
Dynamic Case Creation and Expansion for Analogical Reasoning

Thomas A. Mostek, Kenneth D. Forbus, and Cara Meverden

Qualitative Reasoning Group, Northwestern University

Abstract
Most CBR systems rely on a fixed library of cases, where
each case consists of a set of facts specified in advance.
This paper describes techniques for dynamically extracting
cases for analogical reasoning from general-purpose
knowledge bases, and dynamically expanding them during
the course of analogical reasoning. These techniques have
several advantages: (1) Knowledge authoring is simplified,
since facts can be added without regard to which case(s)
they will be used in. (2) Reasoning is more efficient, since
task constraints can be used during case extraction to focus
on facts likely to be relevant. (3) Larger problems can be
tackled, since cases can be dynamically expanded with more
details during the matching process itself, rather than
starting with completely detailed cases. We describe
algorithms for case extraction and case expansion, including
how a version of the Structure-Mapping Engine (SME) has
been modified to incorporate this new matching technique.
The utility of this technique is illustrated by results obtained
with two large knowledge bases, created by other groups,
and used to answer questions in the DARPA High-
Performance Knowledge Base Crisis Management
Challenge Problem.

Introduction
Analogical reasoning operates by comparing cases. In
most case-based reasoning systems, cases are stored as
named collections of facts in a memory (c.f. [15, 16]).
Most CBR systems are designed for a specific range of
problems, and this strategy can be effective for such tasks.
However, it becomes problematic for creating systems that
can tackle multiple types of problems, involving very large
amounts of knowledge. An International Crisis
Management Assistant, for example, would require
substantial knowledge of the nations of the world and their
history. How should this knowledge be organized into
cases? For example, facts about Great Britain presumably
appear in cases describing WWI, WWII, and Great Britain,
as well as cases describing interactions of Great Britain
with other countries and describing events that occur inside
it. Knowing what to store where becomes a complex issue,
leading to potential missed inferences and storage
redundancies. Worse, different tasks demand different
types of information. Reasoning about Great Britain’s
military options in response to a hypothetical threat is, for
instance, unlikely to require knowledge of its livestock
feeding practices, although such practices are very relevant
in reasoning about its economic relationships with the rest
of the European Union. The static organization of
knowledge into cases, whose contents are crafted by
human designers in advance, is unlikely to scale to this
level of application system, let alone the human-like

flexibility of common sense reasoning.

Considering what would be involved in scaling up to
human-sized knowledge bases raises a second problem
with case organization: Controlling level of detail. For
example, a representation of the Persian Gulf War might be
broken into three major phases: the invasion of Kuwait,
Operation Desert Shield, and Operation Desert Storm.
Each of these phases consists in turn of various events,
which are often further decomposable, and so on. Similar
examples abound in medicine, engineering, science, and
business. A rich case library should describe complex
systems and events at multiple levels of detail.
Unfortunately, larger cases are more expensive to match:
directly comparing two full cases containing thousands of
propositions can easily blow out even today’s large
memories and render a system too slow to be usable. The
ability to modulate the level of detail during matching
seems essential to scaling up.

This paper proposes a new method for organizing and
using case libraries in analogical reasoning. The idea is to
store the facts of all cases in a general-purpose knowledge
base, and automatically extract relevant subsets of
knowledge for reasoning, based on task constraints. This
leads to two techniques:
1. Dynamic case extraction extracts case contents from a
knowledge base, given a target entity and a query about
that entity.
2. Dynamic case elaboration expands a case during the
matching process, adding more information to help the
matcher decide between competing submatches.

These techniques have three advantages. First, they
simplify knowledge authoring: Concrete, specific facts can
be added without regard to which case (or cases) they are
part of, since that decision will be made automatically.
Second, reasoning with cases can be made more efficient:
The contents of a case can be partially determined by the
current task, thus eliminating irrelevant material from
consideration. Third, larger cases can be handled. In a
fixed-contents case memory, finding the right level of
detail is a difficult tradeoff. Too little detail, and useful
inferences will be missed. Too much detail, and the
reasoning system bogs down. We show that dynamic case
expansion enables us to handle detailed cases that, on the
same system, lead to memory blowouts if matched directly.

The next section begins with a brief review of the relevant
aspects of structure-mapping theory, SME, and
MAC/FAC, the analogical reasoning approach and tools

Proceedings of AAAI-2000

we are using. Then we describe the methods we use for
structuring cases in a knowledge base and extracting
relevant aspects of them via KB queries. Dynamic case
expansion during matching is discussed next. Empirical
results obtained as part of the DARPA High Performance
Knowledge Bases Crisis Management Challenge Problem
follow, showing that these techniques work well with two
different knowledge bases and case libraries, neither
authored by us. Finally, we discuss related work and
future plans.

Prelude: Cases and analogical matching
According to structure-mapping theory [11], an analogy
match takes as input two structured representations (base
and target) and produces as output a set of mappings.
Each mapping consists of a set of correspondences that
align items in the base with items in the target and a set of
candidate inferences, which are surmises about the target
made on the basis of the base representation plus the
correspondences. The constraints that govern mappings,
while originally motivated by psychological concerns [11],
turn out to be equally important for the use of analogy in
case-based reasoning, since they ensure that candidate
inferences are well defined and that stronger arguments are
preferred [12].

Two simulations based on structure-mapping are
particularly relevant to this paper. The Structure-Mapping
Engine (SME) [1,5,7] is a cognitive simulation of
analogical matching. Given base and target descriptions,
SME finds globally consistent interpretations via a local-
to-global match process. SME begins by proposing
correspondences, called match hypotheses, in parallel
between statements in the base and target. Then, SME
filters out structurally inconsistent match hypotheses.
Mutually consistent collections of match hypotheses are
gathered into global mappings using a greedy merge
algorithm. An evaluation procedure based on the
systematicity principle is used to compute the structural
evaluation for each match hypothesis and mapping. These
numerical estimates are used both to guide the merge
process and as one component in the evaluation of an
analogy. SME operates in polynomial time, and its results
can be incrementally extended as new information arrives.

MAC/FAC is a two-stage model of similarity-based
retrieval that is consistent with psychological constraints
[6] and has been used in a fielded application [6]. The key
insight of MAC/FAC is that memory contents should be
filtered by an extremely cheap match that filters a
potentially huge set of candidates, followed by a structural
match (i.e., SME) to select the best from the handful of
candidates found by the first stage. The extremely cheap
match is based on content vectors, a representation
computed from structured descriptions. Each dimension of
a content vector represents the number of occurrences of a

particular predicate in a description. For example, if a
(tiny) description had three BEFORE statements and one
IMPLIES statement, its content vector would be
((BEFORE 0.75)(IMPLIES 0.25)). Content vectors are
normalized to avoid size biases. Content vectors are useful
cheap matchers because their dot product provides an
estimate of the largest structural match that could be
obtained between the two original structured descriptions.
During the construction of the match hypothesis forest in
SME, base and target items with identical predicates are
hypothesized to match, which may in turn suggest other
matches (e.g., entity matches, non-identical function
matches). Thus the size of a match hypothesis forest for
two structured descriptions is roughly correlated with the
dot product of their corresponding content vectors. In this
paper, we use content vectors as a cheap similarity metric.
Every entity (and indeed every predicate) in the knowledge
base has an associated content vector, derived from the set
of statements in the KB that mentions that entity.

Dynamic case construction
Cases are about something. That something can be a
specific entity (e.g., the United States) or an event (e.g.,
WWII). Depending on task, even abstract concepts can be
the subject of comparison, e.g., comparing notions of
justice across cultures. We assume that one can always
identify a seed for a case, the entity that the case is about.
Given a task T, the case for a seed is a subset of facts from
the KB about seed that are relevant for T. The two issues
that must be addressed are
1. What facts about a seed S are relevant for a given task T?
2. What bounds the subset of the KB to be included?
The set of facts about S that are relevant to T can be
divided into two sets: Those that explicitly mention S and
those that do not. (If the term S appears in fact F, we
denote this via Mentions(F,S).) Not every fact that
mentions S is relevant: In reasoning about possible US
responses to an economic crisis, it is very unlikely that the
fact that George Washington was the first US president
will be relevant. We assume that for each task T, a set of
predicates RP(T) can be identified such that statements
whose predicates are in RP(T) and mention S are relevant.
For example, in the case of reasoning about economic
interests, predicates such as has-economic-interest and
economic-action are included in RP(economic-

interests). RP can be defined very broadly, excluding
only predicates used for internal, bookkeeping statements,
or very sharply, including only predicates relevant to a
particular aspect of knowledge about a domain (e.g.,
economic versus political versus military). RP can also be
defined via inference rather than via explicit enumeration.

Unfortunately, task constraints are often more complex
than can be expressed in terms of simply filtering via
categories of predicates. For example, when reasoning
about options a country might have had in a situation based
on a historical precedent, one wants to extract the relevant
facts of the situation up to, but not after, the key event. By

doing this, the match against the historical precedent will
yield candidate inferences that represent potential options
for the new situation that are analogous to what occurred in
the historical precedent. Such task constraints can be
expressed in terms of filtering out facts that match some
specific criterion. Since the criterion depends on the
details of the task and the representations, we must settle
for describing it abstractly. Consequently, we assume the
existence of a procedure, Filter?, that takes two
arguments, a fact and a task, and returns true if the given
fact should be ignored.

We can use RP and Filter? to narrow in on the facts
relevant to a task. Let the set RM(S,T) be the set of facts
that mention S, whose predicate is in RP(T), and which do
not satisify Filter? (i.e., they are relevant to the task).
RM(S,T) constitutes the relevant facts for T that mention S
explicitly. These are not necessarily all of the relevant
facts, of course, since the background for these facts in turn
may need to be considered.

The set of relevant facts that do not mention S explicitly is
found by recursive expansion, based on the entities
mentioned in RM(S,T). Let GT(<expressions>) refer to
the set of ground terms occurring in the statements
<expressions>. The terms (i.e., entities, events, processes,
etc.) in GT(RM(S,T)) are the conceptual entities for which
additional facts should be included, since constraints on
these terms can affect conclusions drawn with RM(S,T).
Let the basic relevant facts RB(S,T) be defined as follows:
 RB(S,T) = {f ∈ KB | f ∈RM(S,T)
 ∨ [predicate(f) ∈ RP(T)
 ∧ GT({f}) ⊆ GT(RM(S,T))] }
That is, RB(S,T) is the set of facts in RM(S,T), plus the
facts that mention only entities in RM(S,T). The basic
relevant set of facts can be expanded by recursively
computing RB(e,T), for every e∈GT(RM(S,T)), and taking
their union.. Obviously, the scope of this expansion has to
be limited, otherwise in a highly interconnected knowledge
base, all the facts will be included in every case. We
scope the expansion by having Filter? be more
constrained on facts that don’t mention S. Table 1 shows
the different Filter? methods for the case denoting
functions from [9], which range from no expansion
(minimal-case-fn) to expanding all the sub-parts of the
original case (recursive-case-fn). The appropriate
definitions for what are internal, bookkeeping predicates
(book-keeping?), causal relationships (causal?),
part/whole relations (subparts?) and attributes
(attributes?) will be specific to the particular KB. For
example, in Cyc isa statements constitute attributes.

Input:
• An entity or expression S which the case will be about.
• A knowledge base KB and task T
• A procedure Filter? that encodes task-specific
constraints (see text).

Procedure GenerateCase(S,T)

1. RM(S,T) ← {}
2. For all f ∈ KB s.t. Mentions(f,S),
 2.1 If predicate(f)∈RP(T) ∧ ¬Filter?(f,T) then
 RM(S,T) ← RM(S,T) ∪ {f}
3. RB(S,T) ← RM(S,T)
4. For each E in GT(RM(S,T))
 4.1 RB(S,T) ← RB(S,T)∪GenerateCase(E,T)

Figure 1: GenerateCase algorithm

Function Method
Minimal-case-
fn(S)

Book-keeping?(f) or ¬mentions(f,S)

Case-fn(S) Book-keeping?(f) or (¬mentions(f,S) and
¬Attribute?(f))

Event-case-fn(S) Book-keeping?(f) or (¬mentions(f,S) and
¬(Attribute?(f) or causal?(f)))

Agent-case-fn(S) Book-keeping?(f)
In-context-case-
fn(S,C)

Book-keeping?(f) or GT(f) � subparts(C) = φ
or (¬mentions(f,S) and ¬Attribute?(f))

Recursive-case-
fn(S)

Book-keeping?(f) or(GT(f) ⊄ GT(RM(S,T) and
¬mentions(f, {subparts(S)})

Table 1 – The semantics of filter? for the analogy ontology
case functions

Dynamic case expansion
Complex cases typically have a hierarchical structure.
Complex events have subevents, complex objects have
parts, complex systems have subsystems, and complex
devices have components. This hierarchical structure
typically manifests itself in representations by things that
are conceptual entities at one level being expanded into a
collection of facts and entities when viewed at a finer level
of detail. Matching can be made more efficient by
exploiting this hierarchical structure. All matchers require
time proportional to the size of the input descriptions.
Starting with a high-level description, then incrementally
refining the match by further exploring potentially
corresponding parts, avoids considering many fruitless
matches. For example, in comparing a person to a
chimpanzee the rough match between their overall form
invites a closer look at comparing their heads but not, say,
the human’s head to the chimpanzee’s foot. Matching then
becomes an incremental, iterative process, with the results
of one stage of matching helping to guide the next. We
call this process dynamic case expansion.

The ideas of the previous section provide the framework
needed for dynamic case expansion. Given a comparison,
the seed is chosen to be at an appropriate level of detail
(i.e., Persian Gulf War versus Operation Desert Storm
versus a particular sortie), corresponding to the highest
level of abstraction required. Base and target cases are
created, without recursing, and SME is used to create the
forest of match hypotheses that describes how statements
in these two cases might be aligned. As noted above,
expansion takes place at entities, so it is potential matches
(MHs) between entities that form the candidates for
expansion. There are three criteria used for deciding

Proceedings of AAAI-2000

whether to expand an MH:
1. There must be at least one other competing MH for
either the base or target entity in the original MH. Only
those MH’s whose score is close to the top scoring MH
(currently 60%) are considered.
2. The content vector overlap between the two entities
paired by the MH must be over some threshold (currently
0.4). This heuristic makes it more likely that expansion
will give rise to new overlapping structure.
3. A task-specific procedure, Expandable?, which takes as
arguments a candidate for expansion and the depth, and
returns true if the candidate is worth expanding. For
example, in reasoning about international crises it is
typically only appropriate to expand events one level,
whereas actors and goals are worth expanding deeper.

An MH is expanded by treating the entities it pairs as seeds
for case extraction, as described in the previous section.
The new facts for the entities are added to the appropriate
descriptions (i.e., facts about the base entity are added to
the base, and similarly for the target). Normally, when
new statements are added to the base or target, SME’s
incremental match process extends the set of match
hypotheses by considering the new base items against all
of the target, and the new target items against all of the
base. Our focused match algorithm modifies this by
considering the new base items only against the new target
items, thus avoiding hypothesizing local matches that are
likely to be irrelevant. This process continues recursively,
up to some depth bound (currently 2). The algorithm is
described in detail in Figure 2.

Inputs:
• The base B and target T being compared
• The knowledge base KB from which B & T were drawn
• Procedures Filter? and Expandable? that encodes task-
specific constraints (see text).
• An integer MaxDepth which limits expansion by depth
• A threshold CVOverlap that specifies the minimal
content vector overlap (currently 0.4).
• The match hypothesis forest MHS created by the standard
SME algorithm given initial B, T.
Context: This algorithm is executed immediately after the
usual match hypothesis forest step in the incremental SME
algorithm, and when finished, the rest of the SME
algorithm proceeds as usual.

Procedure CaseExpansion
 For each MH in MHS, ExpandMHS(MHS, 0)

Procedure ExpandMHS(theMHS, depth)
1. When depth = MaxDepth, return.
2. For each MH in theMHS

a. Unless Entity?(BaseItem(MH)), skip.
 2.2 Unless InCompetition?(MH, newMHS), skip.
 2.3 Unless Expandable?(MH), skip.
 2.4 Unless CVDotProduct(MH) > CVOverlap, skip.

2.5 NewBase ← GenerateCase(BaseItem(MH),KB)

2.6 NewTarget ← GenerateCase(TargetItem(MH),KB)
2.7 NewMHS ← CreateMHS(NewBase,NewTarget)
2.8 MHS ← MHS ∪ NewMHS
2.9 ExpandMHS(NewMHS, depth+1)

Procedure CVDotProduct(MH)
 ContentVector(BaseItem(MH))
 • ContentVector(TargetItem(MH))

Procedure InCompetition? (MH1, MHS)
1. For each MH2 ∈MHS, such that MH1 ≠ MH2
 1.1 Unless BaseItem(MH1) = BaseItem(MH2) or
 TargetItem(MH1) = TargetItem(MH2), skip.
 1.2 If CVDotProduct(MH2) > CVOverlap, then
 return True from InCompetition?
2. Return False from InCompetition?

Figure 2: Dynamic case expansion algorithm

Importantly, this process is different from recursively
calling SME on the cases created from the entities because
global mappings are not created during expansion at any
level. Structure-mapping theory tells us that large,
systematic matches are preferred [11]. Global mappings
between lower-level matches would not be sensitive to
relations that occur at higher levels. By keeping all of the
match hypotheses in the same forest, SME’s constraint
satisfaction mechanisms can combine evidence from all
levels in creating its interpretations, which improves
accuracy and enables interpretations to include all relevant
levels of detail.

The worst-case complexity of the focused match algorithm
is polynomial, assuming a fixed maximum depth limit for
recursive expansion and assuming that the computation of
RM and RP is polynomial. The latter are polynomial if
implemented as lookup operations rather than inference
steps; if they require inference, then the complexity of the
inference machinery becomes a factor. The savings over
uniform preexpansion come from two sources: (1) Many
fewer match hypotheses are generated, saving storage and
time, and (2) fewer match hypotheses means fewer things
to consider when constructing global interpretations.
These savings can be significant in practice, as the next
section illustrates.

Empirical Results
In the DARPA High Performance Knowledge Bases
program, the Crisis Management Challenge Problems
focused on building knowledge bases and systems that
could answer the kinds of queries that an analysts’ assistant
might provide. When reasoning about international crises,
analysts commonly rely on analogy to analyze the present
in terms of history (c.f. [17,18]). Consequently, a number
of analogy queries were included in the tests, and we used
the algorithms described here in providing analogical
processing services for both teams in the evaluation.

Examples of the analogy questions include

TQE225: How is the UN’s mediation of the dispute
between Iran and the Taliban in the 1998 Iranian-
Taliban Crisis similar to the UN’s mediation of
the dispute between Iran and the GCC in the Y2
Scenario?

SQM226: Who/what is IRAN in Y2-SCENARIO-CONFLICT
similar to in PERSIAN-GULF-WAR? How so, and how
are they different?

Examining how the case creation and case expansion
algorithms work on these problems is a good test for two
reasons. First, the cases involved in these problems were
often substantial, two orders of magnitude larger than
many examples used in the analogy literature, and an order
of magnitude larger than anything we had tackled
previously. Second, our algorithms had to work with two
independently developed knowledge bases, created by
other research groups. (Since the evaluation was
competitive, we were allowed to consult with both teams
about how to improve their knowledge bases, but were not
allowed to make extensions ourselves.)

Table 2 describes data from an experiment using queries
from the Crisis Management challenge problem. The first
two columns indicate what team’s KB was used and the
specific query. The next six columns show the initial size
of the base or target, as found via GenerateCase (Start),
how large it reached due to dynamic expansion (Final), and
the size of the full case (Max). The results of dynamic
case creation and expansion are shown in the next two
columns, which indicate the size of the match hypothesis
forest generated in SME (MHs) and the total run time
(seconds). The final four columns provide data that help
tease apart the relative contributions of dynamic case
expansion versus creation. The No Dynamic Expansion
column shows the amount of work done when the focused
match algorithm is not used. In this condition, SME is
being run on the largest cases found dynamically, but
interactions between different aspects of the cases matches
are considered, as opposed to only attempting matches
between expansions of corresponding parts. The final pair
of columns indicate the amount of work done if the full

cases were compared. Runs marked with “*” indicate that
the program hadn’t completed by the time recorded. The
task-specific settings of the algorithms used in these runs
were as follows: For RP, only internal, bookkeeping
predicates were excluded. For Filter?, depending on the
query, either nothing was filtered out, or causal
consequences of the seed were filtered out. Expandable?
always expanded interests and was set so events were
expanded first, and objects expanded at the last iteration.
This reduced complexity in the scoping algorithm used in
Filter?. The same parameter settings were used for both
team’s KB’s; only the particular lists of predicates (e.g.,
what constituted a bookkeeping predicate, interest, or
event) varied.

The table contents are ordered by the worst-case match
hypothesis count. Several interesting properties can be
seen in this table1. First, smaller cases are faster, and when
sufficiently small, the complete case tends to be retrieved.
Looking at the KB, the cases used in these queries are
without substantial substructure, so this makes sense.
Even on these smaller cases, some space savings occurs
due to the focused nature of the matches used during case
expansion, but the overhead of dynamic expansion makes
the runtime slower. However, on larger cases, both
significant time and space savings are found: up to an order
of magnitude reduction in storage, and finishing in a
reasonable time versus not finishing at all in the largest
cases. The average storage savings over all examples is
75%, and the speedup over the entire set of queries is 4.6.
The combination of significant speedups plus the ability to
do examples that were impossible before is strong evidence
for the utility of our techniques.

Related Work
In some systems cases are automatically generated by
performance systems (c.f. , [1]) but most often cases are
created manually, with the help of software tools (e.g.,
[15]). Although cases can be added to or modified by

1 It may seem surprising that run time is not always a
monotonic function of the number of MHs, but this falls
directly out of the structure of the SME algorithm [7]

TABLE 2: Crisis
Management queries

Base Target Dynamic
Creation +expansion

No Dynamic
Expansion

No Dynamic
Creation

Team Query Start Final Max Start Final Max MHs Seconds MHs Seconds MHs Seconds
SAIC SQM226 777 883 2062 632 822 1312 2579 27 10634 346 36602 3000*
SAIC TQE225 437 503 1057 777 863 2062 2030 32 11437 310 33114 2400*
SAIC TQE226 777 1117 2062 239 507 507 3976 144 11699 259 18824 1493
Cyc TQE225 299 721 721 192 1891 1891 9146 141 11614 821 11614 821
Cyc SQM226 192 1891 1891 108 592 592 6319 112 9299 307 9299 307
SAIC TQM226 240 324 493 632 729 1312 1470 12 3619 13 8933 123
Cyc TQE226 192 1842 1891 34 168 168 1857 47 2704 46 2704 46
SAIC TQF225a 184 274 274 234 486 486 1499 14 2122 5 2122 5
Cyc TQM226 119 205 205 108 592 592 1318 8 1583 3 1583 3
Cyc TQF225a 79 239 239 120 457 457 780 7 869 1 869 1
Cyc TQF225b 118 129 129 423 440 440 665 4 665 1 665 1
SAIC TQF225b 91 120 120 99 144 302 302 6 333 1 333 1

Proceedings of AAAI-2000

human authors, from the perspective of the reasoning
system such case memories are static, since they are not
being evolved during the course of reasoning. The practice
of storing results of a problem solving session as new
cases, while helping to expand a system’s performance
across multiple reasoning sessions, does not affect the
structure of cases within a single reasoning session itself.

The closest previous work is Progressive Sapper [19],
which combines spreading activation with progressive
deepening to provide an anytime algorithm for retrieval.
Unfortunately, like Sapper, it accumulates match
hypotheses in long-term memory, which leads to an
exponential growth over time. Thus it seems unlikely that
this model would scale up to the size of knowledge bases
that our system handles. Progressive Sapper also does not
exploit the semantics of the domain and task in the way
that we do, nor does it exploit the ongoing match in
deciding how to expand a case.

Discussion
The traditional reliance of CBR on a libraries of fixed-
structure cases has been useful in practice, but it is unclear
that such techniques will scale to human-scale memories.
The ability to dynamically extract cases from large-scale
knowledge bases, combined with the ability to dynamically
expand them during matching, supports the use of
analogical reasoning with rich, relational representations
drawn from large-scale, general-purpose knowledge bases.
In addition to providing a fundamentally new capability,
dynamic case expansion also provides more efficient
matching on large descriptions, facilitating scale-up. The
fact that these techniques succeed on multiple large-scale
knowledge bases constructed by other research groups is
strong evidence that these techniques are generally useful

A number of issues remain to be explored. As the structure
of large knowledge bases becomes understood, it may be
possible to have a stronger theory of what our algorithm
currently uses as procedural parameters. Techniques from
compositional modeling [6] might be generalized to
automatically handle selection of initial perspective and
level of detail. Finally, new possibilities for dynamic
expansion open up when considering larger-scale systems:
Suppose SME were run to completion with the most
abstract level of match, with expansion taking place when
a downstream system needed more detail about a particular
aspect of a comparison. This could provide a useful
generalization to Falkenhainer’s map/analyze cycle [3].

Acknowledgements

This research was supported by the DARPA High
Performance Knowledge Bases program and by the AI
Program of the Office of Naval Research.

References

1. Blythe, J. & Veloso, M. (1997) Analogical replay for efficient
conditional planning, Proceedings of AAAI-97, pages 668-673.
2. Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B.,
Gunning, D., & Burke, M. 1998. The DARPA High Performance
Knowledge Bases Project. AI Magazine, Winter, 1998.
3. Falkenhainer, B. (1987). An examination of the third stage in
the analogy process: Verification-based analogical learning.
Proceedings of IJCAI-87, 260-263.
4. Falkenhainer, B., Forbus, K., & Gentner, D. (1986, August)
The Structure-Mapping Engine. Proceedings of AAAI-86,
Philadelphia, PA
5. Falkenhainer, B., Forbus, K., & Gentner, D. (1989) The
Structure-Mapping Engine: Algorithm and examples. Artificial
Intelligence, 41, pp 1-63.
6. Falkenhainer, B. & Forbus, K. “Compositional Modeling:
Finding the Right Model for the Job”, Artificial Intelligence, 51
(1-3), October, 1991.
7. Forbus, K., Ferguson, R. & Gentner, D. (1994) Incremental
structure-mapping. Proceedings of the Cognitive Science Society,
August.
8. Forbus, K., Gentner, D. & Law, K. (1995) MAC/FAC: A
model of Similarity-based Retrieval. Cognitive Science, 19(2),
April-June, pp 141-205.
9. Anonymous authors. An analogy ontology for integrating
analogical processing and first-principles reasoning. Submitted to
AAAI-2000.
10. Forbus, K.D., Whalley, P., Everett, J., Ureel, L., Brokowski,
M., Baher, J. & Kuehne, S. (1999) CyclePad: An articulate virtual
laboratory for engineering thermodynamics. Artificial
Intelligence.
11. Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.
12. Gentner, D. (1989). The mechanisms of analogical learning.
In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical
reasoning (pp. 199-241). London: Cambridge University Press.
(Reprinted in Knowledge acquisition and learning, 1993, 673-
694.)
13. Gentner, D., & Holyoak, K. J. (1997). Reasoning and
learning by analogy: Introduction. American Psychologist, 52, 32-
34.
14. Gentner, D., & Markman, A. B. (1997). Structure mapping
in analogy and similarity. American Psychologist, 52, 45-56. (To
be reprinted in Mind readings: Introductory selections on
cognitive science, by P. Thagard, Ed., MIT Press)
15. Kolodner, J. L. (1994). Case-based reasoning. San Mateo,
CA: Morgan Kaufmann Publishers.
16. Leake, D. (Ed.) 1996. Case-Based Reasoning: Experiences,
Lessons, and Future Directions, MIT Press.
17. Neustad, R. & May, E. 1988. Thinking in time: The uses of
History for Decision Makers. Free Press.
18. IET, Inc. and PSR Corp. 1999. HPKB Year 2 Crisis
Management End-to-end Challenge Problem Specification.
http://www.iet.com/Projects/HPKB/Y2/Y2-CM-CP.doc
19. Veale, T., & Keane, M. T. 1998. 'Just in Time' Analogical
Mapping, An Iterative-Deepening Approach to Structure-
Mapping. Proceedings of ECAI'98, the Thirteenth European
Conference on Artificial Intelligence

