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Abstract 

Back of the envelope (BotE) reasoning involves generating 
quantitative answers in situations where exact data and 
models are unavailable and where available data is often 
incomplete and/or inconsistent. A rough estimate generated 
quickly is more valuable and useful than a detailed analysis, 
which might be unnecessary, impractical, or impossible 
because the situation does not provide enough time, 
information, or other resources to perform one. Such 
reasoning is a key component of commonsense reasoning 
about everyday physical situations. We present an 
implemented system, BotE-Solver, that can solve about a 
dozen estimation questions like “What is the annual cost of 
healthcare in USA?” from different domains using a library 
of strategies and the Cyc knowledge base.  BotE-Solver is  a 
general-purpose problem solving framework that uses 
strategies represented as suggestions, and keeps track of 
problem solving progress in an AND/OR tree. A key 
contribution of this paper is a knowledge level analysis 
[Newell, 1982] of the strategic knowledge used in BotE 
reasoning. We present a core collection of seven powerful 
estimation strategies that provides broad coverage for such 
problem solving. We hypothesize that this is the complete 
set of back of the envelope problem solving strategies. We 
present twofold support for this hypothesis: 1) an empirical 
analysis of all problems (n=44) on Force and Pressure, 
Rotation and Mechanics, Heat, and Astronomy from 
Clifford Swartz’s "Back-of-the-Envelope Physics" [Swartz, 
2003], and 2) an analysis of strategies used by BotE-Solver. 

1 Introduction   
Consider the following examples:  
• How many K-8 school teachers are in USA? 
• What is the annual cost of healthcare in USA? 
• What is Jason Kidd’s point per game for this season? 
• What is the annual gasoline consumption by cars in 

USA? 
• How much is spent on newspapers in USA per year?  

What these questions have in common is : 1) they seek 
numeric answers, and 2) even though exact answers might 
be hard to find, it is possible to generate good enough 
rough estimates. In this paper, we present BotE-Solver, an 
implemented system that can solve a dozen problems 
including the ones above. The two critical parts of such 
reasoning are using heuristics and strategies to simplify 
complex problems, and using one’s feel for numbers to 
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make suitable numeric estimates. At the heart of BotE-
Solver is a library of estimation strategies. One goal of this 
work was to find a core collection of powerful reusable 
strategies. Given the open-ended nature of this domain, we 
are quite excited to report that there are only seven 
strategies that capture most of such reasoning.  
 The paper is organized as follows: next section presents 
the motivation for understanding BotE reasoning. Section 3 
presents our approach and an analysis of the strategic 
knowledge and the seven core strategies followed by an 
empirical analysis of problems from Clifford Swartz’s book.   
Section 4 presents a short description of the implemented 
system. Section 5 concludes with future work. 

2 Motivation 
BotE reasoning is useful and practical. In domains like 
engineering, design, or experimental science, one often 
comes across situations where a rough answer generated 
quickly is more valuable than waiting for more information 
or resources. Some domains like environmental science 
[Harte, 1988] and biophysics [O’Connor and Spotila, 1992] 
are so complex that BotE analysis is the best that can be 
done with the available knowledge and data.  BotE 
reasoning is ubiquitous in daily life as well.  Common sense 
reasoning often hinges upon the ability to rapidly make 
approximate estimates that are fine-grained enough for the 
task at hand. We live in a world of quantitative dimensions, 
and reasonably accurate estimation of quantitative values 
is necessary for understanding and interacting with the 
world. How long will it take to get there? Do I have enough 
money with me? These everyday, common sense estimates 
utilize our ability to draw a quantitative sense of world from 
our experiences.   We believe that the same processes 
underlie both these common sense estimates and expert’s 
BotE reasoning to generate ballpark estimates.   
 One goal of qualitative reasoning (QR) is to understand 
and model common sense. Some of the central assumptions 
of QR in practice must be rethought when considering 
commonsense reasoning, as opposed to narrow domain 
expertise.  There is a striking resemblance between the key 
characteristics guiding commonsense reasoning and BotE 
reasoning. Here are the five important characteristics that 
we believe underlie common sense and BotE reasoning, but 
are violated by most QR approaches:  

1. Incompleteness.  Domain theories are incomplete in 
terms of their coverage, and even what they do cover 
is incompletely covered.   
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2. Concreteness.  Domain knowledge includes 
knowledge of many concrete, specific situations.  
These concrete descriptions are used directly in 
analogical reasoning, in addition to first-principles 
reasoning. 

3. Highly experiential.  Domain expertise improves 
through the accumulation of information, both 
concrete and abstract.  Experience improves our 
abilities to reason through similar situations, and 
helps us develop intuitions for what is reasonable.  

4. Focused reasoning.  Instead of maintaining 
uncertainty and ambiguity for completeness, 
assumptions are made aggressively to tightly 
constrict the number of possibilities considered.  

5. Pervasively quantitative.  Our interaction with the 
real world requires concrete choices for quantities.  
For example, the amount of salt one adds while 
cooking a certain dish cannot be safely specified as 
“+”.    

3 Analysis of BotE Strategies 
All BotE estimation problems ask for a quantitative value 
for some parameter. Our approach breaks down the problem 
solving into two distinct processes:  

1. Strategies: Using strategies to transform the current 
problem into possibly easier problems.  

2. Estimation: Coming up with a numeric estimate for a 
parameter. The number could already be known, or 
similar examples might be used to make an estimate.  

In this section we start with a formalization of the problems 
and strategies. We then present a knowledge level analysis 
[Newell, 1982] of the strategic knowledge in BotE 
reasoning. We present seven different strategies that are 
compositional and cover a large range of problems from 
various domains.  
 An abstract way to represent a BotE problem is (Q O 
?V) where Q is the quantity, O the object and ?V is the 
unknown value that is being sought. For example, in the 
question “How many K-8 teachers are there in US?,” Q is 
cardinality, and O is the collection of K-8 teachers in US. 
Note that such decomposition of a question into a 
quantity-object pair is not necessarily unique, for example, 
“How much money is spent on newspapers in USA per 
year?” can be decomposed into:  

• Q=Cost, O=All newspapers sold every year in US 
• Q=Annual Sales, O=All US newspapers 

Given a problem as (Q O ?V), a strategy transforms it 
into a set of other problems {(Qi Oi ?Vi)} such that 
?Vi are already known or easier to estimate. Besides 
transforming the problem, each strategy contains the 
answers to the following questions: 

• When does it apply? 
• How to combine ?Vis to find ?V? 
• What is the confidence of the estimate of ?V? 

With strategies represented as above, there are three 
syntactic possibilities for a strategy based on what aspect 
of problem it transforms:  
1. Object-based: (Q O ?V) → {(Q Oi ?Vi)} 
2. Quantity-based: (Q O ?V) → {(Qi O ?Vi)} 
3. System-based: (Q O ?V) → {(Qi Oi ?Vi)} 

Next we look at each of these in turn. We present the seven 
strategies which are numbered S1 through S7.  

3.1 Object-based Strategies 
An object-based strategy related an object, O, to a set of 
objects, {Oi}, such that the quantity values for those 
objects, {?Vi},combine in a known way to estimate the 
original quantity, ?V. Note that since we are estimating the 
same quantity, this combination function can only be 
addition or subtraction since ?V and {?Vi} have to have 
the same dimensions. Below are three object based 
strategies:  
S1. Mereology: The mereology strategy transforms an 
object into other objects that are its parts. If Q is an 
extensive parameter, then, ?V=Σ?Vi. For example, the 
weight of a basket of fruits is the sum of weights of all the 
fruits and the basket. If O is homogeneous, i.e., composed 
of the same kind of objects, then the above sum reduces to 
a  product of the number of parts and the value for each 
part. This strategy requires making a closed world 
assumption, namely, that we know all the parts of the 
original object. In order for this strategy to be applicable, 
the parts should be non-overlapping in the quantity. If Q is 
an intensive parameter, then, ?V=Σwi*?Vi, where wi is the 
weight of the ith part. For example, the density of a mixture 
is the weighted average of the densities of the constituents.  
S2. Similarity: The similarity strategy transforms the 
object into other object(s) which are similar to it. For 
example, if asked for the population of Austria, a reasonable 
guess could be the population of Switzerland, based on the 
similarity of the two countries. The strategy can be 
implemented in two ways:  

• O is similar to O1 ⇒  ?V=?V1 
• O is similar to {Oi} ⇒ ?V=Average(?Vi) 

If two objects are similar, it doesn’t warrant the inference 
that values of all the quantities for two objects are similar. 
For example, another grad student in my department 
probably gets paid similar to me, but doesn’t necessarily 
weigh the same. Two similar basketball players might have 
similar height, but not necessarily two professors. This 
notion of what features can be inferred from a similar 
example was called projectability by Goodman (1955/1983). 
There is increasing psychological evidence that 
projectability is based on centrality of the feature [Ahn et 
al, 2000; Hadjichristidis  et al, 2004]. A feature is central to 
the extent that features depend on it. In our above example, 
height is central to basketball players, but not to 
professors. We have operationalized this notion of 
centrality as the structural support of the inference in 
computation of similarity using the Structure Mapping 
Engine [Falkenhainer et al, 1989]. 
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S3. Ontology: The ontology strategy tries to find other 
objects from the ontology hierarchy which might be used to 
guess the quantity in question. In the simplest form, if O is 
an instance of O1, then we can use the knowledge about the 
class to guess the value for the instance. For example, if we 
know that Jason Kidd is a point guard1, then we can use the 
knowledge that point guards are relatively shorter than 
other players on the team to guess his height. If we didn’t 
have information about point guards, we could even use 
the fact that Jason Kidd is a basketball player to guess his 
height.  
 Clearly, the higher up we go, the less accurate will be the 
estimate. Conceptually, the category hierarchy can be 
considered as specific → subordinate→ basic-level→ 
superordinate [Rosch, 1975]. An example of the four levels 
of hierarchy will be a specific chair in my living room, 
armchair, chair, furniture. In this framework, we can see that 
not only the accuracy decreases as we go higher, but also 
that we can go no higher than the basic level.  Besides that, 
as in the similarity strategy, the centrality of the quantity is 
proportional to the accuracy of the estimate. 

3.2 Quantity-based Strategies 
 A quantity-based strategy relates a quantity, Q, to a set of 
quantities, {Qi}, such that the values of these quantities 
(for the object O) can be combined in a known way to 
derive the original quantity. Note that the combination 
function has to satisfy dimensional constraints, i.e., ?V and 
f({?Vi}) have to have the same units, where f is the 
combination function. Below are the two quantity-based 
strategies:  
S5. Density: This strategy converts a quantity into a 
density quantity and an extent quantity. Here, density is 
used in a general sense to mean average along any 
dimension: we talk of electric flux density, population 
density, etc. Rates, averages, and even quantities like 
teachers per student are considered densities. For example, 
number of K-8 teachers in US can be estimated by 
multiplying the number of teachers per student by number 
of students. 
S4. Domain Laws: This strategy converts a quantity into 
other quantities that are related to it via laws of the domain. 
Domain laws include laws of physics as well as rules of 
thumb. For example, Newton’s second law of motion, 
F=m*a, relates the force on an object to its mass and 
acceleration. The application of domain laws by the 
problem solver requires formalizing the assumptions and 
approximations implicit in the laws. This has been well 
explored in compositional modeling [Falkenhainer and 
Forbus, 1991; Nayak, 1994]. In BotE reasoning, since we are 
not interested in an exact answer, but an approximate 
                                                 
1 The point guard is one of the standard positions in a regulation 
basketball game. Typically one of the smallest players on the 
team, the point guard’s job is to pass the ball to other players 
who are responsible for making most of the points. 

estimate, aggressively applying approximations to simplify 
the problem solving becomes crucial. Some of the 
approximations are:  

• Geometry: Assume simplest shape, e.g. Consider a 
spherical cow [Harte, 1988]. 

• Distribution: Assume either a uniform distribution, 
or a Dirac-delta (point mass).  

• Calculus: Integrals can be simplified by sums or 
average multiplied by extent, and differentials by 
differences.  

• Algebra : Use simplification heuristics to reduce the 
number of unknowns [Pisan, 1998].  

3.3 System-based Strategies 
System-based strategies transform both the quantity and 
the object into other quantities and objects. They represent 
relationships between quantities of a system as a whole. 
For example, for a system with no external force, the 
momentum remains conserved. This translates into a 
conservation equation that relates the masses and 
velocities of the parts of the system. It would seem that this 
effect can be obtained by sequentially applying a quantity-
based and an object-based strategy (or vice versa) since all 
the above strategies are compositional.  There are two 
reasons for keeping this a separate type of strategy: 1) it 
represents a reasoning pattern that is different, 2) 
sometimes it is much more efficient to apply a system-based 
strategy, e.g., applying conservation of momentum leads to 
safely ignoring all the internal forces which need to be 
made explicit if one is not applying a system-based 
strategy. The two system-based strategies are:  
S6. System Laws: This class consists of physical laws that 
are applicable to a system as a whole. Many physical 
quantities remain conserved for a system, e.g., energy, 
mass, momentum, angular momentum, etc. As a result of 
this, often one can write a balance equation that relates the 
expressions that denote the value of the quantity in two 
different states of the system. To write a balance equation, 
appropriate assumptions about the system in consideration 
have to be made.  
S7. Scale-up: This is often an empirical BotE strategy. A 
smaller model that works under the same physical laws can 
be used to estimate the quantity values for a full-scale 
prototype. To ensure that the scale-up is valid, all the 
dimensionless groups must be kept the same in the model 
and the prototype. For example, the Reynolds number is a 
dimensionless group that corresponds to the nature of flow 
(laminar, transient or turbulent), and for a flow model to be 
valid for scaling up, the Reynolds number must be the same 
in both situations.  

3.4 Discussion  
BotE reasoning is very powerful because of its applicability 
to many domains. Clearly a human expert, or a computer 
problem solver, can do better with more facts about 
quantities and more strategies. The above analysis is an 
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attempt to identify the core strategies that have a broad 
coverage.  
 We arrived at these strategies by an analysis of 
knowledge that our problem solver was using. To confirm 
that we have a set of strategies which have broad coverage, 
we manually went through Clifford Swartz’s “Back-of-the-
envelope Physics.” Swartz’s book is a collection of 
estimation problems (along with solutions) from various 
domains in physics. We looked at all the problems (n=44) 
from Force and Pressure, Rotation and Mechanics, Heat, 
and Astronomy. Even though the goal of our work is not 
tied to Physics, this provides an independent confirmation 
about our strategies. Table I shows the results of our 
empirical analysis. The table shows the number of 
instances of each strategy, and the corresponding 
percentage, for Swartz’s book as well as for the set of 
problems that BotE-Solver can currently solve2. We went 
through every solved problem and every time a problem 
was transformed into another, it was classified as one of the 
seven strategies or “other” category. We counted an 
application of the ontology strategy if it was specifically 
mentioned, since trivially almost all problems apply that 
strategy, as most problems are not about specific instances 
but classes of things.  
 

Table I: Distribution of strategies. 
Source → Swartz BotE-Solver 
Strategy 
    ↓ 

Number 
of times 
used. 

% of 
times 
used 

Number 
of times 
used. 

% of 
times 
used 

S1 Mereology 11 14 9 32 
S2 Similarity 5 6 5 18 
S3 Ontology 6 8 0 0 
S4 Density 10 13 10 36 
S5 Domain laws 29 37 3 11 
S6 System laws 11 14 1 4 
S7 Scale-up 2 3 0 0 
 Other  5 6 0 0 
 Total 79 100 28 100 
Some observations from table 1:  
Coverage: The seven strategies account for 94% of 
strategy use in the problems from Swartz’s book. The 5 
strategies in the “other” category contain four instances of 
designing experiments to estimate a quantity, and one 
instance of a complex problem from statistical mechanics. 
The experimental strategies exploit one of the seven 
strategies, but there is considerable complexity in designing 
a good experiment.  We focus on conceptual back of the 
envelope problems. The three syntactic possibilities for 
strategies – object-based, quantity-based and system-
based are complete. Furthermore, our analysis of problems 
from various domains and our problem solver leads us to 
                                                 
2 The set of problems solved by BotE-Solver is different from 
those in Swartz’s book. BotE-Solver’s problems are from 
commonsense domains as opposed to Physics.  

conjecture that the seven strategies are the complete set for 
the task of back of the envelope problem solving.  
Domain-specificity: Strategies S1 through S4 are domain 
independent, and account for 40% of strategy use, while 
60% of strategies are domain specific, with the largest 
component being domain laws. Interestingly, only 15% of 
the strategies in BotE-Solver are domain specific. This is 
expected because the problems that BotE-Solver currently 
solve are from common-sense domains, as compared to 
Swartz’s book where most problems involve applying laws 
of physics. 
 The above analysis was done after we implemented our 
problem solver. We are using the analysis as a guide in 
designing more elegant representation of strategic 
knowledge in the problem solver. In the next section, we 
present a short description of the current implementation of 
BotE-Solver.  

4 Implementation of BotE-Solver 
A computational model of problem solving has to formalize 
the problem representation, has to have access to domain 
knowledge and the ability to retrieve knowledge that might 
be relevant. It also needs to have strategies, which it can 
try when the problem is complex and the answer is not 
directly found. It needs to maintain the workspace, where it 
keeps track of the work done and progress made on the 
problem. We have implemented BotE-Solver, a problem 
solver that uses –  

• A large knowledge base for domain knowledge.  
• Suggestions as representation for strategies. 
• AND/OR tree as a model for maintaining the 

workspace. 
In this section we explain the above ideas, and then present 
the core algorithm.  

4.1 Domain Knowledge 
The Knowledge Base (KB) and the reasoning engine are 
part of background infrastructure that this work builds on. 
The contents of our knowledge base are a 1.2 million fact 
subset of Cycorp’s Cyc knowledge base, which provides 
formal representations about a wide variety of everyday 
objects, people, events and relationships. Problems, 
solutions, strategies are all represented uniformly and 
stored in this KB. We use the FIRE reasoning engine, 
jointly developed in collaboration with Northwestern 
University and Xerox PARC. FIRE uses a special purpose 
database for storing the knowledge base. It can do 
analogical reasoning using structure mapping [Forbus et al, 
2002], and has facility for adding various kinds of reasoning 
source that allow it to do specialized reasoning, such as 
spatial reasoning [Forbus et al, 2003].  

4.2 Strategies 
We represent strategies using suggestions. A suggestion 
provides a decomposition for the problem. The suggestion 
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HouseholdStrategy-ForCountingUnits in 
Figure 1 captures the idea that the number of cars can be 

estimated by finding the number of households. It says that 
if we know that something is owned by households (refered 
to as FamilyCohabitationUnit in the KB), then we 
can find how many units of it are owned by multiplying the 
number of households with the number of units per 
household. There are four parts of a suggestion –  
Trigger: The form which is query for which the 
suggestion might be applicable.  
Test: Additional test conditions which must be true in 
order for the suggestion to work.  
Subgoals: A list of forms that this suggestion 
decomposes the current problem into. These are AND-
subgoals, meaning if any one of them fails, this 
suggestion fails to solve the original problem. These 
subgoals are fully ordered.  
Result-step: The final step of the suggestion, which 
combines the answers to the subgoals.  

Inside the suggestion, the variables are order scoped such 
that any variable introduced can be used in the subsequent 
parts of the suggestion. defSuggestion is a facility for 
the suggestion author – it expands the suggestion into 
assertions in predicate calculus that are stored in the KB.  

4.3 Tracking problem solving progress 
BotE-Solver uses an AND/OR tree3 to track the progress as 
it is working on a problem. The mapping between the 
AND/OR tree and our representations is very direct. For a 
problem, there could be many applicable strategies, any one 
of which succeeding lead to a solution to the problem. This 
results in an OR node in the tree. A suggestion, on the 
other hand, introduces one or more subgoals all of which 
have to be solved in order to solve the original goal. This 
results in an AND node in the tree. An AND/OR 
                                                 
3 Because the solutions are obtained and cached in a truth 
maintenance system, we get the functionality of an AND/OR graph, 
i.e., we don’t re-solve an already solved node, although the 
underlying representation is a tree. The advantage of having a tree is 
that the propagation algorithms are much simpler.  

decomposition lets us keep track of dependencies between 
the original problem and new subgoals introduced. These 
inferences are made by maintaining flags at each node, 
which are updated/propagated after every unit of problem 
solving. 
 As BotE-Solver works on a problem, it maintains its 
progress in an AND/OR tree as mentioned above. It also 
maintains an agenda, which is a list of things that it can do 
next. The agenda consists of suggestions that have been 
found that it can try, and subgoals that have been 
suggested. The agenda is ordered by difficulty estimates so 
that the first thing on the agenda is the easiest one. The 
solver generates solutions incrementally. The combinatorial 
possibilities of solutions from subgoals can be large, and in 
this kind of problem solving we are often interested in one, 
or at most few answers4.   

4.4 Feel for Numbers  
A key part of doing back of the envelope estimates is the 
feel for numbers. Once we have the model that relates the 
parameter to other quantities that might be known, the 
reasoning bottoms out with making good guesses for 
numeric parameters. Sometimes the exact numeric parameter 
might be known. In many estimation problems, we are 
looking for typical, high, or low values for a parameter. For 
example, consider the question – What does a good gaming 
PC cost? Now, we know that a good gaming PC has a high 
RAM, expensive video card, and a fast processor, and 
everything else might be the usual fare. Being able to 
represent and reason with notions like high, low and typical 
values for quantity is a key aspect of BotE reasoning. We 
have built CARVE, a system that automatically builds 
symbolic representations of quantity by exposure to 
examples [Paritosh, 2004]. We have shown that 
representations augmented with symbolic representation of 
quantities lead to more accurate estimates [Paritosh, in 
preparation].  

4.5 Results 
BotE-Solver can currently solve 13 problems from 
commonsense domains. The system uses a library 
consisting of 24 suggestions. The suggestions are less 
abstract than the strategies, so we have multiple 
suggestions that capture the same strategy. We are 
currently in the process of rewriting our system to let us 
elegantly describe the strategies at the level of abstraction 
discussed in Section 2. A full list of problems, solutions 
and details of implementation are available elsewhere 
[Paritosh and Forbus, 2004].  
 Most of the times BotE-Solver finds an answer that is in 
the ballpark. The goal of BotE-Solver is to find an answer 
that is no more than an order of magnitude off on either 
                                                 
4 One way to do a “sanity-check” on a BotE estimate is to generate 
another estimate. We prefer this to the approach of keeping track 
of ranges and bounds for every estimation step.  

(defSuggestion HouseholdStrategyForCountingUnits 
  :trigger  
    (unitsTotal ?obj ?place ?time ?total-units) 
  :test (ownedBy ?obj FamilyCohabitationUnit) 
  :subgoals  
    ((numberOfHouseholds ?place ?time  
        ?num-households) 
     (unitsPerHousehold ?obj  
        ?units-per-household)) 
   :result-step (evaluate ?total-units  
                  (TimesFn ?num-households  
                     ?units-per-household))) 

Figure 1. An example suggestion. 
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side. Sometimes, the estimates being off can be an 
interesting thing. So in a question about total cost of 
healthcare in the US, it comes up with an estimate of 0.8 
trillion US dollars, which is  roughly half of the real value for 
this. This estimate is based on the cost of buying everyone 
personal insurance. In cases like these, carrying out an 
estimate and comparing it to the expected value might 
trigger a model refinement and the fact that one needs to 
know more to understand the process.  

4.6 Related Work 
The most similar project in this spirit was FERMI [Larkin et 
al, 1988]. FERMI used two general principles, 
decomposition and invariance, with domain specific 
knowledge to solve textbook problems in fluid statics, DC-
circuits and centroid location. Our approach is simpler, 
more general, builds upon existing large knowledge bases, 
and is more concerned with the kind of breadth of common 
sense reasoning as opposed to natural science. Such 
reasoning has relevance to education, especially 
engineering. More than 90% of mechanical engineering 
seniors (100 at MIT, and 250 from five other universities) 
came up with wrong order of magnitude estimates of value 
of energy stored in a 9-volt “transistor” battery [Linder, 
1999]. The responses varied by nine orders of magnitude 
excluding outliers! Having a clearer understanding of BotE 
reasoning at the knowledge level and computationally, 
might be helpful in fixing that kind of innumeracy. 

5 Conclusions and Future Work 
We presented BotE-Solver, a system that can solve fairly 
interesting estimation problems. An analysis of the 
strategic knowledge used by the system and a corpus of 
problems revealed a collection of seven core strategies. We 
are rewriting our solver to express these seven strategies in 
an abstract and elegant manner. Another interesting future 
direction will be to see if these same strategies can be used 
in explanation, as opposed to problem solving; e.g., in a 
system that comes up with explanations for numbers 
appearing in a news article.  
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