the example is simply added to the 
pool of exemplars. 
 
More formally, given an initially empty set of 
generalizations G and set of exemplars X, a threshold σ, 
and a function Score(x,y) which calculates the similarity 
(i.e. the normalized structural evaluation score) between 
two descriptions, SEQL operates as follows: 
 

1. Receive an exemplar x. 

2. Look for a generalization yЄG s.t. Score(x,y) > σ.  If 

one is found, proceed to step 5. 

3. Look for an exemplar  yЄX s.t. Score(x,y) > σ.  If one 

is found, proceed to step 5. 

4. Add x to X.  Repeat from step 1. 

5. Remove y and add Generalization(x,y) to G.  Repeat 

from step 1. 

 
There are two parameters for controlling the behavior of 
this algorithm.  The first is σ, a threshold which the 
similarity between the base and target must surpass in 
order to be accepted and incorporated into a generalization.  
It is tempting, given our goals of creating a feature 
description of the whole domain, to set σ to be as low as 
possible, so that as much of the domain as possible will be 
incorporated into the generalization.  However, in practice, 
we have found that a low σ actually makes the matches so 
poor that the features constructed from them are 
meaningless.  A value of 0.9 for σ (out of a maximum of 1, 
since the similarity score is normalized) performs much 
better in this regard.  
 
Secondly, when our generalizations grew to a very large 
size (including many infrequent statements), we have 
found it useful to invoke a probability cutoff ρ.  This 
means that any statements with probability less than ρ are 
ignored during the primary match process for the sake of 
speed, efficiency, and to reduce the chance of over-fitting.  
However, they are kept around for a certain number of 
rounds, inversely proportional to the cutoff itself, in case 
they should ever rise above the cutoff again.  When ρ is 
low, a great many expressions are included in the 
generalization which only occur a very few number of 
times throughout the case descriptions and there is a high 
risk of over-fitting the data; however, when is ρ high, we 
risk losing the significant low-frequency information that 
is crucial for feature discrimination.  We have found a 
value of 0.2 to behave reasonably. 

Features 

The second stage of the feature-generation process is to use 
the probabilistic generalization as a frame for the actual 
flattening of the structural case representations into 
features and values.  Features may need to represent 
existential or characteristic probability, and continuous or 
discrete values.  Therefore, we distinguish between three 

different types of features: existential, characteristic, and 
continuous. 

Feature Types 

An existential feature is one which, like the second 
expression in section 2.1, or like the expression (BOMBING 
ATTACK1), is best described by an existential probability.  
An existential feature is TRUE whenever a matching 
expression occurs in the case.  When there is no matching 
expression though, then there is a question of whether its 
value should be MISSING rather than FALSE.  We label a 
feature as MISSING when its generalized expression contains 
any entity which is described by other statements in the 
case, but which has no corresponding entity in the analogy.   
For example, suppose a generalization makes many 
references to ATTACK1.  If the expression (BOMBING ATTACK1) 
is missing from a case, then that feature will be false only 
if something corresponding to ATTACK1 is actually present 
somewhere else in the case description.  This has the effect 
of reducing non-causal dependencies within the data, since 
otherwise the values of all features containing the same 
entity would be identical whenever that entity was not 
present. 
 

In contrast, characteristic features encompass those 
expressions which it is more useful to describe by some 
characteristic probability over the distribution of one of 
their arguments.  An example is the expression 
(EVENTOCCURSAT TERRORISTATTACK-1997-SRILANKA COLOMBO) 

from section 2.1.  In our implementation, we treat an 
expression as a property if it contains one entity which is 
either: always a constant (e.g. 2); always a function (i.e. 
non-atomic); or, the only other entity in the expression is 
the case-entity (as in the example above).  If there are two 
such arguments, we could create two such features; 
however, we have not yet found this to be necessary.  This 
decision criteria is not perfect, but we have found it to 
work remarkably well in practice.  The value of a 
characteristic feature can be either MISSING (when a 
matching expression is absent), or any of the observed 
values of the corresponding argument. 

 
Finally, as its name implies, a continuous feature is simply 
a characteristic feature for which the possible values of the 
argument in the expression are continuous.  An example is 
the expression (CASUALTYCOUNT TERRORISTATTACK-1997-

SRILANKA 23).  There are several ways to handle such a 
situation.  Currently, we simply discretize the range (using 
k-means with 3 buckets).  Thus, the possible values for a 
continuous property are MISSING, LOW, MEDIUM, or HIGH.  
Other possible solutions we could implement later if 
necessary are to use a probability density instead of a 
distribution, or to check for background knowledge about 
the significant intervals of the range, such as might be 
expressed in QP-theory (Forbus, 1984). 



Flattening 

After the probabilistic generalization has been built, we 
look at the possible values of each expression within to 
determine which of the four types of features it should 
correspond to.  By storing the feature description and the 
generalized expression together, we construct an invertible 
mapping for each expression.  When the mapping is 
applied to an expression, it will generate a feature-and-
value representation, and vice-versa when its inverse is 
applied to a feature and value. 
 
Finally, the mapping can be used to transform the 
propositions in the original case descriptions into features.  
We iterate through each expression in each of the original 
descriptions, compare it to the probabilistic generalization 
to determine which generalized expression it corresponds 
to, and then apply the corresponding feature mapping.  In 
this way, we can build up a joint probability table of how 
the values of every feature co-vary across each case.  We 
use an ad-tree (Anderson & Moore, 1998) to cache all of 
these joint probabilities. 
 
There are two possible aforementioned problems with this 
approach.  The first lies in violation of the non-specificity 
assumption.  We have shown how propositions of 
arbitrarily high order can be transformed into feature 
representations.  However, we would like to be able to say 
the same about entities of arbitrarily high specificity.  Note 
that when the specificity is described in other facts outside 
of the expression itself, there is no problem.  However, 
when the specificity is internal to the entity’s 
representation, such as in (CITYINCOUNTRYFN SRILANKA) or 
(DAYFN 11 (MONTHFN SEPTEMBER (YEARFN 2001))), then 
there is a matching problem: the extra structure will 
prevent the parent expression from matching the 
expressions in other cases that it should.  This results in 
duplicated expressions in the generalization.  We solve this 
by substituting a unique, generic zero-order symbol for the  

 
non-atomic entity.  However, this introduces a new 
problem, because now information that was carried in the 
original non-atomic entity (such as the month and year) is 
lost.  We reacquire it by asserting it outside of the 
expression, introducing a new predicate TERMOFUNIT for 
that purpose.  We recursively apply more substitution 
where necessary.  For example, if the symbol :GENFN23 
were substituted for the date function described above, 
then we would also assert in separate facts: 
(TERMOFUNIT :GENFN23 (DAYFN 11 :GENFN24)) 

(TERMOFUNIT :GENFN24 (MONTHFN SEPTEMBER :GENFN25)) 

(TERMOFUNIT :GENFN25 (YEARFN 2001)) 

 
Secondly, there is the mutual exclusivity assumption.  This 
one is less clear how to solve when it is violated.  One 
possible solution is to create a second generalization, over 
the set of multiple instances.  In the 9/11 example, we 
would create one generalization of all three attacks, and 
use the generalization as the input case.  This has not yet 
been implemented. 

Learning Example:  A Bayesian Network 

It is exciting to have a means for building a completely 
specified joint probability table over any set of arbitrarily 
interconnected, high-order structural data.  From the joint 
probabilities, we can construct a large variety of 
probabilistic models.  Here we show how the method 
enabled us to build a Bayesian network model from the 
propositional descriptions of terrorist attacks. 
 
We used a basic, naïve Bayes approach to modeling the 
data.  Although this requires making strong assumptions 
about independence, it did quite well in the domain we 
tested it under.  Additionally, we hope that with the 
immense background knowledge that comes from large 
propositional KB’s, and by having propositional 
representations of the data, we can in the future do a better 
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Figure 1.  A Bayes net generated automatically from structural descriptions of terrorist attacks. 



job of recognizing where and how such independence 
assumptions are violated.  If so, we could account for them 
and focus future learning efforts on those assertions which 
are not provably related.  We computed the structure of the 
Bayes net using simulated annealing with random restarts.  
The scoring heuristic used in the hill-climber was a Bayes 
Information Criterion estimate (Friedman and Yakhini, 
1996).  It was trained over a corpus of 2,235 different 
descriptions of terrorist attacks, provided by Cycorp, and 
entered manually by domain experts.  The descriptions 
ranged in size from 6 to 158 propositions, with the average 
being 20 propositions. 
 
The diagram above shows a Bayes net that we generated 
using this procedure.  These are preliminary results for 
which we have not yet consulted an expert opinion.  
However, it is an encouraging sign of validation to note 
that the features which describe location are all closely 
connected, as are the features which describe the terrorist 
group.   

Related Work 

Most past methods for doing learning from symbolic 
evidence amount to approaches in the style of evidential 
reasoning (Pearl, 1987).  They require a causal model to 
start with, and then infer probabilities based on 
observations and simulation from the model.  In contrast, 
we try to both infer the probabilities and induce the model 
from the evidence alone.  We also are set apart from newer 
approaches which do try to do this in that we set no 
preconditions about either the uniformity of input 
representations, or the order of the expressions in those 
representations. 
 
The approach most similar to our own algorithm is that of 
Getoor et al. (2001), of probabilistic relational models or 
PRMs.  A PRM is a Bayesian dependence model of the 
uncertainty across properties of objects of certain classes 
and the relations between those objects.  It extends 
traditional Bayesian networks to incorporate a much richer 
relational structure.  It can also handle information 
aggregated across several members of a class within the 
same case (for example, a student’s highest grade or the 
lowest age among the victims of an attack).   
 
However, the PRM approach is limited in two ways: first, 
it can only model first-order relations; and second, it has 
trouble when there is no prior knowledge of a relational 
schema or uniform representation of each case.  Although 
several papers have been published to try to overcome this 
second limitation (the modeling of existence variables 
(Getoor, et al., 2002) is particularly similar to our 
approach), none seems to present a uniform syntax for 
overcoming all forms of structural uncertainty, and none 
includes a method for modeling higher order relations.  By 
contrast, our approach uses independently validated 
cognitive models of analogical matching to build such a 

unifying relational schema, from arbitrary predicate 
calculus descriptions of arbitrarily high order.  A hybrid 
approach might be promising, using a PRM built upon the 
probabilistic generalizations we construct to provide the 
necessary schema. 
 
Several other new approaches have recently arisen in the 
field of relational learning for doing model induction.  For 
example, Blockeel and Uwents (2004) present a method 
for building a neural network from relational data, and 
Dayanik and Nevill-Manning (2004) discuss clustering 
relational data through a graph-partitioning approach.  
Recent work in link analysis also provides a means for 
tying probability in with relational data to do learning.  
Cohn and Hofmann (2001) actually create joint probability 
tables of both properties and links (in this case, terms and 
citations in document analysis) through a probabilistic 
decomposition process related to LSA, and then use it to 
perform classification.  Variants on ILPs such as Bayesian 
logic programs (BLPs) (Kersting, de Raedt, & Kramer, 
2000) have also been suggested for this sort of application.  
However, to our knowledge, there is not yet any approach 
which can fully satisfy the two conditions we have stated: 
learning relations of arbitrarily high order, and learning 
without any knowledge of prior relational schema. 
 
Other related work includes Keppens and Shen (2004), 
who demonstrate a way to build a Bayesian network from 
process knowledge such as that expressed by qualitative 
process theory (Forbus, 1984).  Tenenbaum & Griffiths 
(2001) provide a very well conceived and conveyed 
description of alternative models for generalization, all 
derived from Bayesian hypothesis formulation. 
 
Finally, a number of alternative cognitive simulations of 
analogical mapping and retrieval have been developed.  
Some are domain-specific (Mitchell, 1993), and thus 
inapplicable to this problem.  Others are based on 
connectionist architectures (Hummel & Holyoak, 1997; 
Eliasmith & Thagard, 2001), and are known to not be able 
to scale up to the size of examples used in these 
experiments.  While CBR systems have been used to tackle 
similar structured representation problems (Leake, 1996), 
they also tend to be built as special-purpose systems for 
each domain and task.  By contrast, the simulations used 
here are applicable to a broad variety of representations 
and tasks. 

Future Work 

Although we can now build probabilistic models from 
arbitrary propositional data, these are only preliminary 
results.  A great deal remains to be done to improve the 
process.  Properly dealing with violations of the mutual 
exclusivity assumption is probably of foremost importance.  
It would also be useful to modify the generalization 
process, so that it drops out expressions with low 
information gain rather than those with low probability. 



 
Outside of improving the process itself, there are two 
directions we intend to explore in the future.  The first of 
these concerns exploring the application of this procedure 
to other problems and other models.  For example, it might 
be interesting in some domains to build a decision tree 
rather than a Bayes net.  Also, exploring the application of 
the Bayes net to knowledge acquisition should prove 
interesting.  For example, one can imagine a scenario in 
which each edge in the Bayes net is a conjectured 
relationship that is tested against background knowledge in 
the KB.  Those conjectures which are consistent with the 
KB provide validation.  Those that are inconsistent indicate 
either an error in the inputs or a poor model.  Those which 
are neither represent new conjectures which might be 
beneficially explored in order to learn more about the 
domain. 
 
Also, it would be highly interesting to further explore how 
the tools of probability can help in symbolic reasoning, and 
vice-versa.  For example, there are many roles that 
statistical measures such as information gain and 
significance might play in symbolic inference.  In the other 
direction, propositional background knowledge might help 
us to determine when assumptions about independence are 
being violated, so that learning efforts can be adjusted 
accordingly. 
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