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Abstract: The Companion cognitive architecture is aimed at reaching human-level AI by creating software social 
organisms, systems that interact with people using natural modalities, working and learning over extended periods of 
time as collaborators rather than tools.  Our two central hypotheses about how to achieve this are (1) analogical 
reasoning and learning are central to cognition, and (2) qualitative representations provide a level of description that 
facilitates reasoning, learning, and communication.  This paper discusses the evidence we have gathered supporting 
these hypotheses from our experiments with the Companion architecture.  Although we are far from our ultimate 
goals, these experiments provide strong evidence for the utility of analogy and QR across a range of tasks.  We also 
discuss three lessons learned and highlight three important open problems for cognitive systems research more 
broadly. 

Introduction 
Every cognitive architecture starts with a set of theoretical commitments.  We have argued (Forbus, 2016) that human-
level artificial intelligences will be built by creating sufficiently smart software social organisms.  By that we mean systems 
capable of interacting with people using natural modalities, operating and learning over extended periods of time, as 
apprentices and collaborators, instead of as tools.  Just as we cannot directly access the internal representations of the 
people and animals we work with, cognitive systems should be able to work with us on our terms.  But how does one 
create such systems?  We have two core hypotheses, inspired by research in cognitive science: 

1. Analogical reasoning and learning are central to human cognition.  There is evidence that processes described by 
Gentner’s (1983) structure-mapping theory of analogy and similarity operate throughout human cognition, 
including visual perception (Sagi et al. 2012), reasoning and decision-making (Markman & Medin, 2002), and 
conceptual change (Gentner et al. 1997).  

2. Qualitative representations (QR) are a key building block of human conceptual structure. Continuous phenomena 
and systems permeate our environment and our ways of thinking about it.  This includes the physical world, 
where qualitative representations have a long track record of providing human-level reasoning and 
performance (Forbus, 2014), but also in social reasoning (e.g. degrees of blame (Tomai & Forbus, 2007)).  
Qualitative representations carve up continuous phenomena into symbolic descriptions that serve as a bridge 
between perception and cognition, facilitate everyday reasoning and communication, and help ground expert 
reasoning. 

The focus of the Companion cognitive architecture is on higher-order cognition: Conceptual reasoning and learning, 
and learning via interactions with others, by contrast with architectures that have focused on skill learning (e.g. ACT-
R (Anderson, 2009) and SOAR (Laird, 2012)).   In Newell’s (1990) time-scale decomposition of cognitive phenomena, 
conceptual reasoning and learning occur in what are called the Rational and Social bands1, unlike many architectures 
which start with Newell’s Cognitive band (Laird et al., this issue). Thus we approximate subsystems whose operations 
                                                             
1 In models of some processes, e.g. analogical matching, we capture phenomena at the Cognitive band as well.   
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occur at faster time-scales, using methods whose outputs have reasonable cognitive fidelity, although we are not 
making theoretical claims about them.  For example, in Companions constraint checking and simple inferences are 
carried out via a logic-based truth-maintenance system (Forbus & de Kleer, 1994).  Similarly, the Companions 
architecture is implemented as a multi-agent system, capable of running on a single laptop or distributed across many 
cluster nodes, depending on the task.  We suspect that many data-parallel operations and a number of coarse-grained 
parallel operations are important for creating robust software organisms, but this current organization is motivated 
more by engineering concerns.  By contrast, we spend considerable effort on sketch understanding and natural 
language understanding, since interaction via natural modalities is a core concern.   
Cognitive systems are knowledge-rich (e.g. McShane, this issue).  The Companion architecture uses the Cyc2 ontology 
and knowledge base (KB) contents, plus our own extensions including additional linguistic resources, representations 
for visual/spatial reasoning, and the Hierarchical Task Network (HTN) plans that drive Companion operations. This 
is in sharp distinction with current practice in machine learning, where the goal is that systems for every task must be 
learned from scratch.  The ML approach can be fine for specific applications, but it means that many independently-
learnable factors in a complex task must be learned at the same time.  This intermingling leads to requiring far more 
training data than people need, and reduces transfer of learned knowledge from one task to another.  The cognitive 
systems approach strives for cumulative learning, where an architecture that is general-purpose can learn to do one 
task and successfully applies that knowledge to learn other tasks.   
The rest of this paper summarizes the evidence provided by Companion experiments for our core hypotheses.  We 
start by summarizing the ideas underlying our hypotheses, briefly introducing structure-mapping and our models of 
its processes for analogy followed by the key aspects of qualitative reasoning.  Then we describe the evidence that 
analogy and qualitative representations play a variety of roles in cognition.  We close with some lessons learned and 
open problems.  

Analogical Reasoning and Learning 
Gentner’s (1983) structure-mapping theory proposed that analogy involves the construction of mappings between two 
structured, relational representations.  These mappings contain correspondences (i.e. what goes with what), candidate 
inferences, (i.e. what can be projected from one description to the other, based on the correspondences), and a score 
indicating the overall quality of the match.  Typically, the base is the description about which more is known, and the 
target is the description about which one is trying to reason about, and hence inferences are made from base to target 
by default.  Inferences in the other direction, reverse candidate inferences, can also be drawn, which is important for 
difference detection, discussed more below. 
There is ample evidence for the psychological plausibility of structure-mapping, out of Gentner’s lab and others 
(Forbus, 2001).  This evidence includes some implications that may surprise AI researchers.  Here are three such 
findings:  

1. The same computations that people use for analogy are also used for everyday similarity (Markman & 
Gentner, 1993).  Most AI researchers model similarity as the dot product of feature vectors or other distributed 
representations.  But those approaches are not compatible with psychological evidence that indicate, even for 
visual stimuli, relational representations are important (Goldstone et al. 1991). 

2. Differences are closely tied to similarity (Markman & Gentner, 1996).  There is an interesting dissociation 
between difference detection and naming a difference: It is faster to detect that things are different when they 
are very different, but faster to name a difference when they are very similar (Sagi et al. 2012).  This falls 
directly out of our computational model of analogical matching below. 

3. Analogical comparison, especially within-domain comparison, can happen unconsciously.  For example, 
people reading a story can be pushed between two different interpretations of it, based on a different story 
that they read previously (Day & Gentner, 2007).  Moreover, they report being sure that the second story was 
complete in itself, and nothing from the previous story influenced them.  This implies, for example, that in 
any of the System 1/System 2 models (e.g. Kahneman 2011), analogy and similarity are actually used in both 
systems. 

Our computational models of analogical processes have been designed both as cognitive models and as performance 
systems.  That is, each of them has been used to explain (and sometimes predict) psychological findings, while also 
being used in AI systems whose sole goal was achieving some new functionality.  These models are 

 SME: The Structure-Mapping Engine (Forbus et al. 2016) models analogical mapping.  It computes up to three 
mappings, using a greedy algorithm to operate in polynomial time.  It can also operate incrementally, 
extending mappings as new facts are added to the base or target, which can be useful in problem-solving and 
language understanding. 

                                                             
2 www.cyc.com 
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 MAC/FAC (Many Are Called/Few Are Chosen): MAC/FAC (Forbus et al. 1995) models analogical retrieval, 
using two map/reduce stages.  The MAC stage uses a non-structured vector representation, automatically 
derived from structured representations, such that their dot products provide an estimate of how SME will 
score the original structural representations.  The best, and up to two more if sufficiently close, are passed to 
the FAC stage, which uses SME in parallel to match the original structured representations.  The MAC stage 
provides scalability, while the FAC stage provides the precision and inferences needed to support reasoning. 

 SAGE (Sequential Analogical Generalization Engine): SAGE (McLure et al. 2015) models analogical 
generalization.  For each concept, it maintains a generalization pool that is incrementally updated as new 
examples arrive.  The pool contains generalizations, which are structured descriptions with a probability 
attached to each statement, and unassimilated examples.  For each new example, the most similar item from 
the pool is retrieved via MAC/FAC.  If sufficiently similar, they are assimilated.  The assimilation process 
involves updating the probabilities for each statement, based on the contents of the match and the differences, 
and replacing any non-identical entities with skolems. Thus commonalities become highlighted and 
accidental information becomes deprecated.  Note that logical variables are not introduced, since 
generalizations can still be applied to new situations via analogy. 

In computational terms, we think of these as an analogy stack: An organization of analogical processing for cognitive 
systems that we believe has wide applicability.  In Companions, analogical operations are more primitive than 
backchaining.  Rule-based reasoning and logical deduction are used for encoding, case construction, constraint 
checking, and simple inferences.  The architecture also includes an AND/OR graph problem solver and an HTN 
planner, but all of these freely use the analogical processes above in their operations. 

Qualitative Representations 
People have robust mental models of the world that help them operate in the world, e.g. we cook, navigate, and bond 
with others.  A common concern in these models is how to deal with continuous properties and phenomena.  In 
reasoning about the physical world, we must deal with quantities like heat, temperature, and mass, and arrange for 
processes like flows and phase changes to cook.  Spatial factors are key in many physical situations, such as finding 
safe ground during a flood.  In social reasoning, we think about quantities like degree of blame, how strong a friendship 
is, and the relative morality of choices we must make.  Even in metacognition, we estimate how difficult problems are, 
and decide whether to carry on or give up on a tough problem.  Qualitative representations provide more abstract 
descriptions of continuous parameters and phenomena, which are more in line with data actually available to 
organisms.  We may not be able to estimate accurately how fast something is moving, but we can easily distinguish 
between rising and falling, for example.  People routinely come to reasonable conclusions with very little information, 
and often do so rapidly.  Combining qualitative representations with analogy provides an explanation for this (Forbus 
& Gentner, 1997).   
Broadly, qualitative representations can be decomposed into those concerned with quantities and those concerned with 
space.  Quantities are an important special case because many continuous parameters are one dimensional, and this 
imposes additional constraints on reasoning.  We use qualitative process theory (QP theory, Forbus, 1984) as our 
account of quantities and continuous processes.  Spatial qualitative representations are typically grounded in metric 
representations (i.e. the Metric Diagram/Place Vocabulary model (Forbus et al. 1991)), which provide the functional 
equivalent of visual processing to support spatial reasoning.  Once places are constructed, often purely qualitative 
reasoning can be done on them, via spatial calculi (Cohn & Renz 2008).  Our current model of visual and spatial 
reasoning, CogSketch (Forbus et al. 2011), automatically produces cognitively plausible visual and spatial 
representations from vector inputs (e.g. digital ink, copy/paste from PowerPoint), and is integrated into the Companion 
architecture. 

Some Roles of Analogy and Qualitative Representations in Cognition 
We provide evidence for our hypotheses by examining a range of tasks, showing how analogy and qualitative 
representations have been used to enable Companions to perform them3.     

 Reasoning 
Textbook problem solving involves solving the kinds of problems that are posed to students learning science and 
engineering.  In experiments conducted with the aid of the Educational Testing Service, we showed that a Companion, 
                                                             
3 Here we only stick to models that use the entire Companion cognitive architecture.  Other models indicate that these 
same ideas are relevant in modeling visual analogies, including geometric analogies (Lovett et al. 2009b), oddity tasks 
(Lovett & Forbus, 2011), and Ravens’ Progressive Matrices (Lovett & Forbus, 2017).   
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using representations generated by ETS and Cycorp, could learn to transfer knowledge via analogy to new problems 
across six different within-domain conditions (Klenk & Forbus, 2009).  It operated by using MAC/FAC to retrieve 
worked solutions, which were at the level of detail found in textbooks, rather than the internals of the reasoning system, 
which neither ETS nor Cycorp had access to.  Equations to solve new problems were projected as candidate inferences 
onto the new problem, with their relevance ascertained by overlapping event structure between the new and old 
problem.  This included solving larger, more complex problems by combining analogies involving two solutions from 
simpler problems.  Qualitative representations played three roles in this reasoning: First, some problems themselves 
are qualitative in their nature, such as asking whether something will move at all in a given situation, and if so, will its 
velocity and acceleration be constant or increasing.  The second role was expressing the conditions under which an 
equation is applicable.  The third role was translating real-world conditions into parameter values (e.g. at the top of its 
trajectory, the velocity of a rising object is zero).   
The role of qualitative representations for reasoning found in earlier stages of science education is even larger. Before 
high school, children are not asked to formulate equations, but to reason qualitatively, draw conclusions from graphs 
and tables, and tie knowledge learned in class to their everyday experience. An analysis of fourth-grade science tests 
suggests that qualitative representations and reasoning are sufficient for at least 29% of their questions (Crouse & 
Forbus, 2016), and even more when qualitative spatial and visual representations are taken into account.   

Decision-Making 
An example of decision-making is MoralDM (Deghani et al. 2008), which models the influence of utilitarian concerns 
and sacred values on human-decision-making.  An example of a sacred value is not taking an action that will directly 
result in someone’s death, even if it would save more lives (see Scheutz, this issue, for examples).  MoralDM modeled 
the impact of sacred values via a qualitative order of magnitude representation, so that when a sacred value was 
involved, the utilitarian differences seemed negligible compared to violating that value.  While it had some rules for 
detecting that a situation should invoke a sacred value, it also used analogy to apply such judgements from similar 
situations.  Experiments indicate that increasing the size of case library improves its decision, as measured against 
human judgments in independent experiments (Deghani et al. 2008), and using analogical generalization over cases 
improved performance further (Blass & Forbus, 2015).   

Commonsense Reasoning 
Analogical reasoning may be at the heart of commonsense reasoning: Similar prior experiences can be used to make 
predictions but also provide explanations for observed behavior (Forbus, 2015).  Moreover, even partial explanations 
relating aspects of a situation can be projected via candidate inferences, without a complete and correct logically 
quantified domain theory. For example, questions from a test of plausible reasoning can be answered by chaining 
multiple small analogies, similar to how rules are chained in deductive reasoning (Blass & Forbus, 2016). 

Understanding Language 
Our research indicates that analogy can play at least four roles in natural language understanding.  First, analogies are 
often explicitly stated in language, particularly in instructional materials.  These need to be detected so that subsequent 
processing will gather up the base and target and the appropriate conclusions can be drawn.  Analogical dialogue acts 
(Barbella & Forbus, 2011) extend communication act theories with additional operations inspired by structure-
mapping, enabling a Companion to learn from such analogies expressed in natural language, as measured by improved 
query-answering performance.  Second, for integrating knowledge learned by reading, it can be useful to carve up 
material in a complex text into cases.  These cases can be used for answering comparison questions directly (Barbella 
& Forbus, 2015), and for subsequent processing (e.g. rumination (Forbus et al. 2007)).  Third, analogy can also be used 
to learn evidence for semantic disambiguation, by accumulating cases about how particular word/word sense pairings 
were used in the linguistic context (including lexical, syntactic, and semantic information), and honed by SAGE to 
suggest how to disambiguate future texts (Barbella & Forbus, 2013).  Finally, analogy can be used to learn new linguistic 
constructions (McFate & Forbus, 2016a), e.g. understanding sentences like “Sue crutched Joe the apple so he wouldn’t 
starve.”   
Our evidence to date suggests that QP theory provides a formalism for natural language semantics concerning 
continuous phenomena.  Qualitative representations capture the level of detail found in linguistic descriptions, and 
mappings can be established from FrameNet representations (McFate & Forbus, 2016b) to qualitative process theory.  
Moreover, qualitative representations can be learned by reading, with the knowledge produced improving strategy 
game performance (McFate et al. 2014).   

Domain Learning 
Learning from instruction often involves multiple modalities, e.g. text and diagrams.  Analogy can be used to fuse 
cross-modal information, by using SME to align the representations constructed for each modality and projecting 
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information across them.  For example, Lockwood (Lockwood & Forbus, 2009) showed that semi-automatic language 
processing of a simplified English chapter of a book on basic machines, combined with sketches for the diagrams, 
enabled a system to learn enough to correctly answer 12 out of 15 questions from the back of the chapter.  Chang (2016) 
has shown that these ideas can work when the language processing is fully automatic, and that by using a corpus of 
instructional analogies aimed at middle-school instruction, expressed in simplified English and sketches, a Companion 
learned enough to correctly answer 11 out of 14 questions from the New York Regent’s examination on the topics 
covered.  
Companions have also been used to do cross-domain analogical learning, both in physical domains (Klenk & Forbus, 
2009) and in games (Hinrichs & Forbus, 2011). For cross-domain learning, building up persistent mappings across 
multiple analogies, essentially making a translation table between domains, was important.  In cross-domain game 
learning, SME was used to build up a meta-mapping between predicates in the two domains, which then enabled the 
rest of the domain knowledge to be imported. 
Qualitative representations provide a useful level of causal knowledge for learning the dynamics of complex domains 
(Hinrichs & Forbus, 2012a), and can be used as a high-level representation for goals and strategies (Hinrichs & Forbus, 
2014). Qualitative reasoning supports reflective reasoning by treating goal activation levels as continuous quantities in 
order to represent mental states (Hinrichs & Forbus, 2016). For example, in reasoning about a strategy game such as 
Freeciv4, the learned qualitative model of domain dynamics enables identifying tradeoffs, and high-level strategies 
such as first expanding one’s empire, then building up its economy, can be expressed by processes which are carried 
forward by a player’s actions. 

Conceptual Change 
One of the well-documented phenomena in cognitive science is conceptual change, i.e. how people’s mental models 
develop over long spans of time (e.g. diSessa et al. 2004; Ioannides et al. 2002).  Catalogs of misconceptions have been 
created for a variety of phenomena, and in some cases, trajectories that learners take in mastering these concepts have 
been analyzed and documented.  Friedman’s assembled coherence theory of conceptual change takes as its starting point 
qualitative, compositional model fragments, but initially tied to specific experiences.  Analogical retrieval is used to 
determine which model fragments are retrieved and combined to create a model for a new situation.  This theory 
explains both why mental models often seem very specific to 
particular classes of situations and yet, within those classes, are 
relentlessly consistent.  Model fragments are constructed via SAGE 
and a set of transformation heuristics, and applied via MAC/FAC.  
Friedman’s Companion-based TIMBER system has successfully 
modeled the trajectories of intuitive force models (Friedman & 
Forbus, 2010) using sketched behaviors, transitions between 
misconceptions when learning about the human circulatory system 
(Friedman & Forbus, 2011), misconceptions about why there are 
seasons (Friedman et al. 2011), and debugging misconceptions about 
the day/night cycle by analogy (Friedman et al. 2012).   

Cognitive State Sensing 
Our mental life is governed in part by the ability to sense our internal 
state: In doing a forced-choice task, like the one in Figure 1, often one choice “looks right” and we take it, even if we 
cannot always articulate why this is so.  If it isn’t obvious, we have to think about it more.  We believe that the structural 
evaluation score computed by SME is a signal used in these computations.  In simulating this task (Kandaswamy et al. 
2014), if there is a strong difference between SME’s scores for the two comparison, the highest score is chosen.  But if 
not, re-representation techniques are used to modify the encodings of the stimuli (which are automatically generated 
via CogSketch) to attempt to discriminate between them.  This model has captures the phenomena in several 
psychological experiments.   
Another kind of cognitive state sensing, in our view, are emotions.  One property of emotions is that they are often 
rapid, but not always specific.  We (Wilson et al. 2013) suspect this is because appraisal information used in generating 
emotions is stored with memories, and retrieved via analogy to produce a rapid response.  This response is 
subsequently modified by slower cognitive processes, and eventually when new memories are consolidated, the 
appraisals are adjusted based on the outcome of the situation.  Hence a problem that might have initially seemed scary, 
if mastered, gets stored as something doable.  With this multi-phase model of emotions, a Companion learning to solve 
problems was able to perform more effectively, and with emotional dynamics consistent with the literature. 

                                                             
4 http://www.freeciv.org/ 

Figure 1: An example of a forced-choice 
task.  Which goes with the one on top? 
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Classification 
The analogy stack described above can be used for classification, by doing analogical retrieval over the union of 
generalization pools representing the possible concepts of interest.  The label associated with the pool where the best 
reminding came from serves as the identification of the concept, with the score providing an estimate of the quality of 
the classification and the correspondences of the mapping providing an explanation as to why that classification is 
appropriate.  The candidate inferences provide further surmises about the new example.  This method has been used 
to learn geospatial concepts in a strategy game (e.g. isthmus, bay, etc.), achieving 62% accuracy.  By extending SAGE 
with automatic near-miss detection (summarized below), accuracy rose to 77% (McLure et al. 2015).  

A meta-analogy 
Analogy is more conservative than explanation-based learning, which generalizes after only one example, but requires 
many fewer examples than feature-based statistical learning systems – sometimes orders of magnitude fewer (e.g. 
Kuehne et al. 2000).  Can we do even better by somehow combining ideas of structure-mapping with ideas from 
machine learning?  Here is a meta-analogy that suggests a family of approaches: structure-mapping is to relational 
representations what dot product is to feature vectors.  This suggests that any machine learning technique defined on 
feature vectors originally might be adapted to a hybrid method by replacing dot product with SME.  For example, by 
combining a structured form of logistic regression with SAGE on the link plausibility/knowledge base completion task, 
Liang & Forbus (2015) showed that this approach can yield state of the art results, with several orders of magnitude 
fewer examples, while also providing material for explanations.  Another hybrid has been shown to produce state of 
the art performance on the Microsoft Paraphrase task (Liang et al. 2016).  The advantage of using task-specific training 
is that similarity weights can be tuned to specific tasks, and learned negative weights (which SME does not produce) 
can improve discrimination.  The drawback is that the representations learned, unless the weights are stored separately, 
become task-specific instead of general-purpose.  We believe this is a very useful approach that can be applied to many 
techniques, e.g. using SME as a kernel for SVMs.  But we know of no evidence that this is psychologically plausible.  

Some Lessons Learned 
We have learned a lot through these and other experiments.  We summarize the three most important lessons here. 
First, the models of structure-mapping processes turn out to be surprisingly robust.  We have only made two extensions 
in tackling the span of tasks above.  The first are interim generalizations, i.e. a small set of generalization pools that exist 
in working memory, in contrast with normal generalization pools, which are held in long-term memory.  Interim 
generalizations were motivated by both the rapid learning of children in experiments and by the unconscious story 
intrusion effects in adults.  In the experiments above, they are used in learning forced-choice tasks as a simple form of 
re-representation, i.e. when an interim generalization is retrieved for an item, non-overlapping aspects of the item are 
filtered out.  The second are near-misses.  Winston’s (1970) concept of near-miss required a teacher to know the 
machine’s single concept, and formulate an example that differed in only one way.  McLure’s observation (McLure et 
al. 2015) was that retrieving an item from a different generalization pool over items in the intended label is, when the 
two labels are mutually exclusive, a near-miss.  He extended SAGE to construct positive and negative probabilistic 
hypotheses based on near-misses, which are added to the retrieval criteria for the generalization pool to improve 
discriminability.   
Second, type-level qualitative representations (Hinrichs & Forbus, 2012b) are important for scalability and for flexible 
reasoning.  In traditional qualitative reasoning, a system might start with a schematic or scenario description, and then 
formulate and use models to reason about it.  By contrast, consider playing a strategy game like Freeciv, where 
constructing a civilization is the goal.  A successful civilization involves a dozen or more cities, each with many 
parameters, and even more units.  Formulating and maintaining explicit propositional qualitative models for each city, 
much less building a complete snapshot of the game state, can be prohibitively expensive.   Moreover, it is often 
necessary to reason about planned units and cities that don’t exist yet.  Type-level representations make these problems 
simpler, although still not easy.  They are amenable to analogy (because they are quantifier-free) and also useful in 
natural language semantics: The QP frame representations we generate are neutral with respect to whether they are 
specific or generic, leaving this decision to later semantic processing, which has the contextual information needed to 
determine this. 
Finally, we have found the Cyc ontology and KB contents to be extremely valuable.  We developed our own reasoning 
engine because we needed source code access and, for us, analogy operations are central.  The breadth and depth of 
the Cyc ontology has saved us countless hours, by letting us use existing representations instead of building our own.  
Even when our requirements diverge from Cyc’s ontology, small additions usually suffice to bridge the gap.  For 
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example, we treat quantities as fluents, as opposed to specific values, so a single logical function suffices to translate5.  
Moreover, we have found microtheories to be an excellent way to impose modularity on KB organization and support 
more flexible reasoning.  Every operation is done with respect to a logical environment, e.g. a microtheory and those it 
inherits from, thereby controlling what knowledge is used in a computation.  Alternatives and qualitative states are 
represented as microtheories, as are subsketches within a sketch.  In our reasoning engine, microtheories are also cases, 
which makes analogical reasoning even more tightly integrated. 

Discussion and Open Problems 
Our experience with Companions to date has provided strong evidence for our core hypotheses.  Analogical processing 
and qualitative representations are useful for textbook problem solving, moral decision-making, and commonsense 
reasoning.  Analogy can play multiple roles in natural language understanding and visual problem solving, and 
qualitative representations provide a natural level of expressiveness for semantics and reasoning.  Together they can 
successfully model a variety of phenomena in conceptual change, and provide a means of fusing information across 
modalities.  They can be used inside cognitive systems for cognitive state sensing, to improve problem solving.  They 
can be used for classification tasks.  And there is now evidence that, by combining analogical processing with ideas 
from standard machine learning, state of the art performance on tasks of interest to the machine learning community 
can be attained, sometimes with orders of magnitude fewer examples and increased explainability. 
To be sure, many open problems remain.  We outline three here.  The first is scaling.  How much knowledge might be 
needed to achieve human-level AI?  Aside from the initial endowment of knowledge, how much experience might be 
needed?  A back of the envelope calculation (Forbus et al. in press) suggests that a lower bound of at least 2 million 
generalization pools, built up by at least 45 million examples, would be needed to approximate some reasonable 
fraction of what a college graduate knows.  For Companions, we will need to exploit the data-parallel capabilities built 
into our analogical models via hardware, to reach this scale and maintain real-time performance.  The second is that 
being able to use natural modalities to interact with people, in a fluent and adaptive manner, is a key bottleneck for 
progress.  While for Companions simplified English syntax has been very productive, we would prefer them to be able 
to puzzle through more complex syntax.  Our current hope is that learning linguistic constructions via analogy will 
enable this, but that is far from clear.  The final issue is longevity, i.e. creating cognitive systems that successfully 
perform while learning over weeks, months, and years at a time.  Most cognitive architectures, including ours, are fired 
up for experiments, the experiments are run, and then they are shut down.  Achieving robust learning while 
maintaining accurate performance, even with people inspecting the system’s internals, is quite challenging (Mitchell 
et al. 2015).  Enabling Companions to build up solid internal models of their own reasoning and learning processes 
seems to be the most promising approach to us.  We think that the notions of attention and control that Bello and 
Bridewell (this issue) explore will be an important part of the solution to longevity.  
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