
Draft of 7/5/00 1

Articulate Software for
Science and Engineering Education

Kenneth D. Forbus

Computer Science Department/School of Education and
Social Policy

Northwestern University
1890 Maple Avenue

Evanston, IL, 60201, USA
Email: forbus@nwu.edu

To appear in: Forbus, K., Feltovich, P, and Canas, A. Smart Machines in Education: The
coming revolution in educational technology. AAAI Press.

Draft of 7/5/00 2

1 INTRODUCTION... 3

2 QUALITATIVE PHYSICS AND ARTICULATE SOFTWARE 3

3 ARTICULATE VIRTUAL LABORATORIES ... 6

3.1 CYCLEPAD: AN AVL FOR ENGINEERING THERMODYNAMICS 7
3.2 USING CYCLEPAD: AN EXAMPLE... 10
3.3 HOW CYCLEPAD HELPS STUDENTS .. 13
3.4 HOW CYCLEPAD WORKS.. 14

3.4.1 CyclePad’s Knowledge Base .. 14
3.4.2 CyclePad's Analysis Methods ... 15
3.4.3 CyclePad's Coaching .. 19

3.5 DISCUSSION ... 21

4 ACTIVE ILLUSTRATIONS ... 23

4.1 EXAMPLE: THE EVAPORATION LABORATORY.. 24
4.2 HOW ACTIVE ILLUSTRATIONS WORK ... 25
4.3 HOW ACTIVE ILLUSTRATIONS CAN BE USED .. 31

5 DISCUSSION .. 32

6 ACKNOWLEDGEMENTS ... 33

7 REFERENCES.. 33

Draft of 7/5/00 3

1 Introduction
Improving science and engineering education is a critical problem for technological
societies, who, in addition to needing scientists, engineers, and technicians, need a
scientifically literate population in order to make wise decisions. We believe a new kind
of educational software, articulate software, can help solve this problem. Articulate
software understands the domain being learned in human-like ways, and can provide
explanations and coaching to help learners master it. Articulate software is made
possible by advances in artificial intelligence, particularly in qualitative physics,
combined with the ongoing revolution in computer technology. This chapter explores the
ideas underlying articulate software and describes two architectures for articulate
software that we have developed:
• Articulate virtual laboratories (AVLs) help students learn by engaging them in

conceptual design tasks. We illustrate this architecture with two examples:
CyclePad, an AVL for engineering thermodynamics which is now routinely used at a
number of universities worldwide, and FAVL, which is designed to help students
understand feedback systems.

• Active Illustrations provide an interactive simulation medium that enables students to
experiment with physical phenomena, providing conceptual explanations as well as
traditional simulator outputs. We illustrate this architecture with several examples,
ranging from stand-alone simulation laboratories (e.g., Evaporation Laboratory, Mars
Colony Ecosystem) to game-style simulations embedded in explanatory hypertexts
(i.e., the Principles of Operations manual for a virtual space probe).

We describe the scientific and pedagogical principles underlying these architectures, and
summarize some of the lessons we have learned by building and deploying them. We
end with some suggestions for what is needed to bring these architectures into
widespread use.

2 Qualitative Physics and Articulate Software
Creating new kinds of educational software has been one motivation for qualitative
physics since its inception (cf. Forbus & Stevens, 1981; Brown, Burton & de Kleer, 1982;
Hollan, Hutchins, & Weitzman, 1984). There are two reasons why qualitative physics is
particularly appropriate for application to science and engineering education. The first is
that qualitative physics represents the right kinds of knowledge. Much of what is taught
in science in elementary, middle, and high school consists of causal theories of physical
phenomena: What happens, when does it happen, what affects it, and what does it affect.
Consider the water cycle, a key topic in middle-school science curricula. Understanding
this cycle requires understanding the kinds of forms that water can be in (e.g., liquid
water, water vapor, snow and ice), the sorts of places it can be (in bodies of liquid water,
underground, in the air), and the processes that transform and move it from place to place
(e.g., flows, evaporation, condensation, freezing, etc.). Traditional mathematical and
computer modeling languages do not attempt to formalize such notions because they are
designed for expert humans who already know such things. For example, the conceptual
understanding that a simulation designer used to create a simulator typically resides at
best in the program’s documentation, and at worst only in the designer’s mind. For many

Draft of 7/5/00 4

purposes this opacity is fine; however, the lack of tight coupling between concepts and
their software embodiment makes it difficult for most educational software to explain its
results.

On the other hand, uncovering how we think about physical entities and processes is one
of the central scientific goals of qualitative physics. Progress in qualitative physics has
led to new modeling languages that describe entities and processes in conceptual terms,
embody natural notions of causality, and express knowledge about the modeling process
itself (cf. Forbus, 1984, Weld & de Kleer 1990; Falkenhainer & Forbus, 1991; Forbus
1996). These languages provide new capabilities for domain content providers of science
education software. By embedding human-like models of entities and processes in
software, the software’s understanding can be used to provide explanations that are
directly coupled to how specific results were derived. These explanations can delve into
topics that traditional software cannot handle, e.g., why a process was considered to
occur or why a specific approximation makes sense. Figure 1 illustrates how qualitative
physics encodes some sample everyday concepts.

 What a student sees

“Evaporation of water from the cup”

“Temperature of the water depends on its heat.”

“Heat flow occurs when two things are touching and

their temperatures are unequal. Heat goes from
the hotter one to the cooler one.”

What the software knows
(evaporation PI2)

(qprop (temp water6)
 (heat water6))

(defprocess heat-flow
 :participants
 src a thermal-object
 dst a thermal-object
 :conditions
 (> (T src) (T dst))
 :consequences
 (I+ (heat dst) (hf self)
 (I- (heat src) (hf self))

Figure 1: Qualitative reasoning provides formal languages for conceptual knowledge

The second reason that qualitative physics is particularly apt for science and engineering
education is that qualitative physics represents the right level of knowledge. We believe
that the tendency for engineering education to be highly mathematical at the expense of
qualitative understanding is counterproductive. Rare is the instructor who does not
lament that students memorize formulae without understanding basic principles. Indeed,
cognitive scientists have extensively documented the existence of persistent
misconceptions that survive college training in domains such as physics (cf. Gentner &
Stevens, 1983). We believe that a strong quantitative sense of the world is crucial for
engineering. However, we believe that principles governing a domain (i.e., the laws,
mechanisms, and causal relationships) need to be mastered at the qualitative level to
provide the kind of deep, robust understanding that engineering education seeks to
impart. Typically, expositions of such knowledge are centered around mathematical

Draft of 7/5/00 5

equations (particularly those which can be solved analytically), in the form of derivations
that mimic the structure of proofs.
While these equations are
important, only a small subset of
students gain the desired
understanding from this method of
presentation. An alternative is to
focus more on teaching qualitative
principles directly. Good
textbooks attempt to do this by
introducing ideas in qualitative
terms before diving into
quantitative details, but they rarely
linger at the qualitative level. One
reason for shortchanging
qualitative understanding is the
lack of a systematic formal
vocabulary for qualitative
knowledge, which makes this
knowledge harder to articulate than
quantitative knowledge.
Qualitative physics provides such vocabularies, and we hope that as these ideas become
more widespread, engineering educators will be able to use them to express aspects of
their expertise that are currently described as “intuition” or “art”.

Whether or not one believes that engineering education must be heavily mathematical, it
is impossible to make such a claim about pre-college science education. Students learn
calculus, at best, at the end of high school, and sometimes only encounter algebra at the
start of high school. Making students memorize differential equations in the guise of
teaching them science simply isn’t an option. Even formal algebraic models are not
feasible for elementary and middle school students. On the other hand, students are
taught about the entities, relationships, and processes needed for a qualitative
understanding of phenomena. They learn what kinds of objects there are (e.g., bodies of
water, clouds) and what parameters exist (e.g., temperatures, pressures, dew points).
They learn partial information about relationships between parameters (e.g., “the rate of
evaporation depends on the water temperature”). They learn when various relationships
are relevant and what physical phenomena they are tied to (e.g., that boiling in the open
air occurs at a constant temperature). In other words, the qualitative mathematics
developed in qualitative physics provides exactly the right level of language for
expressing relationships between continuous properties for pre-college science students.

Properties of articulate software. What these two claims suggest is that qualitative
physics can provide the ability to create much smarter educational software: software
whose models of the world have much in common with people’s mental models. Such
software can use this understanding to explain, coach, and scaffold students in a variety

Why is the

temperature rising?
The temperature

depends on...

How could I
improve my design? This reminds me

of what happened
when ...

Figure 2: Articulate software provides explanations

Draft of 7/5/00 6

of ways (Figure 2). We call such software articulate software. Articulate software
should have the following properties:

• It should be fluent. The software should have some understanding of the subject

being taught, and be able to communicate both its results and reasoning processes to
students in comprehensible forms.

• It should be supportive. It should include a mentoring component consisting of
coaches and tutors that scaffold students appropriately, taking care of routine and
unenlightening subtasks and helping students learn how to approach and solve
problems.

• It should be generative. Students and instructors should be able to pose new
questions and problems, rather than just selecting from a small pre-stored set of
choices.

• It should be customizable. Instructors should be able to modify, update, and extend
the libraries of phenomena, designs, and domain theories used by the software,
without needing sophisticated programming skills. This simplifies maintenance and
provides scalability.

There are potentially many types of articulate software. The rest of this chapter describes
two architectures for articulate software that we have developed. These architectures
provide students with experiences that would often be too expensive, time-consuming, or
dangerous to deal with in the physical world. Articulate virtual laboratories provide
students with design experiences, highly motivating settings for learning principles.
Active Illustrations provide students with simulations that can be used to explore
phenomena. The next two sections examine each architecture in turn.

3 Articulate Virtual Laboratories

Design activities provide powerful motivation and meaningful contexts for learning
fundamental physical principles. In designing a household refrigerator, for instance,
students quickly discover that water makes a poor working fluid because its saturation
curve requires very low operating pressures to achieve vaporization at typical operating
conditions. Design requires that students use knowledge in an integrated fashion rather
than memorizing isolated facts. Getting students to think in design terms leads naturally
to building a strong interest in understanding complex, real-world relationships: The
question “Why did they design it that way?” can be asked of any artifact in the world
around us. Design environments that provide appropriate scaffolding for students, so that
they can focus on particular areas of interest, could prove invaluable for instruction in
basic science as well as engineering, and could better motivate interest in science
learning.

Draft of 7/5/00 7

Figure 3: FAVL helps students learn principles of feedback

The articulate virtual laboratory architecture we have developed addresses this need.
Like existing virtual laboratories (e.g., Electronics Workbench, Interactive Physics) it
includes a software environment for creating and analyzing designs without the expense
(and sometimes danger) of creating physical artifacts. Unlike existing virtual
laboratories, it provides explanation facilities and coaching, to help guide the student.

 We have constructed two articulate virtual laboratories to date: CyclePad (Forbus &
Whalley, 1994; Forbus et al 1999) helps engineering students learn engineering
thermodynamics by supporting students in designing and analyzing thermodynamic
cycles. The Feedback Articulate Virtual Laboratory (FAVL) (Forbus, 1984; Ma, 1998,
1999) helps high school students learn the principles of feedback by designing controllers
(see Figure 3). Since CyclePad is already in routine use, we will focus our discussion on
it.

3.1 CyclePad: An AVL for engineering thermodynamics

CyclePad (Forbus & Whalley, 1994; Forbus et al. 1999) is an articulate virtual laboratory
for engineering thermodynamics. The analysis and design of thermodynamic cycles is a
major task that drives engineering thermodynamics (cf. Whalley, 1992). A
thermodynamic cycle is a system within which a working fluid (or fluids) undergoes a
series of transformations in order to process energy. Every power plant, engine,
refrigerator, and heat pump is a thermodynamic cycle. Thermodynamic cycles play much
the same role for engineering thermodynamics as electronic circuits do for electrical
engineering: A small library of parts (in this case, compressors, turbines, pumps, heat

Draft of 7/5/00 8

exchangers, and so forth) are combined into networks, thus allowing a potentially
unlimited set of designs for any given problem. (Practically, cycles range from four
components, in the simplest cases, to networks consisting of dozens of components.) One
source of the complexity of cycle analysis stems from the complex nature of liquids and
gases: Subtle interactions between their properties must be harnessed in order to improve
designs. Cycle analysis addresses questions such as the overall efficiency of a system,
how much heat or work is consumed or produced, and what operating parameters (e.g.,
temperatures and pressures) are required of its components. As in many engineering
design problems, an important activity in designing cycles is performing sensitivity
analyses, to understand how choices for properties of the components and operating
points of a cycle affect its global properties.

To illustrate, consider the power generation cycle shown in Figure 4. Air from the
atmosphere (S2) is compressed, which raises its pressure and causes its temperature to
rise. More heat is added in the combustion chamber by injecting fuel and igniting it.
Energy is extracted by expanding the gas through Turbine 1, and the gas is reheated and
then passed through Turbine 2 to extract yet more energy. One consequence of the
Second Law of thermodynamics is that a cycle must reject some heat as waste. A clever
feature of this cycle is that it recycles some of this heat, using it to drive another cycle.
This occurs via the heat exchanger, which heats the working fluid in the second cycle.
We will return to the subcycle shortly. In the main cycle, the waste gases are exhausted
back to the atmosphere after going through the heat exchanger. This return to the
atmosphere is represented by a cooler, which enables us to take into account the heat lost
in this transaction. Returning to the heat exchanger, the heat transferred from the gas
cycle is sufficient to vaporize the working fluid (in this case water) in the lower cycle into
superheated steam, which is passed through Turbine 3 to extract yet more work. Finally,
the steam is condensed back into water, exhausting more heat to the atmosphere, and is
pumped back into the heat exchanger to complete the cycle. A thermodynamics expert
would recognize this as a combined cycle, where a Brayton gas cycle with reheat drives a
Rankine vapor cycle.

Draft of 7/5/00 9

Figure 4: Example of a CyclePad design.

In thermodynamics education for engineers, cycle analysis and design generally appear
towards the end of their first semester, or in a second course, since understanding cycles
requires a broad and deep understanding of the fundamentals of thermodynamics.
However, even the most introductory engineering thermodynamics textbooks tend to
devote several chapters to cycle analysis, and in more advanced books the
fraction devoted to cycles rises sharply. Indeed, some textbooks focus exclusively on
cycle analysis (e.g. Haywood, 1985). Aside from their intrinsic interest, the design of
thermodynamic cycles provides a highly motivating context for students to learn
fundamental principles deeply.

There are several reasons why thermodynamics is especially suitable for virtual
laboratories. First, physical laboratories involving even simple thermodynamic cycles
can be expensive and dangerous, due to the need for high temperatures and pressures,
along with dangerous chemicals (e.g., fuels, ammonia). Second, many of the most
interesting systems, such as jet engines and power plants, are far too expensive and time-
consuming to build as student projects. Third, creating working physical artifacts
requires what is known as detailed design, where many concrete choices are made, in
addition to conceptual design, where the basic properties of a system are figured out. It

Draft of 7/5/00 10

is conceptual design that provides the most pedagogical value in teaching fundamental
principles. For example, designing a working jet engine requires selecting an appropriate
curvature for the turbine blades and worrying about shape and weight tradeoffs for every
component. Designing a working power plant that uses water as its working fluid
requires designing draining, cleaning, and lubrication systems. These topics are
important for advanced engineering courses specializing in those areas, but are irrelevant
and distracting when trying to help students master the fundamentals of the domain.

3.2 Using CyclePad: An example

When students start up CyclePad, they find a palette of component types (e.g., turbine,
compressor, pump, heater, cooler, heat exchanger, throttle, splitter, mixer) that can be
used in their design. Components are connected together by stuffs, which represent the
properties of the working fluid at that point in the system.

An important aside: There are actually two perspectives one can take on thermodynamic
cycles: Steady-flow versus closed cycles. In steady flow analyses one treats the fluid
flowing through the system as essentially varying with location rather than time. Typical
applications of steady-flow analyses include power plants and jet engines. In closed
cycle analyses one follows a volume of fluid through a set of changes imposed by
physical processes, regardless of their physical location. Typical applications of closed
cycle analyses include automobile and diesel engines. Closed-cycle problems are also
heavily used early in thermodynamics courses to focus students on the particular
properties of substances and processes. While the laws of thermodynamics are the same
for both perspectives, how the laws are applied varies as a consequence of the ontological
choices each perspective makes. CyclePad supports both perspectives, but we only
discuss steady-flow systems here for simplicity.

Once students put together the structure of the cycle, they continue to use CyclePad to
analyze the system. The student enters assumptions such as the choice of working fluid
and the values of specific numerical parameters. In addition to numerical assumptions,
modeling assumptions can be made about components. For example, a turbine can be
assumed to be adiabatic (i.e., no heat is lost from it to its surroundings), isothermal (i.e.,
no temperature change across it), or isentropic (i.e., constant entropy). Such modeling
assumptions can introduce new constraints that may help carry an analysis further. They
can also introduce new parameters (e.g., the efficiency of the turbine if it isn’t isentropic)
whose values the student must appropriately constrain.

Draft of 7/5/00 11

Figure 5: Meters provide details about parameter values. Green
indicates assumptions and blue indicates derived values.

CyclePad accepts information incrementally, deriving from each student assumption as
many consequences as it can. Meters associated with each component and stuff are
available to describe its properties (see Figure 5). Like physical meters, these meters
display numerical parameters of the entity they represent in a compact tabular form.
Unlike physical meters, they also display the modeling assumptions the student has made
so far, and what other assumptions might yet be made. At any point questions can be
asked, by clicking on an element of a meter display to obtain the set of questions (or
commands) that make sense for it. The questions and answers are displayed in English.
They include links back into the explanation system, thus providing an incrementally
generated hypertext (see Figure 6). This hypertext is important for several reasons. First,
it helps students understand the indirect consequences of their assumptions. Second, the
nature of the domain is such that students often make inconsistent modeling
assumptions1. CyclePad detects and flags such contradictions, and the hypertext system
enables the student to explore the subset of assumptions responsible and decide which to
retract.

1 The historical interest in perpetual motion machines and its manifestations today (the “free energy”
inventors and those dabbling in “over unity technologies”) suggests that this problem is not limited to
students.

Draft of 7/5/00 12

Figure 6: CyclePad’s hypertext explanation system

In addition to the hypertext system, CyclePad incorporates several other tools and
capabilities that help students understand their design. CyclePad will automatically
create a T-S (Temperature-Entropy) diagram on request, a graphic commonly used by
engineers to understand the global properties of a cycle. CyclePad includes an optional
economic analysis model, so that designs can be evaluated on the basis of their cost of
construction and operation. CyclePad can carry out sensitivity analyses, enabling
students to explore how changes in one parameter affect another. Reflecting on graphs of
such sensitivity analyses is useful in understanding the properties of their design and how
modifications might affect it. For instance, students might discover that to obtain the
desired thermal efficiency with their current design the operating temperature would have
to be raised so high that the materials to build it would be too costly.

CyclePad includes two kinds of coaching. The on-board coach provides rapid feedback
for some commonly encountered problems. For example, it recognizes the most common
type of contradiction (i.e., requirements that push a state point outside the bounds of the
property tables) and provides visualizations of the progress of the analysis (i.e., how
much has been pinned down about particular aspects of the cycle so far). It can make
suggestions about reasonable ranges for parameter values, based on its understanding of

Draft of 7/5/00 13

the teleology of the cycle. The email coach provides additional assistance with analysis
and design. The most novel facility in the email coach is the ability to make suggestions
about how to improve a student's design, based on analogies with a library of expert-
authored cases. The coach provides step-by-step instructions illustrating how this
suggestion can be applied to the student’s design. It does not, however, evaluate whether
or not this suggestion is a real improvement – that evaluation provides a valuable learning
opportunity for the students.

3.3 How CyclePad helps students

The design of CyclePad was driven by addressing the needs of instructors in teaching
engineering thermodynamics. A variety of common problems arise when teaching
students how to design and analyze thermodynamic cycles:

1. Students tend to get bogged down in the mechanics of solving equations and carrying

out routine calculations. They avoid exploring multiple design alternatives and avoid
carrying out trade-off studies (e.g., seeing how overall cycle efficiency varies as a
function of turbine efficiency versus how it varies as a function of boiler outlet
temperature). Yet without making such comparative studies, many opportunities for
learning are lost.

2. Students often have trouble thinking about what modeling assumptions they need to
make, such as assuming that a heater operates isobarically (i.e., no pressure drop
across it), leading them to get stuck when analyzing a design.

3. Students typically don’t challenge their choices of parameters to see if their design is
physically possible (e.g., that their design does not violate the laws of
thermodynamics by requiring a pump to produce rather than consume work).

4. Students typically have no basis for relating the values they calculate to the physical
world and their everyday experience. The units of thermodynamic quantities, such as
kilowatts, are not as accessible as pounds or feet. This lack of intuition about, for
instance, whether 10,000 kilowatts is enough to light a room or a city causes students
to treat thermodynamics problems as abstractions divorced from practical application.

These considerations drove the design of CyclePad. Here are how the features shown is
the previous section address these problems:

1. CyclePad handles routine calculations, including equation solving and property-table

interpolation. By facilitating sensitivity analyses, CyclePad encourages students to
develop their intuitions through trade-off studies.

2. CyclePad's interface makes modeling assumptions explicit and highly salient. It
helps them keep track of the consequences of their modeling assumptions.

3. CyclePad detects physically impossible designs, using a combination of qualitative
constraints and numerical reasoning. It alerts students about such problems, and
supports their investigations and resolution of them through its generated hypertext
system.

Draft of 7/5/00 14

4. CyclePad includes benchmarks that help ground parameter values in real-world
examples, and a web-based design library whose entries are accessed based on
analogies with the student's design.

3.4 How CyclePad works
CyclePad uses a combination of artificial intelligence techniques to provide the abilities
outlined in the previous section. These are described in detail elsewhere (Forbus et al
1999), here we summarize them to highlight how they contribute to scaffolding student
learning.

Figure 7: Samples from CyclePad’s knowledge base

(defEntity (Abstract-hx ?self ?in
 ?out)
 (thermodynamic-stuff ?in)
 (thermodynamic-stuff ?out)
 (total-fluid-flow ?in ?out)
 (== (mass-flow ?in)
 (mass-flow ?out))
 (parameter (mass-flow ?self))
 (parameter (Q ?self))
 (parameter (spec-Q ?self))
 (heat-source (heat-source ?self))
 ((parts :cycle) has-member ?self)
 (?self part-names (in out))
 (?self IN ?in)(?in IN-OF ?self)
 ?self out ?out)(?out out-of ?self))

(defAssumptionClass
 ((abstract-Hx ?hx ?in ?out))
 (isobaric ?hx)
 (:not (isobaric ?hx)))

(defEntity (Heater ?self ?in ?out)
 (abstract-Hx ?self ?in ?out)
 (?self instance-of heater)
 (heat-flow (heat-source ?self)
 (heat-source ?self)
 ?in ?out)
 ((heat-flows-in :cycle)
 has-member (Q ?self))
 (> (Q ?self) 0.0))

(defEquation Hx-law
 ((Abstract-Hx ?hx ?in ?out))
 (:= (spec-h ?out)
 (+ (spec-h ?in) (spec-Q ?hx))))

(defEquation spec-Q-definition
 ((Abstract-Hx ?hx ?in ?out))
 (:= (spec-Q ?hx)
 (/ (Q ?hx) (mass-flow ?hx))))

3.4.1 CyclePad’s Knowledge Base
The domain knowledge in CyclePad is represented using techniques from qualitative
physics (Forbus, 1984) and compositional modeling (Falkenhainer & Forbus, 1991).
The knowledge required to support design and analysis goes far beyond just a set of
equations, as the examples in Figure 7 illustrate. CyclePad's domain theory includes:
• Physical and conceptual entities: These include components such as compressors,

turbines, pumps, and heat exchangers; physical processes such as compression,
combustion, and expansion, and the representations of the properties of the working
fluid between them. CyclePad’s knowledge base currently contains over 29 entity
definitions.

• Structural knowledge: What kinds of relationships can hold between components,
process occurrences, and the descriptions of working fluids that connect them.
CyclePad’s knowledge base currently contains 34 structural facts.

• Qualitative knowledge: This includes the kinds of physical processes that can occur
inside components, or in the sequence of operations in an open cycle. Physical
processes constrain the parameters of the situation. For instance, the temperature of
the working fluid coming into a heater cannot be higher than the temperature of the

Draft of 7/5/00 15

working fluid when it leaves. CyclePad’s knowledge base currently contains
definitions of five fundamental physical processes.

• Quantitative knowledge: This includes equations that define relationships between
the parameters of the constituents of a cycle, numerical constants (i.e., molecular
weights), and tables of property values for substances (e.g., saturation and superheat
tables). CyclePad also automatically derives equations for global properties. For
example, equations for net work and heat flows into and out of the cycle are derived
every time the structure of the cycle changes. CyclePad’s knowledge base currently
contains 167 equations, and saturation tables and superheat tables for 10 substances.

• Modeling assumptions: Modeling assumptions describe what simplifications can be
made about a component or process during an analysis. For instance, the pressure
drop across a boiler is typically ignored in conceptual design because it is negligible
for the purpose of the analysis. Rather than stipulating a particular pressure drop, it
is simpler to assume that the heater used to model a boiler is isobaric, i.e., has no
pressure drop. CyclePad’s knowledge base currently contains 10 types of modeling
assumptions

• Assumption classes: Assumption classes help structure reasoning by organizing
modeling assumptions into sets. When an assumption class holds, one assumption
from it must be included in the model of the cycle for the model to be complete.
CyclePad’s knowledge base currently contains 14 assumption classes.

• Economic model: Economic tradeoffs are key issues in design. CyclePad
incorporates standard engineering cost estimating functions that extrapolate capital
costs for a cycle based on the size of the components, generally estimated by mass-
flow. CyclePad contains information about several different materials, including
stainless steel, nickel alloy, titanium, and molybdenum. Each material has limits on
the temperatures (high and low, the latter for cryogenic applications) that it can
endure. A special material, Unobtainium, with extraordinary properties (including
price) is useful for suspending the economic constraints on a particular device or
subset of devices. CyclePad also estimates the resulting weight of the cycle as a
function of the materials employed, which may be a critical constraint, for example,
in the design of an aircraft engine.

CyclePad's knowledge base is powerful enough to handle a wide variety of analyses
found in introductory and advanced thermodynamics textbooks.

3.4.2 CyclePad's Analysis Methods

A student’s activities with CyclePad shift between creating and/or editing the structure of
the cycle and analyzing the properties of the cycle by supplying assumptions about its
constituents. CyclePad interactively and incrementally derives the consequences of each
student assumption. This work is performed via antecedent constraint propagation, with
the derivations being recorded in a logic-based truth maintenance system (LTMS)
(Forbus & de Kleer, 1993). At any point the student can ask for explanations of derived
values, the indirect consequences of particular assumptions, what equations might be

Draft of 7/5/00 16

relevant to deriving a particular value, and other similar queries. These explanation
facilities exploit the dependency network created in the LTMS.

Explanations in CyclePad are represented by structured explanations, an abstraction layer
between the reasoning system and the interface. The reason for this layer is that the
reasoning system needs to be optimized for performance, while the interface needs to be
optimized for clarity, and these goals are often incompatible. The structured explanation
layer provides summarization, hiding aspects of how the reasoning system works that are
irrelevant to the student. It also provides reification, making explicit dependencies that
would otherwise be implicit, such as the various methods that could be used to derive a
desired parameter.

Automating the tedious calculations involved in using thermodynamic equations and
providing clear explanations of how the student’s assumptions were used provides
substantial scaffolding. Students can focus on thinking about the thermodynamic
consequences of their assumptions, rather than using their calculators to solve routine
equations. The LTMS also provides a useful mechanism for detecting and recovering
from contradictory assumptions. For instance, if the parameters supplied by the student
imply that physical laws are violated (i.e., that a turbine consumes work rather than
generates it), this fact along with the subset of assumptions responsible is brought to the
student’s attention for correction.

Figure 8: Sensitivity analyses show impact of design decisions,
revealing underlying principles. Here the effect of feedwater pressure
on thermal efficiency in a regeneration cycle is being explored.

CyclePad provides other analysis tools in addition to constraint propagation. It automates
the process of performing sensitivity analyses, which involve seeing how a change in one
parameter affects another parameter (e.g., how the boiler pressure affects the thermal
efficiency of the cycle), using the dependency network in the LTMS to identify relevant
parameters and automatically derive the necessary equations (see Figure 8). Such
analyses are viewed as important by instructors for gaining a deeper appreciation of the

Draft of 7/5/00 17

domain. CyclePad provides visualization tools that make apparent how parts of the cycle
contribute to its overall performance. Graphical information about the bounds of
available property tables, and in some cases automatically generated T-S (temperature
versus entropy) diagrams, are also available. An on-line help system that describes the
program’s operation and knowledge is included.

Building student intuitions about the meaning of the properties of thermodynamics and
helping them achieve a quantitative “feel” for the subject is an important pedagogical
problem. Students initially know so little about thermodynamics and cycles that they can
have problems spotting problems in their designs. For example, experienced designers
will note that low quality (i.e., too much liquid in the mixture) in the working fluid
exiting a heat engine's turbine is likely to cause damage to the turbine blades.
Consequently, they will attempt to adjust the system's parameters to increase the exit
quality, or failing that, make a structural alteration to the cycle. To spot problems like
this and understand how to fix them requires knowledge of how function relates to
structure. For example, low exit quality is only a problem if the cycle is intended as a
heat engine. In a cryogenic cycle, turbines can be used to cool the working fluid
sufficiently to cause precipitation, because a resisted expansion results in a greater drop
in the working fluid temperature than a throttled expansion. Thus in the case of a
cryogenic cycle we might be aiming for low quality. Giving advice about cycle
parameters, therefore, requires understanding the intended purpose of the system and the
functional roles each component plays in achieving that purpose.

CyclePad incorporates Everett’s Carnot teleological recognition system (Everett, 1999) to
understand the intended function of the cycle, in order to provide advice about values of
cycle parameters. Different components can play different functional roles. For
example, a mixer may act as a simple way to join flows, as a heat-exchanger, or as a jet-
ejector, in which a high-velocity jet of fluid entrains and compresses another inlet stream.
Understanding the intended function of a system requires assigning functional roles to
each component and recognizing any larger-scale plans that the configuration of roles
represent, such as regeneration. Carnot uses evidential rules and Bayesian inference to
suggest plausible functional roles for each component in a student’s cycle. The evidential
rules provide evidence either for or against a particular role. This evidence is used to
update the prior probability of each role for each component. The evidential reasoning is
included in CyclePad’s explanation system, so that students can find out why (and with
what certainty) a particular role is believed and can also get an explanation of why other
potential roles were rejected (see Figure 9).

Draft of 7/5/00 18

Figure 9: CyclePad uses evidential reasoning to infer student intent

CyclePad combines Carnot’s teleological inferences with norms to generate advice for
adjusting parameters. A norm is a range for a component’s parameter that is appropriate
based on the component's functional role. For example, the temperature of the steam
leaving a Rankine cycle boiler typically falls in the range of 300-600ºC. Lower
temperatures result in inadequate efficiency whereas higher temperatures require
uneconomically expensive materials in the downstream components. In contrast, the
range of temperatures for the refrigerant leaving the coils of a refrigerator (which are
modeled as a heater) is quite different, typically in the range of 5-15ºC. Inferring the role
a component is playing is therefore essential to providing relevant advice to the student.
Our knowledge base currently contains eighteen norms, between two and six per
component depending on the number of potential roles for that component.

When the Analysis Coach is invoked, Carnot infers the teleology of the cycle. The
functional roles assigned to each component are used to retrieve applicable norms, which
are checked against known parameter values. Any violations or suggestions are noted
using CyclePad’s explanation system, providing explanatory text associated with each
norm. In addition to being used to provide on-board advice, Carnot’s teleological
representations also play an important role in our case-based design coach, described
below. The insight is that similarity in intended function and qualitative properties are
better predictors of a case’s relevance than the specific numerical values involved in it.

Draft of 7/5/00 19

3.4.3 CyclePad's Coaching
 CyclePad's on-board coaching facilities are supplemented by an email-based
coaching system. We turned to email because CyclePad is used by students in a variety
of institutions spread across the planet. Since CyclePad is distributed via the web, there
is some likelihood that students have network access. Students can use an email system
built into the software to send their current design and a query about it to our coach,
which runs on a server at Northwestern. The coach is implemented as part of a RoboTA
Agent Colony (Forbus & Kuenhe 1998), a software architecture designed for providing
distributed learner support. Email to a RoboTA is handled by a Post Office Agent, which
ascertains which member of the colony is best able to handle it. The CyclePad Guru is
the agent designated for CyclePad-related messages. The kinds of messages supported
by the CyclePad Guru are

1. Turning in an assignment. We are experimenting with a system that enables

instructors to create assignments, including evaluation rubrics, that enable students to
submit their solutions via email. The idea is to make it easier for instructors to collect
student work and have the mechanical aspects of their evaluations applied
automatically.

2. Asking for help with a contradiction. The coach provides some general feedback in
response to this case.

3. Asking for help in completing an analysis. The coach provides advice based on an
expert model of how to analyze cycles, pointing out the kinds of assumptions that
might be appropriate to make given the student's progress.

4. Asking for help in improving a design. The coach provides suggestions for improving
the design, based on a case library of design transformations

Design coaching is the most novel feature of the CyclePad Guru. We have two goals in
giving design advice. First, we want to nudge students in useful directions, rather than
solving problems for them. Consequently, the Guru provides plausible specific
suggestions, but does not attempt to validate those suggestions in the students' context.
Understanding why a suggestion will or will not work in a particular circumstance is an
important learning experience that we want students to have. Second, we want to
motivate students to dig more deeply into the nature of thermodynamics-ideally, to
immerse themselves in the culture of engineering thermodynamics by studying real-world
systems and how they are connected to the assignments they are grappling with.
Consequently, the Guru uses case-based coaching to generate design advice, motivating
students to explore the case deeply by showing exactly how that case might be relevant to
the improvement they are trying to make.

Draft of 7/5/00 20

From: robota@godzilla.cs.nwu.edu
Date: Mon, 20 Sep 99 00:49:47 -0600
To: forbus@nwu.edu
Subject: The CyclePad Guru's response to your message: Need help improving my
Rankine cycle

You asked for help with your design.
I have 2 suggestions.
===
Suggestion #1
Your problem reminds me of a method: increasing boiler temperature in a Rankine
cycle. Increasing the boiler temperature increases the efficiency of the cycle.
You can find out more about this at <URL>.
Here is how you might apply this to your design:
1. Increase T(S2).
===
Suggestion #2
Your problem reminds me of a method: reheat in a Rankine cycle. Reheat adds
another heater and another turbine. The second heater, a reheater, heats up the
working fluid at the turbine
outlet, and the second turbine extracts yet more work from that. This increases
efficiency because more heat is being added when the steam is still at a
reasonably high temperature.
You can find out more about this at <URL>.
Here is how you might do this with your design:
1. Disconnect the outlet of TUR1 from the inlet of CLR1.
2. Create a new heater, which we'll call HTR2.
3. Connect the outlet of TUR1 to the inlet of HTR2. Let's refer to the
properties of the working fluid there as S5.
4. Create a new turbine, which we'll call TUR2.
5. Connect the outlet of HTR2 to the inlet of TUR2. Let's refer to the
properties of the working fluid there as S6.
6. Connect the outlet of TUR2 to the inlet of CLR1. Let's refer to the
properties of the working fluid there as S7.
You might find the following assumptions relevant or useful:
1. Assume that the working fluid at S5 is saturated.
2. Assume quality(S5) = 1.0000[0-1]
3. Assume that HTR2 is a reheater.
4. Assume that HTR2 works isobarically.
5. Assume that HTR2 is made of molybdenum.
6. Assume that HTR2 burns natural-gas.
7. Assume that TUR2 works isentropically.
8. Assume that TUR2 is made of molybdenum.
9. Assume that the working fluid at S7 is saturated.
10. Assume quality(S7) = 1.0000[0-1]
===

Figure 10: Design advice from the CyclePad Guru

A sample of design advice from the Guru is illustrated in Figure 10. The Guru has access
to a library of cases, each describing a particular change to a design and what it is
intended to accomplish. These changes can be either tuning the parameters of the cycle
(i.e., increasing the operating temperature of a boiler to increase efficiency) or a structural
change in the cycle (i.e., adding reheat to a cycle to enable more work to be extracted).
Cases are authored by domain experts, using CyclePad and an HTML editor. Notice that
a URL is supplied as part of the advice. These web pages describe the general principle
involved in the library case, illustrated through a concrete example. The concrete

Draft of 7/5/00 21

example used in the case is generated by the domain expert, using CyclePad. The
domain expert describes a transformation that implements the principle by making the
appropriate changes to this design. A case compiler uses this information to compute a
description of the transformation that can be used in analogical reasoning.
Consequently, domain experts only need to be able to use CyclePad plus an HTML editor
in order to add cases to the design library.

Given a student's design, the Guru uses a cognitive simulation of similarity-based
retrieval, MAC/FAC (Forbus, Gentner, & Law, 1995) to retrieve relevant cases.
Concrete advice as to how to apply the idea of the case to the student's design is
generated by a cognitive simulation of analogical matching, SME (Falkenhainer, Forbus,
& Gentner, 1989; Forbus, Ferguson & Gentner, 1994). The use of cognitively motivated
analogical processing software has two advantages over the typical state of the art in
case-based reasoning (CBR) systems. First, most CBR systems require hand-indexing of
new cases by experts familiar with both the domain and the retrieval system. By using
MAC/FAC, we exploit human-like similarity computations to automatically retrieve
cases without indexing. Second, most CBR systems use simple lists of features as their
representation medium. By contrast, CyclePad designs are (internally) full predicate
calculus descriptions, encoding relational structure such as the steps required to achieve a
design modification. These richer relational structures lead to analogical inferences by
SME, that are turned into step-by-step instructions on how to apply the case to the
student's design.

Using a distributed coaching system has its disadvantages. It requires students to have
access to email. It involves a delay in responding to a student's request, which may not
be as effective as providing an immediate response. This is an inevitable limitation of
email as a transport mechanism. Prior requests do not affect the answer returned, i.e., one
cannot enter into a correspondence with this coach. Creating a software coach capable of
natural language conversations with students and maintaining an ongoing model of them
and their progress would be an excellent research project, but is extremely difficult. On
the other hand, by putting complex coaching facilities on a server at our site, we can
make improvements in coaching strategy without asking users to reinstall our software.
The potential value of a distributed coach becomes especially apparent when considering
the issue of extending and maintaining a case library. A large, rich case library with lots
of associated media (e.g., pictures of the real physical systems corresponding to the
CyclePad design) is probably best treated as a network resource, rather than installed on
each student machine. We are forming an editorial board for the web-
based design library, to ensure quality control, and encouraging submissions from
CyclePad experts worldwide, much in the manner of the Eureka community-maintained
database of tips (Bell et al 1996).

3.5 Discussion

CyclePad has been distributed for free via the Web since September 1997 and has been
used in classrooms scattered all over the world. As of September 1999, we had over

Draft of 7/5/00 22

2500 distinct downloads from 63 countries. While some downloaders never use the
software or do not find it to their liking, we know from surveys and email feedback that a
number of instructors have adopted it successfully and use it in their courses in a variety
of ways. Although the project is now over, we will continue to distribute CyclePad and
run the CyclePad Guru server, and will make CyclePad's source code publicly available
through an open-source license.

CyclePad provides strong evidence for the utility of articulate virtual laboratories. It has
been adopted by instructors in a variety of educational institutions for both introductory
and advanced courses. Some institutions use it with traditional textbooks, while others
are developing new curricula around it. In universities where we have direct
collaborators, we have seen various benefits of CyclePad. For example, advanced
thermodynamics students at the US Naval Academy were able to tackle more complex
term projects than they were able to previously, resulting in some cases in publishable
technical papers (cf. Wu & Burke, 1998; Wu & Dieguez, 1998).

In Engineering Technology curricula, i.e., curricula aimed at producing technicians rather
than engineers, students often learn calculus later than thermodynamics. This makes the
analysis-heavy approach of standard thermodynamics courses even less useful for this
population. CyclePad provides a “simulated hands-on” experience for such students,
helping them build solid, accurate intuitions about thermodynamics. (Baher, 1998). For
example, at University of Arkansas, Little Rock, students use CyclePad in laboratory
exercises to experiment with systems that would be too expensive or dangerous to
physically build.

The design approach of articulate virtual laboratories fits quite naturally into many
advanced thermodynamics courses. Regrettably, in the United States this has not been
true of introductory courses. Traditional thermodynamics courses, like many current
engineering courses, are analysis-centered, lavishing classroom time on mathematical
derivations of thermodynamic principles at the expense of helping students understand
the principles themselves and their implications. Many courses still spend time teaching
students how to do complex analyses, including table interpolations, with just a simple
calculator, even though as practicing engineers they will have more sophisticated
computer support. This necessarily reduces the time available for understanding the
principles of thermodynamics and time available for learning design skills. This has been
a significant barrier in introducing CyclePad in introductory courses. Indeed, using
CyclePad in such courses can lead to drops in student performance, since students are
being tested on mechanical calculation skills that in practice are automated. This
problem is analogous to the introduction of calculators into mathematics education. The
introduction of intelligent systems that handle more of the analytic load of engineering
tasks suggests rethinking what we should be teaching and how it can be taught. For
example, in pilot studies we have experimented with exercises where students use
CyclePad to do simple design and optimization tasks, weighing their written reports as to
the "how" and "why" of their work as much as the specific answers they provided. A
positive trend is the recent interest by ABET, the US engineering education standards
organization, on infusing design tasks throughout engineering curricula.

Draft of 7/5/00 23

The articulate virtual laboratory architecture CyclePad embodies can, we believe, be
fruitfully applied to many other engineering domains. The nature of the analysis tools
will vary from domain to domain. AVLs for electronics or chemical engineering might
end up looking very much like CyclePad, whereas AVLs for mechanism design or
computer programming might be able to utilize similar structured explanation systems
and distributed coaching, but with very different analysis and design methods. AVLs
could make spreading design work through the engineering curriculum much more
practical, for instance by providing support for portfolio assessment.

We also believe that with appropriately simplified domains, articulate virtual laboratories
could also be used in science teaching. Design activities are commonly used in
constructivist learning systems and curricula because they are so motivating (cf. Papert
1980; Lehrer 1998). The National Science Education Standards have identified design
activities as a means of motivating learning of scientific content and process as well as a
vehicle for understanding the technological world for K-12 education (National Research
Council, 1996). Experience with physical systems is often an important aspect of
learning through design, but AVLs could provide valuable complementary activities, and
make rich design activities possible in domains for which it is now impossible. For
example, CREANIMATE (Edelson, 1992) used the idea of modifying animals as a
motivation for students to watch videos that showed how animals behave. While this
video-driven case-based approach has its attractions, an AVL for such a domain would
provide much richer explanations and more freedom for students to explore animal
behavior and biomechanics.

4 Active Illustrations

The power of illustrative examples is well-known in education. Traditional media
offer high authenticity but low interactivity. Textbook illustrations and posters can
provide thought-provoking pictures, tables, charts, and other depictions of complex
information. Movies and video can provide gripping dynamical displays. But none of
these media provide interaction. Students intrigued by a picture of a steam engine in a
textbook (or a movie of a steam engine) cannot vary the load or change the working fluid
to see what will happen. They cannot ask for more details about explanations that they
don’t understand. They cannot satisfy their curiosity about how efficiency varies with
operating temperatures by testing the engine over ranges of values. The Active
Illustrations architecture uses AI techniques to provide such interactive capabilities. An
active illustration can be thought of as a hands-on museum exhibit, consisting of a virtual
artifact or system, and (ideally) a guide who is knowledgeable about the exhibit and
enthusiastically helps satisfy your curiosity about it. Active illustrations support student
explorations, by allowing students to change parameters and relationships to see what
happens. They are articulate, in that students can ask why some outcome occurred or
some value holds, and receive understandable explanations that ultimately ground out in
fundamental physical principles and laws.

Draft of 7/5/00 24

4.1 Example: The Evaporation Laboratory
Suppose a student is interested in how evaporation works. Since evaporation happens in
everyday circumstances that are neither dangerous nor expensive to set up, it can easily
be experimented with. The student begins to set up different jars of water, varying in
width and amount of water, and measures their initial level. The student places these jars
on the window ledge in the classroom, and looks for something else to do while waiting
for the outcome of the experiment. Seeing an unused computer, the student starts up an
Active Illustration on evaporation, to try to gain some insights in minutes instead of days.

The student’s interaction with the simulation laboratory starts with setting up a scenario.
The student selects, from an on-screen catalog, a cup to use in an experiment. The cups
are all the same shape and size, but they are made from a variety of materials, ranging
from Styrofoam to tin to titanium and even diamond. The student chooses a Styrofoam
cup, since such cups are common. From another catalog, the student selects an
environment to place the cup in. Since it is hot outside, the student selects Chicago in the
summer, and sets the simulator to run for four hours of virtual time. A few moments later,
the simulation is finished. The student notices, by requesting a plot of how the level of
water in the cup changes over time, that there is a slow but measurable decline. Using the
explanation system, the student finds the following summary of the behavior:

Between 0.0 and 14400.0 seconds:
 evaporation from Cup occurs
 flow of heat from Atmosphere to water in Cup
 occurs
 there is water in liquid form in Cup
 water in Cup touches the atmosphere

The student follows up by using the hypertext facilities of the explanation system:

In Styrofoam cup in Chicago,
mass of water in Cup can be affected by:
 water loss via evaporation from Cup
In Styrofoam cup in Chicago,
water loss via evaporation from Cup can be affected by:
 vapor pressure of Atmosphere
 saturation pressure of Atmosphere
 surface area of water in Cup
 temperature of water in Cup

At this point the student conjectures that higher temperature should lead to more
evaporation. To confirm this conjecture, the student runs a second simulation, using a
diamond cup this time to increase the flow of heat from the atmosphere. (This is
obviously not an experiment that is easily carried out in the physical world.)
Qualitatively the behavior is the same, but the higher thermal conductivity of diamond
means that the temperature of the diamond cup will quickly become close to the ambient
temperature, and indeed leads to increased evaporation (Figure 11).

Draft of 7/5/00 25

Figure 11: Students can compare behaviors quickly across multiple
simulations

The student might continue their explorations by deciding to see what happens with the
same cup on the top of a mountain, where it would be very cold, or in the tropics, where
the temperature could be adjusted to be the same as on the desert, but with a much higher
relative humidity. These explorations can be accomplished in minutes, with reports
produced for further comparison and reflection.

4.2 How Active Illustrations work
The principle component of active illustrations for dynamical systems are self-
explanatory simulators (Forbus & Falkenhainer, 1990; Iwasaki & Low, 1992; Amador,
Finkelstein, & Weld, 1993). A self-explanatory simulator combines qualitative and
numerical representations to provide both accurate quantitative descriptions of behavior

Draft of 7/5/00 26

and conceptual explanations of it. The conceptual explanations are in terms of what
physical processes are occurring in the system being simulated, and the causal
relationships that govern its behavior. As the Evaporation Laboratory example showed,
a self-explanatory simulator can describe at every point in the simulation exactly what is
happening in the system being simulated and why. These explanations can in theory
range from qualitative, causal explanations suitable for novices to sets of ordinary
differential equations suitable for an expert audience. (We have focused on the former so
far since many of our simulators have been designed for middle-school students.)

Domain
Theory

Scenario

IDE &
Tools

Compiled
Simulation

SIMGEN
Compiler

Runtime

Support
Files

Students

Domain
Modeler

Curriculum
developer,

Teacher, or
student

Domain
Theory

Scenario

IDE &
Tools

Compiled
Simulation

SIMGEN
Compiler

Runtime

Support
Files

Students

Domain
Modeler

Domain
Theory

Scenario

IDE &
Tools

Compiled
Simulation
Compiled

Simulation
SIMGEN
Compiler
SIMGEN
Compiler

RuntimeRuntime

Support
Files

Students

Domain
Modeler

Curriculum
developer,

Teacher, or
student

Figure 12: The process of creating self-explanatory simulators

Traditional simulators can be difficult to build and tune, so it might at first seem that self-
explanatory simulators must necessarily be more complex. This is not the case. In fact,
self-explanatory simulators can be constructed automatically, using AI techniques whose
general form and operation are inspired by watching human simulation authors work. A
person writing a simulator must first decide exactly what phenomena need to be
simulated -- what should be included and what should be left out. For example, in
simulating global warming, including the thermal effects of the oceans is important,
whereas the gasses produced by cigarette smoking is not. Once the phenomena to
include have been decided, appropriate mathematical models must be found or derived.
From these mathematical models simulation code is written, either from scratch or by
assembling predefined modules. In the ideal case, the conceptual understanding process
that the simulation author went through is well-documented somewhere, perhaps even in
material accessible to the simulation users. In reality, such documentation is rare, and
often produced by reconstruction rather than during construction. This can lead to

Draft of 7/5/00 27

problems, as when the simulated behavior clearly is not consistent with the explanations
about how it is generated.

A compiler for self-explanatory simulators operates in much the same way (Forbus &
Falkenhainer, 1995). The overall development process is illustrated in Figure 12, and
the details of the compilation process are illustrated in Figure 13. It relies on a domain
theory that describes relevant physical phenomena in general terms. Given a specific
system to write a simulator for, the compiler starts by figuring out which general
descriptions from the domain theory need to be used to understand the system (e.g., in the
Evaporation Laboratory, heat flow to and from the atmosphere through the cup needs to
be considered as well as evaporation of water from the cup). The compiler starts by
creating a conceptual, qualitative description of the system, identifying what physical
processes and parameters are relevant. This conceptual understanding is then used to
retrieve mathematical models from its domain theory, in the form of equations or code
fragments, that are assembled into a quantitative model of the system. The compiler then
translates this quantitative model into efficient simulation code. Writing simulation code
can be complicated, since changes in the phenomena occurring can lead to significant
changes in the mathematical model. For instance, the set of equations that hold when
simulating water heating on the stove is very different from the appropriate mathematical
model needed to simulate that water boiling. The qualitative model provides the
necessary framework for detecting such potential situations, and for writing code to
handle them properly.

Draft of 7/5/00 28

Domain
Theory

Scenario

Qualitative
M odel

Code
Explanation

System

Qualitative
Analysis

Code
Generator

Figure 13: Automatic compilation process for Self-explanatory simulators

The rich explanatory power of self-explanatory simulators comes from exploiting the fact
that the simulation compiler itself has a conceptual understanding of what is being
simulated. In addition to producing traditional simulation code, the compiler also
produces a compact structured explanation system (Forbus & Falkenhainer, 1995) that
embeds its conceptual understanding of the system into the simulator it builds. Thus the
explanations used to explain a simulation are based on the explanations used to generate
the simulator itself. The link between the numerical simulated behavior and the
conceptual descriptions is maintained by tracking the corresponding qualitative
distinctions as they change over time. For instance, when physical processes start or stop
or when objects come into existence, disappear, or change in a very significant way (e.g.,
phase changes), such physical events are noted in a history (Hayes, 1985) that provides a
qualitative summary of the behavior. This history provides the bridge between the
numerical behavior and the causal understanding of the system.

From an algorithmic perspective, we note that self-explanatory simulators can be
compiled in polynomial time, as a function of the size of the system to be simulated
(Forbus & Falkenhainer, 1995). This is important for scaling up: Simulators involving
thousands of parameters can be created quickly. It is equally important to note that the
simulators produced are compact and efficient. All qualitative reasoning is done at
compilation time, not run time. Thus the simulators produced run asymptotically close in
speed to an equivalent numerical simulator for the same system. The only extra overhead
is the maintenance of the history, and this requires only a few extra tests per time step and

Draft of 7/5/00 29

only requires space proportional to the qualitative complexity of the behavior (i.e., the
number of significant physical events), rather than as a function of the time step chosen.
This makes them practical in a wide variety of circumstances. For instance, we have run
simple simulators on MS-DOS palmtops (8mhz, 640KB of RAM), and as Java applets on
web pages.

Turning self-explanatory simulators into active illustrations involves two issues:
Selecting the right levels of explanation, and providing the illusion of interacting with a
physical system, rather than a complex piece of software. We discuss each in turn.

Providing appropriate levels of explanation: The structured explanation system
internally contains the full range of representations used to create the simulation. Not all
explanations are appropriate for all audiences: As noted above, middle-school students
cannot be expected to understand differential equations. Our solution has been to put
filters on the explanation system, to hide information that would be inappropriate for the
intended audience. For middle-school students, for example, we focus on the kind of
causal information that students are supposed to be learning. As the interaction earlier
demonstrated, questions that students can ask include what can affect a parameter and
what can it affect. The answers they receive are in terms of causal qualitative
relationships (influences, in the terms of qualitative process theory (Forbus, 1984)), e.g.
“X can be affected by…” in the dialog above. While the explanation system knows the
type and sign of the influence, this information is suppressed because it is something that
the student should be learning, along with the relative magnitudes of various effects2.

Even within the level of causal explanations, it is sometimes useful to filter out
information. For example, in the Evaporation Laboratory the concept of thermal
conductivity is something that we, in the role of curriculum designers, want the student to
discover, rather than telling them about it explicitly. (The inclusion of a diamond cup is
intended to lead students in this direction. Few students can resist trying the diamond
cup, and since diamond has a thermal conductivity that is orders of magnitude larger than
most substances, they are faced with some dramatic behavior differences to explain.) We
tackle this problem by a "can't say, don't tell" policy in the software. Each element in the
structured explanation system has a natural language phrase associated with it. These
phrases are generated semi-automatically by the compilation process; they can be edited
separately after the simulation is compiled to support localization. If an explanation
element does not have an associated natural language phrase, the explanation system will
not use it in any explanation it constructs. Editing tools are provided that enable
curriculum designers to adjust the explanation system in this way.

Providing the illusion of interacting with a physical system: Initializing the parameters
of even a simple simulation can be complicated, since the choice of parameters must be
made with an eye towards physical consistency. Yet the expertise needed to evaluate
physical plausibility is part of what we want students to learn from doing simulation
experiments. This is a conceptual problem, not a standard HCI problem. Providing a
large menu of numerical and logical parameters, even in the cleanest, well-organized
GUI, can easily lead to bewilderment. Our solution is to simplify this process by using a

2 Several teachers have recommended adding a “nerd switch” so that interested students could see the
equations. We have not alas had the resources to do this yet.

Draft of 7/5/00 30

metaphor from drama - the idea of a prop. A prop on a stage represents something in the
imagined world being created on-stage. In our simulators, props represent a coherent
subset of the simulator’s parameters that naturally make sense to consider together. Each
simulator has a set of catalogs, each catalog containing props that impose different
constraints on a particular subset of the simulator’s parameters. In the Evaporation
Laboratory, for instance, there are two catalogs, cups and environments. The choice of
cup constrains the shape and dimensions of the cup, as well as its thermal conductivity
(e.g., the thermal conductivity of diamond is orders of magnitude higher than just about
anything else). Figures 14 and 15 show the catalog contents currently used in the

Evaporation Laboratory. The choice of environment constrains the temperature and
pressure and vapor pressure of the atmosphere, as well as the limits over which these
parameters can be varied. (While it is possible in theory for Las Vegas to get colder than

the top of Mt. Everest, it would be very surprising, and providing constraints that prevent
two props from being identical in the simulator helps maintain the suspension of
disbelief.)

In addition to solving the technical problem of setting up a simulation, props also provide
pedagogical benefits, by helping the student see relationships between physical objects
and circumstances and their properties. Props also provide a simple path to
customization: Adding props representing familiar objects and situations (e.g., a student’s
favorite cup or home town) also provides a simple form of customization that can make
software more engaging.

Cardboard

Copper

Diamond

Oak

Pyrex

Styrofoam

Titanium

Tin

Figure 14: Catalog of cups for the Evaporation
Laboratory. Students can change the amount and
temperature of the water for whatever cup they choose.

Boston

Chicago

Las Vegas

Salt Lake City,
Utah

Mt. Washington

Figure 15: Catalogs of environments used in the Evaporation Laboratory

Draft of 7/5/00 31

4.3 How Active Illustrations can be used
There are several settings in which Active Illustrations can be used. We discuss each in
turn.

Simulation Laboratories. Student can use Active Illustrations as a laboratory for running
experiments, such as the Evaporation Laboratory above. The Evaporation Laboratory
and several other simulation laboratories have been publicly available from our web site
for several years now, and the reasons given for downloading range from intended
classroom use to science fair projects. We are also developing two new simulations, an
ecosystem for a hypothetical Mars base and a solar house simulation, to be used in
curricula we are developing in collaboration with teachers from the Chicago Public
Schools3 and as motivating phenomena in new research we are doing on helping middle-
school students learn how to create models.

Hypermedia component. Active illustrations can be a powerful new type of media in
hypermedia systems. A student might start using an Active Illustration included to
provide a concrete example of some phenomenon, and branch back out to the rest of the
hypertext network based on the concepts in the Active Illustration’s explanation system.
For example, the on-line Principles of Operation Manual for a simulation based on
NASA's Deep Space One autonomous spacecraft used several Active Illustrations to
enable players to experiment with basic principles of rocketry and orbits4.

Virtual artifacts in shared virtual environments. Virtual environments are being
explored by many groups as environments for students to interact with each other and
instructors in an arena designed to support learning. Because interaction is computer-
mediated, such spaces provide additional opportunities for software-based coaching and
assessment of student progress. In collaboration with Ken Koedinger and Dan Suthers,
we have explored the use of Active Illustrations in Science Learning Spaces that support
reflection and coaching (Koedinger et al. 1999). In addition to providing preconstructed
virtual artifacts, efforts are underway to develop a construction kit approach to enable
students to significantly modify existing objects, and even create new designs (Erignac,
2000).

With the exception of on-line construction kits, the research groundwork for these
applications is already in place. Three things are needed for broad-scale deployment.
First, significant investment in software engineering is needed. The software prototypes
described above are exactly that: research prototypes. They are robust enough that they
can be used in schools, but only by developers with strong expertise. Making it easy for
curriculum developers, teachers, and students to create simulators will require making the
runtime shells far more robust. Better tools for design, debugging, and tuning of domain
theories and simulators are needed, combined in a supportive simulator development
environment. Second, libraries of domain theories, created by experts, are needed. With
off-the-shelf domain theory libraries and the automated modeling capabilities of self-

3 This is thanks to the National Science Foundations’ Center for Learning Technologies in Urban Schools, a
joint project of Northwestern University, University of Michigan, and the Chicago and Detroit public
school systems.
4 http://www.qrg.nwu.edu/projects/vss/docs/index.html

Draft of 7/5/00 32

explanatory simulation compilers, the burden of modeling will be greatly reduced for
curriculum designers, enabling them to focus more on pedagogical issues. Third, we
need to learn how to best exploit this new technology in curricula and activities that
achieve educational goals.

5 Discussion
Advances in artificial intelligence, particularly in qualitative reasoning, provide the
scientific foundation for new kinds of educational software. Articulate software, this
chapter has argued, has revolutionary potential for science and engineering education. I
believe that software that embodies a conceptual understanding of its domain can help
students learn better. As the CyclePad experience shows, articulate virtual laboratories
can be valuable in engineering education. As the Active Illustrations we have built
suggest, simulators that provide causal, qualitative explanations can help students explore
complex physical phenomena.

The examples presented here are, I think, only the beginning. The architectures
described here can be applied to a broad set of phenomena and systems to support science
and engineering education. And other architectures for articulate software could also be
valuable. Consider these:

• Articulate training simulators. Combine self-explanatory simulators of a complex
system that people operate (i.e., ships, aircraft, spacecraft, power plants) with a
model of the goals and context of a system and the procedures for operating that
system, to teach someone how to operate that system. By context, I mean what
the system is used for and what social and economic, as well as physical,
constraints govern its operation. Tankers should not produce oil slicks, for
example. The context provides the background needed for the simulator to
understand why the procedures are the way they are, and the potential
consequences of mistakes. This understanding can be used to set up challenging
problems for trainees, and provide better post-mortems than would otherwise be
possible (cf. Wilkins & Bulitko, 1999).

• Articulate game engines. Computer games can provide a highly motivating
setting for students, who happily learn complex ideas for the sake of successfully
interacting with and in a simulated world. Often the simulated world underlying
these games (e.g., SimCity, SimEarth, Civilization) operate by combining
dynamical models with a spatial, map-like model of some sort (e.g., a cellular
automata). Domain theories that describe the physics and economics of the
simulated world could be used in compiling game engines that embody that
conceptual understanding, as a new form of self-explanatory simulator. This
conceptual understanding can then be used by in-game tutors, coaches, and
opponents (Dobson & Forbus, 1999).

In the long run, I believe software that understands in a human-like way what is to be
learned, and uses that understanding to help people learn, will be ubiquitous in education.
Someday we will not give students educational software that does not contain such
understanding, any more than we would today give them software without a graphical

Draft of 7/5/00 33

user interface. There are still many challenges -- scientific, software engineering, and
pedagogical design -- to be met before that day will come, but even our first steps are
providing enough benefits to convince us that the journey is worth it.

6 Acknowledgements
The work described here rests on basic research funded by the Office of Naval Research:
The qualitative reasoning ideas have been developed through the support of the Computer
Science Division, and the analogical processing ideas have been developed through the
support of the Cognitive Science Division. The research on articulate virtual laboratories
was supported by the Applications of Advanced Technology program of the Education
and Human Resources Directorate of the National Science Foundation. The research on
active illustrations was supported by grants from NASA JSC and NASA Ames, and by
DARPA through the Computer Aided Education and Training Initiative (CAETI). Paul
Feltovich, Joyce Ma, and Karen Carney all provided valuable suggestions that improved
this paper.

7 References

Amador, F., Finkelstein, A. and Weld, D. Real-time self-explanatory simulation. Proceedings of AAAI-93.

Baher, J. (1998). How Articulate Virtual Labs Can Help in Thermodynamics Education: A Multiple Case
Study. Paper presented at the Frontiers in Education 1998 Conference, Tempe, AZ.

Bell, D.G., Bobrow, D.G., Raiman, O., and Shirley, M.H., 1996, "Dynamic Documents and Situated
Processes: Building on local knowledge in field service," IPIC'96, The International Working Conference
on Integration of Enterprise Information and Processes, "Rethinking Documents", Cambridge, MA.

Brown, J.S., Burton, R. & de Kleer, J. Pedagogical, natural language, and knowledge engineering
techniques in SOPHIE I, II, and III. In Sleeman, D. and Brown, J.S. (Eds.), Intelligent Tutoring Systems,
Academic Press, 1982.

Dobson, D. and Forbus, K. 1999. Towards articulate game engines. Proceedings of the 1999 AAAI Spring
Symposium on AI and Computer Games. AAAI Press, March, 1999.

Edelson, D. C. 1992. When should a cheetah remind you of a bat? Reminding in case-based teaching.
Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, July 1992.

Erignac, C. 2000. Interactive semi-qualitative simulation. Proceedings of the 14th international workshop
on qualitative reasoning (QR2000), Morelia, Mexico. June, 2000.

Everett, J. O. 1999. Topological Inference of Teleology: Deriving Function from Structure via Evidential
Reasoning. Artificial Intelligence 113(1-2): 149-202

Everett, J. and Forbus, K. 1996. A garbage-collecting truth maintenance system. Proceedings of AAAI-
96.

Falkenhainer, B. and Forbus, K. Compositional Modeling: Finding the Right Model for the Job. Artificial
Intelligence, 51, (1-3), October, 1991.

Falkenhainer, B., Forbus, K., Gentner, D. The Structure-Mapping Engine: Algorithm and examples.
Artificial Intelligence, 41, 1989, pp 1-63.

Forbus, K. Qualitative Process theory. Artificial Intelligence, 24, 1984.

Forbus, K. “An interactive laboratory for teaching control system concepts” BBN Technical Report No.
5511, January 1984.

Forbus, K. “Qualitative Reasoning”. CRC Handbook of Computer Science and Engineering. CRC Press,
1996.

Forbus, K. & de Kleer, J. Building Problem Solvers, MIT Press, 1993.

Draft of 7/5/00 34

Forbus, K. and Falkenhainer, B. Self-explanatory simulations: An integration of qualitative and quantitative
knowledge, Proceedings of AAAI-90.

Forbus, K. and Falkenhainer, B. 1995. Scaling up Self-Explanatory Simulators: Polynomial-time
Compilation. Proceedings of IJCAI-95, Montreal, Canada.

Forbus, K., Ferguson, R. and Gentner, D. 1994. Incremental structure-mapping. Proceedings of the
Cognitive Science Society, August.

Forbus, K., Gentner, D. and Law, K. 1995. MAC/FAC: A model of Similarity-based Retrieval. Cognitive
Science, 19(2), April-June, pp. 141-205.

Forbus, K.D., & Kuehne, S.E. (1998), RoboTA: An agent colony architecture for supporting education, In
Proc. 2nd International Conference on Autonomous Agents (Agents '98), ACM Press, pp. 455-456

Forbus, K. and Stevens, A. ``Using Qualitative Simulation to Generate Explanations'' Proceedings of the
Third Annual Conference of the Cognitive Science Society, August 1981

Forbus, K. and Whalley, P. (1994) Using qualitative physics to build articulate software for
thermodynamics education. Proceedings of AAAI-94, Seattle.

Forbus, K.D., Whalley, P., Everett, J., Ureel, L., Brokowski, M., Baher, J. and Kuehne, S. (1999)
CyclePad: An articulate virtual laboratory for engineering thermodynamics. Artificial Intelligence. 114,
297-347.

Gentner, D. and Stevens, A. (Eds.) 1983. Mental Models. LEA Associates.

Hayes, P. (1985). Naive Physics 1: Ontology for liquids. In Hobbs, R., & Moore, R. (Eds.), Formal
Theories of the Commonsense World. Norwood, NJ: Ablex Publishing Corporation.

Haywood, R. W. Analysis of Engineering Cycles: Power, Refrigerating and Gas liquefaction Plant,
Pergamon Press, 1985.

Hollan, J., Hutchins, E., & Weitzman, L. 1984. STEAMER: An interactive inspectable simulation-based
training system. AI Magazine, 5(2), 15-27.

Iwasaki, Y. & Low, C. Model generation and simulation of device behavior with continuous and discrete
changes. Intelligent Systems Engineering, 1(2), 1993.

Koedinger, K. R., Suthers, D. D., & Forbus, K. D. (1999). Component-based construction of a science
learning space International Journal of Artificial Intelligence in Education, 10, 292-313.

Lehrer, R., Erickson, J. (1998) The Evolution of Critical Standards as Students Design Hypermedia
Journal of the Learning Sciences; v7 n3-4 p351-86

Ma, J. 1998. A Computer-Based Learning Environment for Teaching High-School Students Feedback
Control through Design. Paper presented at the Frontiers in Education Conference, Tempe, AZ.

Ma, J. (1999). A Case Study of Student Reasoning About Feedback Control In a Computer-Based Learning
Environment. Paper presented at the Frontiers in Education Conference, San Juan, PR.

National Research Council (1996). National science education standards. Washington, DC: National
Research Council.

Papert, Seymour, 1980, Mindstorms: Children, Computers and Powerful Ideas. NY, Basic Books.

Ritter, S. and Koedinger, K. (1996) Towards lightweight tutor agents. ITS'96 Workshop on Architectures
and Methods for Designing Cost-Effective and Reusable ITSs, Montreal, June 10th.

Levy, A., Iwasaki, Y., Fikes, R. (1995) Automated Model Selection based on Relevance Reasoning. KSL
Technical Report KSL-95-76. Stanford University, November, 1995.

Reiter, E. & Mellish, C. Optimizing the costs and benefits of natural language generation, Proceedings of
IJCAI-93, 1993.

Rickel, J. and Porter, B. 1994. Automated modeling for answering prediction questions: Selecting the time
scale and system boundary. Proceedings of AAAI-94.

Rutherford, F. & Ahlgren, A. 1990. Science for All Americans, Oxford University Press.

Sibun, P. (1992) Generating Text without Trees. Computational Intelligence 8(1) 102-122.

Stallman, R.M. and Sussman, G.J. 1977. Forward Reasoning and Dependency-Directed Backtracking in a
System for Computer-Aided Circuit Analysis. Artificial Intelligence 9, pp. 135—196.

Draft of 7/5/00 35

Weld, D. and de Kleer, J. (Eds.) 1990 Readings in qualitative reasoning about the physical World, Morgan-
Kaufman.

Whalley, P. Basic Engineering Thermodynamics, Oxford University Press, 1992.

Wilkins, D. C. and Bulitko, V. V. (1999), "Automated Instructor Assistant for Ship Damage Control,"
Proceedings of the Eleventh Conference on Innovative Applications of Artificial Intelligence, Orlando, FL,
July.

Wu, C., & Burke, T. J. (1998). Intelligent computer aided optimization on specific power of an OTEC
Rankine power plant. Applied Thermal Engineering, 18(5), 295-300.

Wu, C., & Dieguez, M. (1998). Intelligent computer aided design on optimization of specific power of
finite-time Rankine cycle using CyclePad. Journal of Computer Application in Engineering Education,
16(1), 9-13.

