
Dynamic Across-Time Measurement Interpretation

Abstract
Incrementally maintaining a qualitative under-
standing of physical system behavior based on ob-
servations is crucial to real-time process monitor-
ing, diagnosis, and control. This paper describes
the DATMI theory for dynamically maintaining a
pinterp-,space, a concise representation of the local
and global interpretations consistent with observa-
tions over time. Each interpretation signifies an
alternative path of states in a qualitative envision-
ment . DATMI can use domain-specific knowledge
about state and transition probabilities to main-
tain the best working interpretation . By maintain-
ing the space of alternative interpretations as well,
DATMI avoids the need for extensive backtracking
to handle incomplete or faulty data .

1 Introduction
Efficient incremental interpretation of observations is
essential for real-time process monitoring, diagnosis,
and control . A consistent interpretation of what is hap-
pening, along with alternatives, should continually be
available. Since data can be incomplete and faulty, in-
terpretations must be efficiently revised as new data ar-
rives or inconsistencies are discovered . For example,
the original hypothesis during the Three Mile Island in-
cident was that the reactor core had too much water.
The correct failure hypothesis was triggered once it was
noticed that the symptoms remained even after a lot of
water was removed. Capturing this kind of reasoning is
clearly important for engineering-oriented applications
of qualitative physics.

This paper describes the DATMI theory and algorithm
for efficient dynamic across-time measurement interpre-
tation . DATMI is an extension of the ATMI theory of
measurernent interpretation [7] . Like ATMI, we assume
the input includes a total envisionment representing
the qualitative states and transitions which character-
ize all the possible behaviors of the system being ob-
served . This envisionment serves as a finite-state tran-
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sition graph for "parsing" the observations . Each inter-
pretation identifies the behavior as a path through the
envisionment . However, ATMI did not allow incremental
updating of its interpretation and made no provision for
handling faulty data . DATMI overcomes these limitations
by using a concise representation ofthe space of possible
interpretations, called the pinterp-space . A vocabulary
ofdependency relations allows DATMI to dynamically ad-
just to changing data and to provide efficient hypothesis
revision . Furthermore, DATMI can exploit two kinds of
domain-specific information, when available : probabil-
ities specified for states and transitions and duration
bounds specified for states and paths. DATMI has been
fully implemented and successfully tested on a variety
of envisionments and data sets .

Section 2 describes DATMI's theoretical foundation
and Section 3 explains its basic algorithm . Section 4
presents an example of DATMI handling faulty data .
Section 5 summarizes how additional domain-specific
knowledge is used . Finally, Section 6 notes some limi-
tations and discusses related and future work .

2 DATMI Theory
As in ATMI, we assume that data consists of measure-
ments of numeric variables (such as temperature) and
observations of symbolic properties (such as whether a
switch is ON or OFF and whether the temperature of one
object is greater than, less than, or equal to that of an-
other) . We also assume that the measurements have
been smoothed to reflect their qualitative trends . Dis-
carding data at the fringes of each qualitative change,
to account for the temporal imprecision of smoothings,
is allowed since DATMI handles incomplete data .
DATMI conservatively converts measurements at time

points into observations over time intervals, using prob-
abilities and disjunctive values to express uncertainty in
the sensor readings . This requires : (1) converting nu-
merical values into qualitative ones by comparing them
with limit points and (2) aggregating measurements
with identical qualitative values into observations . Each
property which signifies the ordering between a vari-
able and a limit point has an associated conversion ta-
ble. Each table maps ranges of distance from the limit
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point into qualitative values having discrete probabil-
ity assignments . Figure 1 gives an example . DATMI
provides no means for determining these tables ; it as-
sumes that domain-specific information provides them,
perhaps based on a priorisensor precisions and reliabili-
ties . In lieu of probabilistic assignments, DATMI assumes
each disjunctive value is equally probable ; Section 5.1
explains how these discrete probabilities are used .

For comparison between
(A - B)I JBI E (-oo, -0.2)
(A - B)IIBI E (-0.2,-0.01)
(A - B)IIBI E (-0.01,0.011
(A- B)IIBI E (0 .01,0.21
(A-B)IIBI E (0-2, 001

variable A and limit point B :
(A < B, with probability p=1 .0)
(A < B, p=0.8) n (A = B, p=0.4)
(A = B, p=1 .0)
(A > B, p=0.8) n (A = B, p=0.4)
(A > B, p=1.0)

(If B = 0 then (A - B)IIBI is replaced by (A - B))

Figure 1 : A simple example conversion table

As the overview in Figure 2 shows, the observations
are concisely represented as properties of global seg-
ments . As in ATMI, each segment represents the inter-
val of maximal temporal extent over which all of its
properties are identical. The interval of each segment
meets (1] the interval of each of its two neighboring seg-
ments . Thus, the history of segments is temporally
totally-ordered . Gap-fill segments represent intervals
over which no observations are available . Since DATMI
maintains the segments as observations are gathered, it
splits and merges segments appropriately.
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Pinterp-Space

ATMI introduced the notion of a pinterp : an envision-
ment state which can possibly occur during a particular
segment . Let P(G, S) be the pinterp which indicates
whether state S can occur during global segment G .
P(G, S) is considered COMPATIBLE exactly when all the

properties describing S are compatible with all the prop-
erties of G. P(G, S) is also considered ACTIVE exactly
when all constraints allow S to occur during G.

Clearly, an ACTIVE pinterp must be COMPATIBLE, to
satisfy the constraints of its own segment . An ACTIVE
pinterp must also satisfy the constraints of the other
segments and the envisionment transitions . In particu-
lar, a pinterp is ACTIVE exactly when it is COMPATIBLE
and there is a transition consistency relation between
it and each neighboring segment . Alternatively, a pin-
terp is INACTIVE exactly when it is COMPATIBLE but
not ACTIVE. Thus, each pinterp is either INCOMPATIBLE,
INACTIVE, or ACTIVE . Figure 3 illustrates DATMI's five
types of transition consistency relations . A relation
between a pinterp P(G, S) and a neighboring segment
N indicates a path of ACTIVE pinterps which starts at
P(G, S) and reachs an ACTIVE pinterp of N. Each rela-
tion signifies a consistent way to be in S during G and
also be in a state during N .

Spanning-State :

Meeting-States :

Hidden-Transition :

Gap-Filling :

Frontier-State :

Gap-fill segment

Frontier segment
(no observations beyond this segment)

Figure 3 : Types of transition consistency relations
These paths through the envisiotunent of Figure 2 illustrate
the five types of ways a pinterp can lead to a pinterp of the
next observed segment .

Identifying hidden-transition and gap-filling paths al-
lows DATMI to interpret even very incomplete data. For
simplicity, DATMI considers only acyclic paths of pin-
terps for these two relations . Thus, it will misinterpret
behaviors where the system returns to the same state
during a single segment . However, unless duration con-
straints invalidate all acyclic relation paths, this simpli-
fication will not prevent DATMI from finding some inter-
pretation which is at least simple, if not best .
Each global interpretation is a chain of relation paths

across all segments . For example, the global interpreta-
tion given in Figure 2 is a global chain of some of the
relation paths indicated in its pinterp-space . We do not
show the INCOMPATIBLE pinterps of the pinterp-space ;
so, the INACTIVE ones are exactly those for which no
relation paths are shown .
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The DATMI algorithm

DATMI dynamically maintains the pinterp-space by keep-
ing track of the status of each pinterp (INCOMPATIBLE,
INACTIVE, or ACTIVE) as segment properties are as-
serted and retracted . It determines which pinterps are
COMPATIBLE the same way as ATMI did ; it uses a lookup-
table precomputed from the envisionment that indicates
every state compatible with a given property. It deter-
mines whether a COMPATIBLE pinterp is ACTIVE by using
graph search through the envisionment to find the best
relation path between the pinterp and each neighboring
segment . As shown in this section, breadth-first graph
search suffices to find the simplest paths . Section 5.1
explains how least-cost graph search finds the most-
probable paths. In both cases, the best global paths
are built from the best local (relation) paths .

After determining a relation path between a pinterp
and a neighboring segment, DATMI caches that path
as a dependency path for that pinterp. Each ACTIVE
pinterp is assigned exactly two dependency paths: a
b-dependency path reaching a pinterp of the backward
neighboring segment and a f-dependency path reaching
a pinterp of the forward neighboring segment . Since
global chains of relation paths indicate global interpre-
tations, so do global chains of b-dependency paths or
f-dependency paths .
By finding dependency paths using breadth-first

graph search which expands each state at most once,
the interpretation indicated by a chain of b-dependency
paths is the simplest (i .e . shortest) one . This search
through the envisionment starts at the pinterp P(G, S)
whose dependency path is sought and finds the sim-
plest path (if any) to each ACTIVE pinterp of the neigh-
boring segment by expanding only from P(G, S) and
ACTIVE pinterps of G . To ensure finding the simplest b-
dependency chains, DATMI records the cost (i .e . number
of transitions) of the chain of b-dependency paths lead-
ing up to each pinterp P(G, S) when its b-dependency
path is found . This allows b-dependency path search for
each pinterp P(F, f) of the forward neighboring segment
F to suiti P(G, S)'s recorded cost with the cost of the re-
lation path found from P(F, f) to P(G, S) . DATMI com-
pares that sum against the sums for the simplest paths
found to other ACTIVE pinterps of G, to decide which
one offers the simplest chain of b-dependency paths to
P(F,f) .
The above discussion assumes that each gap-fill seg-

ment is treated as an ordinary segment whose pinterps
all happen to be COMPATIBLE. For efficiency, however,
DATMI does not actually maintain pinterps for gap-fill
segments . It uses a lookup-table precomputed from
the envisionment that indicates the best path through
the envisionment between any two particular states .
This table, along with the recorded b-dependency chain
costs, suggests the best b-dependency path across the
gap-fill segment which connects a particular pinterp of
the forward neighboring segment with an ACTIVE pin-
terp of the backward neighboring segment . (This is why

the gap-fill path in Figure 3 involves three segments.)
If desired, one can determine if a particular pinterp of
a gap-fill segment is ACTIVE - by checking this table
to see if paths exist from it to ACTIVE pinterps of the
neighboring segments .
As explained below, dependency paths play one other

key role : they indicate which pinterps must find new re-
lation paths when a pinterp of a neighboring segment
ceases to be ACTIVE . In that sense, they are analogous
to TMS justifications [5] . However, for our task, caching
alternative dependency paths would not lead to the ef-
ficiencies that one might expect . As explained in [4],
if the alternative path is short, it is more efficient to
find it as needed ; if it is long, it is not likely to be best
or even consistent (i .e . contain only ACTIVE pinterps)
when the current best path becomes inconsistent .

Asserting properties for a segment can make some
pinterps of that segment cease to be ACTIVE because
they are no longer COMPATIBLE. These changes can cause
other pinterps to become INACTIVE if they depend on
those newly INCOMPATIBLE pinterps . So, a replacement
dependency path must be sought for each pinterp which
has a newly INCOMPATIBLE pinterp in its dependency
path . A pinterp which fails to find replacements be-
comes INACTIVE, which then affects the pinterps de-
pending on it . Loss of activation is thus globally propa-
gated in two segment-wise sweeps out from the segment
with new properties . To ensure that the recorded cost
of b-dependency chains (as mentioned above) is propa-
gated correctly, the backward sweep is performed before
the forward one .
When asserting the initial properties for a new fron-

tier segment or what was a gap-fill segment, initial re-
lation paths from the COMPATIBLE pinterps of that seg-
ment to the neighboring segments must be sought . All
of these COMPATIBLE pinterps are first assumed to be
ACTIVE, to allow them to be expanded during breadth-
first searches to find these initial dependency paths .
Each one is considered INACTIVE only if dependency
paths cannot be found for it . All ACTIVE pinterps of
both neighboring segments then seek (initial) depen-
dency paths to that segment, propagating loss of acti-
vation as before .
As explained in the next section, pinterps can also

become ACTIVE when dubious properties are retracted
from a segment . For this to happen, some pinterps of
that segment must first become newly COMPATIBLE with
the reduced set of properties . The newly COMPATIBLE
pinterps which find dependency paths (i .e . become
ACTIVE) can allow other (INACTIVE) pinterps to become
ACTIVE as well . Furthermore, newly ACTIVE pinterps
can allow some ACTIVE pinterps to obtain better b-
dependency paths . An inefficient technique would be to
start from the first segment and re-compute dependency
paths from scratch . However, by allowing intermediate
steps to temporarily create dependency paths involving
INACTIVE pinterps, efficient incremental propagation of
activation is achieved (see [4]) .
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Handling Faulty Data
DATMI's conservative conversion from measurements to
disjunctive qualitative values cannot always avoid the
effects of faulty data. Inconsistencies due to faulty data
can only be prevented if the conversion tables never as-
sert any qualitative value to have zero probability. How-
ever, in that case, each path through the envisionment
would be a consistent global interpretation . So, DATMI
provides a means for modifying segment properties to
recover from faulty data which do sneak past the con-
servative conversions .
DATMI detects inconsistencies between the envision-

ment and the observations as soon as all of some seg-
ment's pinterps cease to be ACTIVE. That segment is
called an inconsistent segment. Since DATMI assumes
that the envisionment itself is sound and complete, it
attempts to recover from inconsistency by generating
and testing sets of property changes to remove hypoth-
esized faulty data . Associated with each hypothesis are :
1) a set of property changes, 2) its plausibility, and 3)
the conditions under which it remains valid .

Because the faulty data might not be in an inconsis-
tent segment's own properties, all segment properties
are suspect . To avoid considering the power set of pos-
sible property changes, DATMI currently limits itself to
an especially common subset of these . In particular,
it considers forgetting properties that could arise from
non-intermittent sensor failures . An example of such a
failure is when a flow-rate seems constant because its
sensor has gotten stuck .
Each DATMI sensor failure hypothesis suggests forget-

ting (i .e . retracting) all recent segment properties hav-
ing the most-recent value for one type of property. This
assumes that each sensor only contributes to one type
of property . So, in the above example, it would for-
get all the recent observations of that flow-rate being
constant, back until it was last observed to be chang-
ing . For simplicity, DATMI considers the plausibility of a
sensor failure hypothesis to be the a priori probability
that the particular most-recent value is due to that sen-
sor failure . Determining these probabilities is outside of
our theory ; we currently use arbitrary values reflecting
commonsense intuitions . Finally, the hypothesis holds
as long as that type of property is not observed to have
a different value at later times, since the hypothesized
failure is non-intermittent .
DATMI generates these hypotheses in order of plausi-

bility and then tests each by propagating any pinterp
activations due to the reduced number of segment prop-
erties, as explained earlier . A useful aspect of forgetting
properties, without asserting any replacements, is that
no new inconsistencies can be introduced during this
test . If all segments are not consistent after propagat-
ing activation, the forgotten properties are reasserted .
By resorting to such reassertions, to avoid excessive re-
moval of constraints on the interpretation space, DATMI
cannot recover from an inconsistency caused by multiple
sensor failures .

3"t COMMONSENSE REASONING

The generate-and-test process continues until there
are no inconsistent segments or each hypothesis has
been tried . If an inconsistent segment still remains, the
pinterp-space is partitioned by that segment and each
part is interpreted separately . In any case, if the con-
ditions of a successful hypothesis are later violated, it
must be retracted by reasserting the forgotten proper-
ties . Inconsistencies will then be redetected and rehan-
dled unless some later successful hypothesis (that fixed
some later arising inconsistencies) happened to fortu-
itously fix those inconsistencies as well . In the case of
our sensor failure hypotheses, such fortuitous fixes can
occur if the earlier hypothesis recovered solely from the
early inconsistencies arising from a sensor failure .

4 Example
We now highlight an implemented example of DATMI
handling incomplete and faulty data . This example uses
a pump-cycle system of two containers of water con-
nected by a valved path and a pump, as illustrated in
Figure 4 . The QPE [8] envisionment (not shown here
due to space limitations) consists of 42 states and 61
transitions . This envisionment differentiates states by
ten types of properties, of which the following five are
observed : P3 (the comparison between Ll and L2) P4
(the ON/OFF status of PUMP), P7 (the direction of change
in L1), P8 (the direction of change in L2), and P10 (the
direction of change in FR). Partial, perturbed results
of a numeric simulation provided the incomplete, faulty
measurements for determining those five types of prop-
erties .
As Figure 4 shows, DATMI interprets the measure-

ments for the first 15.0 seconds with no problem. Note
that properties are not asserted for every segment, as in-
dicated by the "?" values . This is because the conserva-
tive conversions did not specify exact times for changes
between qualitative values, since they are indeterminate
from the sampled data . The arrows in the pinterp-space
show the backward and forward dependency paths . The
best working global interpretation for the first 15.0 sec-
onds is found by following the chain of b-dependency
paths starting at state 40 in Seg30 and ending at state
39 in Segl .

However, no COMPATIBLE pinterps exist for the prop-
erties observed for Seg32 . Thus, when those properties
are asserted, Seg32 becomes inconsistent because it has
no ACTIVE pinterps . To fix this inconsistency, DATMI
considers five sensor failure hypotheses, one for each of
the five types of observed properties .
DATMI first tries forgetting properties for P10 ; for this

example, each hypothesis is considered equally plausi-
ble . Since P10's most-recent observed value is INCREASE
in Seg24 and its last different value is STEADY in Segll,
the sensor failure hypothesis is to forget all proper-
ties for P10 after Segll . DATMI quickly finds that for-
getting P10 from Seg18, Seg22, and Seg24 fails to fix
the pinterp-space . Indeed, in this case forgetting P10
could not possibly help since the pinterps of Seg32 are



P3
P4
P7
IRS
P10

all INCOMPATIBLE, which requires changing the proper-
ties of Seg32 itself. However, to illustrate the general
case, we do not treat this case specially for this exam-
ple . Even hypotheses which modify only properties of
consistent segments are generally useful since they may
allow INACTIVE pinterps of an inconsistent segment to
become ACTIVE. In any case, DATMI then tests hypothe-
ses to forget P8 (after Seg9) and forget P7 (after Seg9),
also with no success .
DATMI succeeds by forgetting P4 after Seg18, as shown

in Figure 5 . This reflects the hypothesis that the pump
indicator failed sometime after Seg18 and continues to
indicate that the pump is OFF, perhaps because the indi-
cator light burnt out . The OFF values for P4 are shown
in parenthesis since they are now forgotten and do
not constrain the pinterps . While propagating activa-
tion due to these forgotten properties, the dependency
paths are updated appropriately, yielding a new sim-
plest global interpretation where the pump is never OFF
after Seg9 . Of course, the pinterp-space also allows in-
terpretations where the pump is OFF after Seg18. How-
ever, the pump must become ON again in Seg32 because
its pinterps are INCOMPATIBLE otherwise . So, those
alternative interpretations involve more state changes
than DATMI's (simplest) working interpretation does .

5

	

Using Additional Knowledge
5 .1 Probabilities
DATMI can use numeric probabilities associated with
the envisionment states and transitions to maintain the
most-probable working global interpretation, instead of

0.0 secs

	

4.0

	

4.5

	

5.0

	

7.0
Seg9 Seg10 SegllSegl

Ll <= L2
Off

decrease
increase

?
8.0 10.0 11 .0 14.0 15.0 .15 .5

Seg15 Seg18 Seg22 Seg24 Seg30 Seg32

WIn- &A

inconsistent
segment

STATE 39 -+ STATE 41 --* STATE 42 -+

	

STATE 40

	

- . " .
0.0 sea

	

4.5

	

7.0

	

10.0

	

15.0
Figure 4 : The pinterp-space when inconsistency first detected

L1=(FLIIID-LEVEL CAN1), L2=(FLIIID-LEVEL CAN2), and FR=(FLOW-RATE PATH) .

the simplest one . This requires that those probabilities
have been estimated by some external means, such as
the stochastic analysis technique of [6] . DATMI composes
these probabilities using Bayes' chain rule by assuming
independent events [12] . Thus, the a priori probabil-
ity of a chain of b-dependency paths is considered the
product of the a priori probability of the earliest state
and the conditional probabilities of all the transitions
in that chain .

This composition is valid assuming that each transi-
tion is truly independent of which states occurred ear-
lier in the chain, which is typically the case for paths
through sufficiently detailed envisionments . It overes-
timates the probability of spanning-state dependency
paths relative to other types, since other types involve
more transitions during the same period of time . Since
spanning-state paths provide simpler interpretations,
this is usually acceptable .
To reflect uncertainty in the measurements, the seg-

ment property probabilities from the conversion tables
(e.g . Figure 1) can also be included in this composi-
tion . DATMI assumes that a segment's properties are
independent, which is most reasonable when the obser-
vations are never redundant . The total property proba-
bility for a particular pinterp is then the product of the
probabilities of the segment property values with which
its state is compatible . Thus, DATMI multiplies the a
priori probability of a chain of b-dependency paths by
the product of the property probabilities for each pin-
terp in that chain to get a more accurate probability for
that chain . Furthermore, to accurately reflect the prob-
ability of a b-dependency chain that is conditional on
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FR steady steady steady steady ? Increase increase increase ?



the set of observations, one must redistribute the a pri-
ori probability associated with pinterps which are not
ACTIVE to the ACTIVE ones, as described in [4] .

Standard exhaustive graph search for least-cost paths
between all pairs of nodes [11] suffices for finding the
most-probable b-dependency paths . DATMI records the
composed probability of the chain of b-dependency
paths leading up to each pinterp when its b-dependency
path is found. It finds the most-probable paths from
each COMPATIBLE pinterp of a segment G to each ACTIVE
pinterp of the backward neighboring segment B using
least-cost path search over all those pinterps, with the
following cost assignments . The cost of each pinterp of
B is the inverse of its (recorded) composed probabil-
ity. The cost of each pinterp of G is the inverse of its
property probability . The cost of each transition is the
inverse of its conditional probability . The total cost of
a path is thus the product of the costs it entails .

Actually, DATMI avoids the cubic time cost of ex-
haustive least-cost path search by performing efficient
best-first search for each pinterp, resorting to least-cost
search only when some cubic function of states have
been examined without success, as detailed in [4] .

5 .2 Durations
Space limitations do not permit an explanation of how
DATMI uses duration bounds to prune candidate b-
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6 Discussion

STATE 39 -* STATE 41 -+

	

STATE 42

	

-+ STATE 38-+

	

STATE 32
0.0 sees

	

4.5

	

7.0

	

14.0

	

(instant) 14 .0 < t <I5.0

	

19.0
Figure 5 : The pinterp-space when hypothesized faulty data retracted

dependency paths during best-first search . However, it
is important to realize that such bounds can be incorpo-
rated into the DATMI framework to avoid interpretations
which are inconsistent with those constraints . One sim-
ple example is indicated by the b-dependency paths in
Figure 5 . The b-dependency path for state 19 in seg-
ment Segll includes state 17 in segment Seg10 instead
of state 19 in Seg10 . State 19 cannot span from Seg10
to Segll because it is an instantaneous state .

DATMI incrementally maintains a concise interpretation
space, which allows it to quickly detect faulty data
and then efficiently recover by doubting observations.
It provides a framework for integrating domain-specific
knowledge, such as probability and duration estimates,
with the causal constraints given by qualitative simula-
tion . Its use of dependency paths makes maintenance
efficient and provides the best working global interpreta-
tion at all times . Furthermore, it indicates which states
can consistently occur during each segment, making it
suitable for monitoring tasks and providing strong focus
for finding alternative global interpretations . DATMI has
been fully implemented and tested on several examples
from both QPE and FROB [9] domains, suggesting that it
is applicable to any system of qualitative physics .

P3 LI>L2 Ll>L2 LI>L2 LI>L2 Ll>L2 Ll>L2 LI>L2 Ll>L2 ? Ll<-L2 ?
P4 PUMP

o'
? ? an an on .,

(Off) (Off) (OM
P7 Ll steady steady ? decrease decrease decrease decrease decrease decrease decrease decrease
PS L2 steady steady ? increase increase increase increase increase increase Increase ?
PI FR steady steady steady steady ? Increase increase increase ? ? ?



To avoid intractable temporal reasoning during in-
terpretation, DATMI accepts two key limitations . First,
global interpretations are not always most appropriately
represented by DATMI's linear sequences of states . For
example, partial orderings provide more general expla-
nations, but DATMI's use of global segmentation and lo-
cal dependency paths precludes them . Second, DATMI
requires an appropriate envisionment as input . By refer-
ring to an available envisionment, DATMI's pinterp-space
maintenance requires time at most cubic in the number
of envisionment states . This bound is based on the cu-
bic worst-case time cost for finding the most-probable
b-dependency paths ; DATMI's overall cubic worst-case
complexity is analyzed in [4] .
Although envisioning itself can be exponential in the

number of system variables, we suspect that it is more
efficient to cleanly separate envisioning from interpret-
ing for tasks where a large fraction of the envisionment
states are likely to occur or where observations are very
sparse. . This intuition is based on the efficient tech-
niques developed for total envisioning, such as those
described in [8] . To handle the other cases, we are
currently developing incremental envisioning techniques
which could provide DATMI with previously unavailable
states and transitions when suitable interpretations can-
not be found using a working partial envisionment .
By not accepting DATMI's two key limitations, related

approachs allow other gains while sacrificing the ability
to interpret incomplete, faulty data as efficiently and ro-
bustly as DATMI. For example, Q2 [10] can exploit more
of the quantitative information in the measurements as
it generates consistent histories. However, to ensure
that it can always offer some interpretation, Q2 must be
able to follow every branch during history generation,
which can be exponential in the number of states . Al-
though the number of paths through an envisionment
is also exponential in the number of states, DATMI never
needs to consider more than a cubic number of them
(during dependency path search) because of the factor-
ization of the problem provided by global segmentation .
GDE [3] provides an alternative means for handling in-

consistencies between the measurements and the model.
It is not directly suited for our problem because its fo-
cus is on determining faults in the system itself, not the
observations . Although it acknowledges sensor failure
rates, it does not attempt to reason about the nature
of such failures, as DATMI does with sensor failure hy-
potheses . Also, GDE does not reason over time . The
consequences of using TCP [13] with GDE to allow across-
time reasoning, which deKleer and Williams suggest as
future work, are not clear . Although TCP's concise his-
tories could represent partially-ordered interpretations,
that approach would suffer from overhead that DATMI's
globally-segmented pinterp-space avoids .
The DATMI framework suggests future research in sev-

eral directions . Continued progress in qualitative mod-
elling, along with incremental envisioning, is needed .
Multiple faults might be handled by not always retract-

ing a hypothesis when it fails to recover from all the
inconsistencies by itself. Also, more formal, general
techniques for generating fault-recovery hypotheses are
needed, perhaps based on knowledge groups as in [2] .
Finally, the data selection problem (i .e . using the most
informative data first) might be addressed by preferring
observations at times nearest the segments having the
most ACTIVE pinterps .
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