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1 Introduction 
Improving science and engineering education is a critical problem for technological 
societies, who, in addition to needing scientists, engineers, and technicians, need a 
scientifically literate population in order to make wise decisions.  We believe a new kind 
of educational software, articulate software, can help solve this problem.  Articulate 
software understands the domain being learned in human-like ways, and can provide 
explanations and coaching to help learners master it.  Articulate software is made 
possible by advances in artificial intelligence, particularly in qualitative physics, 
combined with the ongoing revolution in computer technology.  This chapter explores the 
ideas underlying articulate software and describes two architectures for articulate 
software that we have developed: 
• Articulate virtual laboratories (AVLs) help students learn by engaging them in 

conceptual design tasks.   We illustrate this architecture with two examples: 
CyclePad, an AVL for engineering thermodynamics which is now routinely used at a 
number of universities worldwide, and FAVL, which is designed to help students 
understand feedback systems. 

• Active Illustrations provide an interactive simulation medium that enables students to 
experiment with physical phenomena, providing conceptual explanations as well as 
traditional simulator outputs.   We illustrate this architecture with several examples, 
ranging from stand-alone simulation laboratories (e.g., Evaporation Laboratory, Mars 
Colony Ecosystem) to game-style simulations embedded in explanatory hypertexts 
(i.e., the Principles of  Operations manual for a virtual space probe).  

We describe the scientific and pedagogical principles underlying these architectures, and 
summarize some of the lessons we have learned by building and deploying them.  We 
end with some suggestions for what is needed to bring these architectures into 
widespread use. 
 
 

2 Qualitative Physics and Articulate Software 
Creating new kinds of educational software has been one motivation for qualitative 
physics since its inception (cf. Forbus & Stevens, 1981; Brown, Burton & de Kleer, 1982; 
Hollan, Hutchins, & Weitzman, 1984).  There are two reasons why qualitative physics is 
particularly appropriate for application to science and engineering education.  The first is 
that qualitative physics represents the right kinds of knowledge.  Much of what is taught 
in science in elementary, middle, and high school consists of causal theories of physical 
phenomena: What happens, when does it happen, what affects it, and what does it affect.  
Consider the water cycle, a key topic in middle-school science curricula.  Understanding 
this cycle requires understanding the kinds of forms that water can be in (e.g., liquid 
water, water vapor, snow and ice), the sorts of places it can be (in bodies of liquid water, 
underground, in the air), and the processes that transform and move it from place to place 
(e.g., flows, evaporation, condensation, freezing, etc.).   Traditional mathematical and 
computer modeling languages do not attempt to formalize such notions because they are 
designed for expert humans who already know such things.  For example, the conceptual 
understanding that a simulation designer used to create a simulator typically resides at 
best in the program’s documentation, and at worst only in the designer’s mind.  For many 
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purposes this opacity is fine; however, the lack of tight coupling between concepts and 
their software embodiment makes it difficult for most educational software to explain its 
results.    
 
On the other hand, uncovering how we think about physical entities and processes is one 
of the central scientific goals of qualitative physics.  Progress in qualitative physics has 
led to new modeling languages that describe entities and processes in conceptual terms, 
embody natural notions of causality, and express knowledge about the modeling process 
itself  (cf. Forbus, 1984, Weld & de Kleer 1990; Falkenhainer & Forbus, 1991; Forbus 
1996).  These languages provide new capabilities for domain content providers of science 
education software.  By embedding human-like models of entities and processes in 
software, the software’s understanding can be used to provide explanations that are 
directly coupled to how specific results were derived.  These explanations can delve into 
topics that traditional software cannot handle, e.g., why a process was considered to 
occur or why a specific approximation makes sense.  Figure 1 illustrates how qualitative 
physics encodes some sample everyday concepts. 
 
 What a student sees 

“Evaporation of water from the cup” 
 
“Temperature of the water depends on its heat.” 
 
 
“Heat flow occurs when two things are touching and 

their temperatures are unequal.  Heat goes from 
the hotter one to the cooler one.” 

What the software knows 
(evaporation PI2) 
 
(qprop (temp water6) 
       (heat water6)) 
 
(defprocess heat-flow 
  :participants 
    src a thermal-object 
    dst a thermal-object 
  :conditions 
   (> (T src) (T dst)) 
  :consequences 
   (I+ (heat dst) (hf self) 
   (I- (heat src) (hf self)) 
 

Figure 1: Qualitative reasoning provides formal languages for conceptual knowledge 
 

 
The second reason that qualitative physics is particularly apt for science and engineering 
education is that qualitative physics represents the right level of knowledge.  We believe 
that the tendency for engineering education to be highly mathematical at the expense of 
qualitative understanding is counterproductive.  Rare is the instructor who does not 
lament that students memorize formulae without understanding basic principles.  Indeed, 
cognitive scientists have extensively documented the existence of persistent 
misconceptions that survive college training in domains such as physics (cf. Gentner & 
Stevens, 1983).  We believe that a strong quantitative sense of the world is crucial for 
engineering.  However, we believe that principles governing a domain (i.e., the laws, 
mechanisms, and causal relationships) need to be mastered at the qualitative level to 
provide the kind of deep, robust understanding that engineering education seeks to 
impart.  Typically, expositions of such knowledge are centered around mathematical 
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equations (particularly those which can be solved analytically), in the form of derivations 
that mimic the structure of proofs.  
While these equations are 
important, only a small subset of 
students gain the desired 
understanding from this method of 
presentation.   An alternative is to 
focus more on teaching qualitative 
principles directly.  Good 
textbooks attempt to do this by 
introducing ideas in qualitative 
terms before diving into 
quantitative details, but they rarely 
linger at the qualitative level.  One 
reason for shortchanging 
qualitative understanding is the 
lack of a systematic formal 
vocabulary for qualitative 
knowledge, which makes this 
knowledge harder to articulate than 
quantitative knowledge.  
Qualitative physics provides such vocabularies, and we hope that as these ideas become 
more widespread, engineering educators will be able to use them to express aspects of 
their expertise that are currently described as “intuition” or “art”. 
 
Whether or not one believes that engineering education must be heavily mathematical, it 
is impossible to make such a claim about pre-college science education.  Students learn 
calculus, at best, at the end of high school, and sometimes only encounter algebra at the 
start of high school.  Making students memorize differential equations in the guise of 
teaching them science simply isn’t an option.  Even formal algebraic models are not 
feasible for elementary and middle school students.   On the other hand, students are 
taught about the entities, relationships, and processes needed for a qualitative 
understanding of phenomena.  They learn what kinds of objects there are (e.g., bodies of 
water, clouds) and what parameters exist (e.g., temperatures, pressures, dew points).  
They learn partial information about relationships between parameters  (e.g., “the rate of 
evaporation depends on the water temperature”).  They learn when various relationships 
are relevant and what physical phenomena they are tied to (e.g., that boiling in the open 
air occurs at a constant temperature).  In other words, the qualitative mathematics 
developed in qualitative physics provides exactly the right level of language for 
expressing relationships between continuous properties for pre-college science students.   
 
Properties of articulate software.  What these two claims suggest is that qualitative 
physics can provide the ability to create much smarter educational software: software 
whose models of the world have much in common with people’s mental models.  Such 
software can use this understanding to explain, coach, and scaffold students in a variety 

 
Why is the  

temperature rising? 
The temperature 

depends on... 

How could I 
improve my design? This reminds me 

of what happened 
when ... 

Figure 2: Articulate software provides explanations 
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of ways (Figure 2).  We call such software articulate software.  Articulate software 
should have the following properties: 
 
• It should be fluent.  The software should have some understanding of the subject 

being taught, and be able to communicate both its results and reasoning processes to 
students in comprehensible forms. 

• It should be supportive.  It should include a mentoring component consisting of 
coaches and tutors that scaffold students appropriately, taking care of routine and 
unenlightening subtasks and helping students learn how to approach and solve 
problems. 

• It should be generative.  Students and instructors should be able to pose new 
questions and problems, rather than just selecting from a small pre-stored set of 
choices.   

• It should be customizable.  Instructors should be able to modify, update, and extend 
the libraries of phenomena, designs, and domain theories used by the software, 
without needing sophisticated programming skills.  This simplifies maintenance and 
provides scalability. 

 
There are potentially many types of articulate software.  The rest of this chapter describes 
two architectures for articulate software that we have developed.  These architectures 
provide students with experiences that would often be too expensive, time-consuming, or 
dangerous to deal with in the physical world.   Articulate virtual laboratories provide 
students with design experiences, highly motivating settings for learning principles.  
Active Illustrations provide students with simulations that can be used to explore 
phenomena.  The next two sections examine each architecture in turn.  
 

3 Articulate Virtual Laboratories 
 
Design activities provide powerful motivation and meaningful contexts for learning 
fundamental physical principles.  In designing a household refrigerator, for instance, 
students quickly discover that water makes a poor working fluid because its saturation 
curve requires very low operating pressures to achieve vaporization at typical operating 
conditions.    Design requires that students use knowledge in an integrated fashion rather 
than memorizing isolated facts. Getting students to think in design terms leads naturally 
to building a strong interest in understanding complex, real-world relationships: The 
question “Why did they design it that way?” can be asked of any artifact in the world 
around us. Design environments that provide appropriate scaffolding for students, so that 
they can focus on particular areas of interest, could prove invaluable for instruction in 
basic science as well as engineering, and could better motivate interest in science 
learning.  
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Figure 3: FAVL helps students learn principles of feedback 

 
The articulate virtual laboratory architecture we have developed addresses this need.  
Like existing virtual laboratories (e.g., Electronics Workbench, Interactive Physics) it 
includes a software environment for creating and analyzing designs without the expense 
(and sometimes danger) of creating physical artifacts.  Unlike existing virtual 
laboratories, it provides explanation facilities and coaching, to help guide the student.   
 
 We have constructed two articulate virtual laboratories to date:  CyclePad (Forbus & 
Whalley, 1994; Forbus et al 1999) helps engineering students learn engineering 
thermodynamics by supporting students in designing and analyzing thermodynamic 
cycles.  The Feedback Articulate Virtual Laboratory (FAVL) (Forbus, 1984; Ma, 1998, 
1999) helps high school students learn the principles of feedback by designing controllers 
(see Figure 3).  Since CyclePad is already in routine use, we will focus our discussion on 
it.   
 

3.1 CyclePad: An AVL for engineering thermodynamics 
 
CyclePad (Forbus & Whalley, 1994; Forbus et al. 1999) is an articulate virtual laboratory 
for engineering thermodynamics.  The analysis and design of thermodynamic cycles is a 
major task that drives engineering thermodynamics (cf. Whalley, 1992).  A 
thermodynamic cycle is a system within which a working fluid (or fluids) undergoes a 
series of transformations in order to process energy.  Every power plant, engine, 
refrigerator, and heat pump is a thermodynamic cycle. Thermodynamic cycles play much 
the same role for engineering thermodynamics as electronic circuits do for electrical 
engineering: A small library of parts (in this case, compressors, turbines, pumps, heat 



Draft of 7/5/00 8

exchangers, and so forth) are combined into networks, thus allowing a potentially 
unlimited set of designs for any given problem.  (Practically, cycles range from four 
components, in the simplest cases, to networks consisting of dozens of components.) One 
source of the complexity of cycle analysis stems from the complex nature of liquids and 
gases:  Subtle interactions between their properties must be harnessed in order to improve 
designs.  Cycle analysis addresses questions such as the overall efficiency of a system, 
how much heat or work is consumed or produced, and what operating parameters (e.g., 
temperatures and pressures) are required of its components.  As in many engineering 
design problems, an important activity in designing cycles is performing sensitivity 
analyses, to understand how choices for properties of the components and operating 
points of a cycle affect its global properties. 
 
To illustrate, consider the power generation cycle shown in Figure 4.  Air from the 
atmosphere (S2) is compressed, which raises its pressure and causes its temperature to 
rise.  More heat is added in the combustion chamber by injecting fuel and igniting it.  
Energy is extracted by expanding the gas through Turbine 1, and the gas is reheated and 
then passed through Turbine 2 to extract yet more energy.  One consequence of the 
Second Law of thermodynamics is that a cycle must reject some heat as waste.  A clever 
feature of this cycle is that it recycles some of this heat, using it to drive another cycle.  
This occurs via the heat exchanger, which heats the working fluid in the second cycle.   
We will return to the subcycle shortly.  In the main cycle, the waste gases are exhausted 
back to the atmosphere after going through the heat exchanger.  This return to the 
atmosphere is represented by a cooler, which enables us to take into account the heat lost 
in this transaction.  Returning to the heat exchanger, the heat transferred from the gas 
cycle is sufficient to vaporize the working fluid (in this case water) in the lower cycle into 
superheated steam, which is passed through Turbine 3 to extract yet more work.  Finally, 
the steam is condensed back into water, exhausting more heat to the atmosphere, and is 
pumped back into the heat exchanger to complete the cycle.   A thermodynamics expert 
would recognize this as a combined cycle, where a Brayton gas cycle with reheat drives a 
Rankine vapor cycle.  
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Figure 4: Example of a CyclePad design. 

 
 
In thermodynamics education for engineers, cycle analysis and design generally appear 
towards the end of their first semester, or in a second course, since understanding cycles 
requires a broad and deep understanding of the fundamentals of thermodynamics.   
However, even the most introductory engineering thermodynamics textbooks tend to 
devote several chapters to cycle analysis, and in more advanced books the 
fraction devoted to cycles rises sharply.  Indeed, some textbooks focus exclusively on 
cycle analysis (e.g. Haywood, 1985).  Aside from their intrinsic interest, the design of 
thermodynamic cycles provides a highly motivating context for students to learn 
fundamental principles deeply. 
 
There are several reasons why thermodynamics is especially suitable for virtual 
laboratories.  First, physical laboratories involving even simple thermodynamic cycles 
can be expensive and dangerous, due to the need for high temperatures and pressures, 
along with dangerous chemicals (e.g., fuels, ammonia).  Second, many of the most 
interesting systems, such as jet engines and power plants, are far too expensive and time-
consuming to build as student projects.   Third, creating working physical artifacts 
requires what is known as  detailed design, where many concrete choices are made, in 
addition to  conceptual design, where the basic properties of a system are figured out.  It 
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is conceptual design that provides the most pedagogical value in teaching fundamental 
principles.  For example, designing a working jet engine requires selecting an appropriate 
curvature for the turbine blades and worrying about shape and weight tradeoffs for every 
component.  Designing a working power plant that uses water as its working fluid 
requires designing draining, cleaning, and lubrication systems.  These topics are 
important for advanced engineering courses specializing in those areas, but are irrelevant 
and distracting when trying to help students master the fundamentals of the domain. 
 

3.2 Using CyclePad: An example 
 
When students start up CyclePad, they find a palette of component types (e.g., turbine, 
compressor, pump, heater, cooler, heat exchanger, throttle, splitter, mixer) that can be 
used in their design.  Components are connected together by stuffs, which represent the 
properties of the working fluid at that point in the system. 
 
An important aside:  There are actually two perspectives one can take on thermodynamic 
cycles: Steady-flow versus closed cycles.  In steady flow analyses one treats the fluid 
flowing through the system as essentially varying with location rather than time.  Typical 
applications of steady-flow analyses include power plants and jet engines.  In closed 
cycle analyses one follows a volume of fluid through a set of changes imposed by 
physical processes, regardless of their physical location.  Typical applications of closed 
cycle analyses include automobile and diesel engines.  Closed-cycle problems are also 
heavily used early in thermodynamics courses to focus students on the particular 
properties of substances and processes.  While the laws of thermodynamics are the same 
for both perspectives, how the laws are applied varies as a consequence of the ontological 
choices each perspective makes.  CyclePad supports both perspectives, but we only 
discuss steady-flow systems here for simplicity. 
 
Once students put together the structure of the cycle, they continue to use CyclePad to 
analyze the system.   The student enters assumptions such as the choice of working fluid 
and the values of specific numerical parameters.  In addition to numerical assumptions, 
modeling assumptions can be made about components.  For example, a turbine can be 
assumed to be adiabatic (i.e., no heat is lost from it to its surroundings), isothermal (i.e., 
no temperature change across it), or isentropic (i.e., constant entropy).   Such modeling 
assumptions can introduce new constraints that may help carry an analysis further.  They 
can also introduce new parameters (e.g., the efficiency of the turbine if it isn’t isentropic) 
whose values the student must appropriately constrain.  
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Figure 5: Meters provide details about parameter values.  Green 
indicates assumptions and blue indicates derived values. 

 
 
CyclePad accepts information incrementally, deriving from each student assumption as 
many consequences as it can.  Meters associated with each component and stuff are 
available to describe its properties (see Figure 5).  Like physical meters, these meters 
display numerical parameters of the entity they represent in a compact tabular form.  
Unlike physical meters, they also display the modeling assumptions the student has made 
so far, and what other assumptions might yet be made.  At any point questions can be 
asked, by clicking on an element of a meter display to obtain the set of questions (or 
commands) that make sense for it.   The questions and answers are displayed in English.  
They include links back into the explanation system, thus providing an incrementally 
generated hypertext (see Figure 6).  This hypertext is important for several reasons.  First, 
it helps students understand the indirect consequences of their assumptions.  Second, the 
nature of the domain is such that students often make inconsistent modeling 
assumptions1.  CyclePad detects and flags such contradictions, and the hypertext system 
enables the student to explore the subset of assumptions responsible and decide which to 
retract. 
 

                                                 
1 The historical interest in perpetual motion machines and its manifestations today (the “free energy” 
inventors and those dabbling in “over unity technologies”) suggests that this problem is not limited to 
students. 
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Figure 6: CyclePad’s hypertext explanation system 

 
 
 
 
In addition to the hypertext system, CyclePad incorporates several other tools and 
capabilities that help students understand their design.  CyclePad will automatically 
create a T-S (Temperature-Entropy) diagram on request, a graphic commonly used by 
engineers to understand the global properties of a cycle.  CyclePad includes an optional 
economic analysis model, so that designs can be evaluated on the basis of their cost of 
construction and operation.  CyclePad can carry out sensitivity analyses, enabling 
students to explore how changes in one parameter affect another.  Reflecting on graphs of 
such sensitivity analyses is useful in understanding the properties of their design and how 
modifications might affect it.  For instance, students might discover that to obtain the 
desired thermal efficiency with their current design the operating temperature would have 
to be raised so high that the materials to build it would be too costly.  
 
CyclePad includes two kinds of coaching.  The on-board coach provides rapid feedback 
for some commonly encountered problems.  For example, it recognizes the most common 
type of contradiction (i.e., requirements that push a state point outside the bounds of the 
property tables) and provides visualizations of the progress of the analysis (i.e., how 
much has been pinned down about particular aspects of the cycle so far).   It can make 
suggestions about reasonable ranges for parameter values, based on its understanding of 
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the teleology of the cycle.  The email coach provides additional assistance with analysis 
and design.  The most novel facility in the email coach is the ability to make suggestions 
about how to improve a student's design, based on analogies with a library of expert-
authored cases.  The coach provides step-by-step instructions illustrating how this 
suggestion can be applied to the student’s design.  It does not, however, evaluate whether 
or not this suggestion is a real improvement – that evaluation provides a valuable learning 
opportunity for the students. 
 

3.3 How CyclePad helps students 
 
The design of CyclePad was driven by addressing the needs of instructors in teaching 
engineering thermodynamics.  A variety of common problems arise when teaching 
students how to design and analyze thermodynamic cycles: 
 
1. Students tend to get bogged down in the mechanics of solving equations and carrying 

out routine calculations.  They avoid exploring multiple design alternatives and avoid 
carrying out trade-off studies (e.g., seeing how overall cycle efficiency varies as a 
function of turbine efficiency versus how it varies as a function of boiler outlet 
temperature).  Yet without making such comparative studies, many opportunities for 
learning are lost. 

2. Students often have trouble thinking about what modeling assumptions they need to 
make, such as assuming that a heater operates isobarically (i.e., no pressure drop 
across it), leading them to get stuck when analyzing a design. 

3. Students typically don’t challenge their choices of parameters to see if their design is 
physically possible (e.g., that their design does not violate the laws of 
thermodynamics by requiring a pump to produce rather than consume work). 

4.  Students typically have no basis for relating the values they calculate to the physical 
world and their everyday experience.  The units of thermodynamic quantities, such as 
kilowatts, are not as accessible as pounds or feet.  This lack of intuition about, for 
instance, whether 10,000 kilowatts is enough to light a room or a city causes students 
to treat thermodynamics problems as abstractions divorced from practical application. 

 
These considerations drove the design of CyclePad. Here are how the features shown is 
the previous section address these problems: 
 
1. CyclePad handles routine calculations, including equation solving and property-table 

interpolation.   By facilitating sensitivity analyses, CyclePad encourages students to 
develop their intuitions through trade-off studies.  

2. CyclePad's interface makes modeling assumptions explicit and highly salient.  It 
helps them keep track of the consequences of their modeling assumptions.   

3. CyclePad detects physically impossible designs, using a combination of qualitative 
constraints and numerical reasoning.  It alerts students about such problems, and 
supports their investigations and resolution of them through its generated hypertext 
system.  
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4. CyclePad includes benchmarks that help ground parameter values in real-world 
examples, and a web-based design library whose entries are accessed based on 
analogies with the student's design.  

 

3.4 How CyclePad works 
CyclePad uses a combination of artificial intelligence techniques to provide the abilities 
outlined in the previous section.  These are described in detail elsewhere (Forbus et al 
1999), here we summarize them to highlight how they contribute to scaffolding student 
learning. 
 

Figure 7: Samples from CyclePad’s knowledge base 

(defEntity (Abstract-hx ?self ?in 
                              ?out) 
  (thermodynamic-stuff ?in) 
  (thermodynamic-stuff ?out) 
  (total-fluid-flow ?in ?out) 
  (== (mass-flow ?in) 
      (mass-flow ?out)) 
  (parameter (mass-flow ?self)) 
  (parameter (Q ?self)) 
  (parameter (spec-Q ?self)) 
  (heat-source (heat-source ?self)) 
  ((parts :cycle) has-member ?self) 
 (?self part-names (in out)) 
 (?self IN ?in)(?in IN-OF ?self) 
  ?self out ?out)(?out out-of ?self)) 
 
(defAssumptionClass  
  ((abstract-Hx ?hx ?in ?out)) 
    (isobaric ?hx) 
    (:not (isobaric ?hx))) 

 

(defEntity (Heater ?self ?in ?out) 
  (abstract-Hx ?self ?in ?out) 
  (?self instance-of heater) 
  (heat-flow (heat-source ?self)  
             (heat-source ?self) 
       ?in ?out) 
  ((heat-flows-in :cycle) 
     has-member (Q ?self)) 
  (> (Q ?self) 0.0)) 
 
(defEquation Hx-law 
  ((Abstract-Hx ?hx ?in ?out)) 
  (:= (spec-h ?out) 
      (+ (spec-h ?in) (spec-Q ?hx)))) 
 
(defEquation spec-Q-definition 
  ((Abstract-Hx ?hx ?in ?out)) 
  (:= (spec-Q ?hx) 
      (/ (Q ?hx) (mass-flow ?hx)))) 

 
 

 

 

3.4.1 CyclePad’s Knowledge Base 
The domain knowledge in CyclePad is represented using techniques from qualitative 
physics (Forbus, 1984) and compositional modeling (Falkenhainer & Forbus, 1991).   
The knowledge required to support design and analysis goes far beyond just a set of 
equations, as the examples in Figure 7 illustrate.  CyclePad's domain theory includes: 
• Physical and conceptual entities: These include components such as compressors, 

turbines, pumps, and heat exchangers; physical processes such as compression, 
combustion, and expansion, and the representations of the properties of the working 
fluid between them.   CyclePad’s knowledge base currently contains over 29 entity 
definitions. 

• Structural knowledge:  What kinds of relationships can hold between components, 
process occurrences, and the descriptions of working fluids that connect them.  
CyclePad’s knowledge base currently contains 34 structural facts. 

•  Qualitative knowledge:  This includes the kinds of physical processes that can occur 
inside components, or in the sequence of operations in an open cycle.  Physical 
processes constrain the parameters of the situation.  For instance, the temperature of 
the working fluid coming into a heater cannot be higher than the temperature of the 
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working fluid when it leaves.  CyclePad’s knowledge base currently contains 
definitions of five fundamental physical processes. 

• Quantitative knowledge:  This includes equations that define relationships between 
the parameters of the constituents of a cycle, numerical constants (i.e., molecular 
weights), and tables of property values for substances (e.g., saturation and superheat 
tables).  CyclePad also automatically derives equations for global properties.  For 
example, equations for net work and heat flows into and out of the cycle are derived 
every time the structure of the cycle changes.  CyclePad’s knowledge base currently 
contains 167 equations, and saturation tables and superheat tables for 10 substances. 

• Modeling assumptions:  Modeling assumptions describe what simplifications can be 
made about a component or process during an analysis.  For instance, the pressure 
drop across a boiler is typically ignored in conceptual design because it is negligible 
for the purpose of the analysis.   Rather than stipulating a particular pressure drop, it 
is simpler to assume that the heater used to model a boiler is isobaric, i.e., has no 
pressure drop. CyclePad’s knowledge base currently contains 10 types of modeling 
assumptions 

• Assumption classes:  Assumption classes help structure reasoning by organizing 
modeling assumptions into sets.  When an assumption class holds, one assumption 
from it must be included in the model of the cycle for the model to be complete.  
CyclePad’s knowledge base currently contains 14 assumption classes. 

• Economic model: Economic tradeoffs are key issues in design.  CyclePad 
incorporates standard engineering cost estimating functions that extrapolate capital 
costs for a cycle based on the size of the components, generally estimated by mass-
flow.  CyclePad contains information about several different materials, including 
stainless steel, nickel alloy, titanium, and molybdenum.  Each material has limits on 
the temperatures (high and low, the latter for cryogenic applications) that it can 
endure.  A special material, Unobtainium, with extraordinary properties (including 
price) is useful for suspending the economic constraints on a particular device or 
subset of devices.  CyclePad also estimates the resulting weight of the cycle as a 
function of the materials employed, which may be a critical constraint, for example, 
in the design of an aircraft engine. 

 
CyclePad's knowledge base is powerful enough to handle a wide variety of analyses 
found in introductory and advanced thermodynamics textbooks.   
 

3.4.2 CyclePad's Analysis Methods  
 
A student’s activities with CyclePad shift between creating and/or editing the structure of 
the cycle and analyzing the properties of the cycle by supplying assumptions about its 
constituents.  CyclePad interactively and incrementally derives the consequences of each 
student assumption.  This work is performed via antecedent constraint propagation, with 
the derivations being recorded in a logic-based truth maintenance system (LTMS) 
(Forbus & de Kleer, 1993).  At any point the student can ask for explanations of derived 
values, the indirect consequences of particular assumptions, what equations might be 
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relevant to deriving a particular value, and other similar queries.    These explanation 
facilities exploit the dependency network created in the LTMS.   
 
Explanations in CyclePad are represented by structured explanations, an abstraction layer 
between the reasoning system and the interface.  The reason for this layer is that the 
reasoning system needs to be optimized for performance, while the interface needs to be 
optimized for clarity, and these goals are often incompatible.  The structured explanation 
layer provides summarization, hiding aspects of how the reasoning system works that are 
irrelevant to the student.  It also provides reification, making explicit dependencies that 
would otherwise be implicit, such as the various methods that could be used to derive a 
desired parameter. 
 
Automating the tedious calculations involved in using thermodynamic equations and 
providing clear explanations of how the student’s assumptions were used provides 
substantial scaffolding.    Students can focus on thinking about the thermodynamic 
consequences of their assumptions, rather than using their calculators to solve routine 
equations.   The LTMS also provides a useful mechanism for detecting and recovering 
from contradictory assumptions.  For instance, if the parameters supplied by the student 
imply that physical laws are violated (i.e., that a turbine consumes work rather than 
generates it), this fact along with the subset of assumptions responsible is brought to the 
student’s attention for correction.   
 

  

Figure 8: Sensitivity analyses show impact of design decisions, 
revealing underlying principles.  Here the effect of feedwater pressure 
on thermal efficiency in a regeneration cycle is being explored. 

 
CyclePad provides other analysis tools in addition to constraint propagation.  It automates 
the process of performing sensitivity analyses, which involve seeing how a change in one 
parameter affects another parameter (e.g., how the boiler pressure affects the thermal 
efficiency of the cycle), using the dependency network in the LTMS to identify relevant 
parameters and automatically derive the necessary equations (see Figure 8).  Such 
analyses are viewed as important by instructors for gaining a deeper appreciation of the 
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domain.  CyclePad provides visualization tools that make apparent how parts of the cycle 
contribute to its overall performance.  Graphical information about the bounds of 
available property tables, and in some cases automatically generated T-S (temperature 
versus entropy) diagrams, are also available.   An on-line help system that describes the 
program’s operation and knowledge is included.   
 
Building student intuitions about the meaning of the properties of thermodynamics and 
helping them achieve a quantitative “feel” for the subject is an important pedagogical 
problem.  Students initially know so little about thermodynamics and cycles that they can 
have problems spotting problems in their designs.  For example, experienced designers 
will note that low quality (i.e., too much liquid in the mixture) in the working fluid 
exiting a heat engine's turbine is likely to cause damage to the turbine blades.  
Consequently, they will attempt to adjust the system's parameters to increase the exit 
quality, or failing that, make a structural alteration to the cycle.  To spot problems like 
this and understand how to fix them requires knowledge of how function relates to 
structure.  For example, low exit quality is only a problem if the cycle is intended as a 
heat engine.   In a cryogenic cycle, turbines can be used to cool the working fluid 
sufficiently to cause precipitation, because a resisted expansion results in a greater drop 
in the working fluid temperature than a throttled expansion.  Thus in the case of a 
cryogenic cycle we might be aiming for low quality.  Giving advice about cycle 
parameters, therefore, requires understanding the intended purpose of the system and the 
functional roles each component plays in achieving that purpose. 
 
CyclePad incorporates Everett’s Carnot teleological recognition system (Everett, 1999) to 
understand the intended function of the cycle, in order to provide advice about values of 
cycle parameters.  Different components can play different functional roles.  For 
example, a mixer may act as a simple way to join flows, as a heat-exchanger, or as a jet-
ejector, in which a high-velocity jet of fluid entrains and compresses another inlet stream.  
Understanding the intended function of a system requires assigning functional roles to 
each component and recognizing any larger-scale plans that the configuration of roles 
represent, such as regeneration.  Carnot uses evidential rules and Bayesian inference to 
suggest plausible functional roles for each component in a student’s cycle.  The evidential 
rules provide evidence either for or against a particular role.  This evidence is used to 
update the prior probability of each role for each component.  The evidential reasoning is 
included in CyclePad’s explanation system, so that students can find out why (and with 
what certainty) a particular role is believed and can also get an explanation of why other 
potential roles were rejected (see Figure 9). 
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Figure 9: CyclePad uses evidential reasoning to infer student intent 

 
 
CyclePad combines Carnot’s teleological inferences with norms to generate advice for 
adjusting parameters.  A norm is a range for a component’s parameter that is appropriate 
based on the component's functional role.  For example, the temperature of the steam 
leaving a Rankine cycle boiler typically falls in the range of 300-600ºC.  Lower 
temperatures result in inadequate efficiency whereas higher temperatures require 
uneconomically expensive materials in the downstream components.  In contrast, the 
range of temperatures for the refrigerant leaving the coils of a refrigerator (which are 
modeled as a heater) is quite different, typically in the range of 5-15ºC.  Inferring the role 
a component is playing is therefore essential to providing relevant advice to the student.  
Our knowledge base currently contains eighteen norms, between two and six per 
component depending on the number of potential roles for that component. 
 
When the Analysis Coach is invoked, Carnot infers the teleology of the cycle.  The 
functional roles assigned to each component are used to retrieve applicable norms, which 
are checked against known parameter values.  Any violations or suggestions are noted 
using CyclePad’s explanation system, providing explanatory text associated with each 
norm.  In addition to being used to provide on-board advice, Carnot’s teleological 
representations also play an important role in our case-based design coach, described 
below.  The insight is that similarity in intended function and qualitative properties are 
better predictors of a case’s relevance than the specific numerical values involved in it.  
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3.4.3 CyclePad's Coaching  
 CyclePad's on-board coaching facilities are supplemented by an email-based 
coaching system.  We turned to email because CyclePad is used by students in a variety 
of institutions spread across the planet.  Since CyclePad is distributed via the web, there 
is some likelihood that students have network access.  Students can use an email system 
built into the software to send their current design and a query about it to our coach, 
which runs on a server at Northwestern.  The coach is implemented as part of a RoboTA 
Agent Colony  (Forbus & Kuenhe 1998),  a software architecture designed for providing 
distributed learner support.  Email to a RoboTA is handled by a Post Office Agent, which 
ascertains which member of the colony is best able to handle it.  The CyclePad Guru is 
the agent designated for CyclePad-related messages.  The kinds of messages supported 
by the CyclePad Guru are  
 
1. Turning in an assignment.  We are experimenting with a system that enables 

instructors to create assignments, including evaluation rubrics, that enable students to 
submit their solutions via email.  The idea is to make it easier for instructors to collect 
student work and have the mechanical aspects of their evaluations applied 
automatically. 

2. Asking for help with a contradiction.  The coach provides some general feedback in 
response to this case. 

3. Asking for help in completing an analysis.  The coach provides advice based on an 
expert model of how to analyze cycles, pointing out the kinds of assumptions that 
might be appropriate to make given the student's progress. 

4. Asking for help in improving a design.  The coach provides suggestions for improving 
the design, based on a case library of design transformations 

 
Design coaching is the most novel feature of the CyclePad Guru.  We have two goals in 
giving design advice.  First, we want to nudge students in useful directions, rather than 
solving problems for them. Consequently, the Guru provides plausible specific 
suggestions, but does not attempt to validate those suggestions in the students' context.  
Understanding why a suggestion will or will not work in a particular circumstance is an 
important learning experience that we want students to have.  Second, we want to 
motivate students to dig more deeply into the nature of thermodynamics-ideally, to 
immerse themselves in the culture of engineering thermodynamics by studying real-world 
systems and how they are connected to the assignments they are grappling with.  
Consequently, the Guru uses case-based coaching to generate design advice, motivating 
students to explore the case deeply by showing exactly how that case might be relevant to 
the improvement they are trying to make. 
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From: robota@godzilla.cs.nwu.edu 
Date: Mon, 20 Sep 99 00:49:47 -0600 
To: forbus@nwu.edu 
Subject: The CyclePad Guru's response to your message: Need help improving my 
Rankine cycle 
 
You asked for help with your design. 
I have 2 suggestions. 
============================================= 
Suggestion #1 
Your problem reminds me of a method: increasing boiler temperature in a Rankine 
cycle.  Increasing the boiler temperature increases the efficiency of the cycle.
You can find out more about this at <URL>. 
Here is how you might apply this to your design: 
1. Increase T(S2). 
============================================= 
Suggestion #2 
Your problem reminds me of a method: reheat in a Rankine cycle.  Reheat adds 
another heater and another turbine.  The second heater, a reheater, heats up the 
working fluid at the turbine  
outlet, and the second turbine extracts yet more work from that.  This increases 
efficiency because more heat is being added when the steam is still at a 
reasonably high temperature. 
You can find out more about this at <URL>. 
Here is how you might do this with your design: 
1. Disconnect the outlet of TUR1 from the inlet of CLR1. 
2. Create a new heater, which we'll call HTR2. 
3. Connect the outlet of TUR1 to the inlet of HTR2.  Let's refer to the 
properties of the working fluid there as S5. 
4. Create a new turbine, which we'll call TUR2. 
5. Connect the outlet of HTR2 to the inlet of TUR2.  Let's refer to the 
properties of the working fluid there as S6. 
6. Connect the outlet of TUR2 to the inlet of CLR1.  Let's refer to the 
properties of the working fluid there as S7. 
You might find the following assumptions relevant or useful: 
1. Assume that the working fluid at S5 is saturated. 
2. Assume quality(S5) = 1.0000[0-1] 
3. Assume that HTR2 is a reheater. 
4. Assume that HTR2 works isobarically. 
5. Assume that HTR2 is made of molybdenum. 
6. Assume that HTR2 burns natural-gas. 
7. Assume that TUR2 works isentropically. 
8. Assume that TUR2 is made of molybdenum. 
9. Assume that the working fluid at S7 is saturated. 
10. Assume quality(S7) = 1.0000[0-1] 
=============================================== 

 
Figure 10: Design advice from the CyclePad Guru 

A sample of design advice from the Guru is illustrated in Figure 10.  The Guru has access 
to a library of cases, each describing a particular change to a design and what it is 
intended to accomplish.  These changes can be either tuning the parameters of the cycle 
(i.e., increasing the operating temperature of a boiler to increase efficiency) or a structural 
change in the cycle (i.e., adding reheat to a cycle to enable more work to be extracted).   
Cases are authored by domain experts, using CyclePad and an HTML editor.  Notice that 
a URL is supplied as part of the advice.  These web pages describe the general principle 
involved in the library case, illustrated through a concrete example.  The concrete 
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example used in the case is generated by the domain expert, using CyclePad.  The 
domain expert describes a transformation that implements the principle by making the 
appropriate changes to this design.  A case compiler uses this information to compute a 
description of the transformation that can be used in analogical reasoning.   
Consequently, domain experts only need to be able to use CyclePad plus an HTML editor 
in order to add cases to the design library. 
 
Given a student's design, the Guru uses a cognitive simulation of similarity-based 
retrieval, MAC/FAC (Forbus, Gentner, & Law, 1995) to retrieve relevant cases.  
Concrete advice as to how to apply the idea of the case to the student's design is 
generated by a cognitive simulation of analogical matching, SME (Falkenhainer, Forbus, 
& Gentner, 1989; Forbus, Ferguson & Gentner, 1994).   The use of cognitively motivated 
analogical processing software has two advantages over the typical state of the art in 
case-based reasoning (CBR) systems.  First, most CBR systems require hand-indexing of 
new cases by experts familiar with both the domain and the retrieval system.  By using 
MAC/FAC, we exploit human-like similarity computations to automatically retrieve 
cases without indexing.  Second, most CBR systems use simple lists of features as their 
representation medium.  By contrast, CyclePad designs are (internally) full predicate 
calculus descriptions, encoding relational structure such as the steps required to achieve a 
design modification.  These richer relational structures lead to analogical inferences by 
SME, that are turned into step-by-step instructions on how to apply the case to the 
student's design. 
 
Using a distributed coaching system has its disadvantages.  It requires students to have 
access to email.  It involves a delay in responding to a student's request, which may not 
be as effective as providing an immediate response.  This is an inevitable limitation of 
email as a transport mechanism.  Prior requests do not affect the answer returned, i.e., one 
cannot enter into a correspondence with this coach.  Creating a software coach capable of 
natural language conversations with students and maintaining an ongoing model of them 
and their progress would be an excellent research project, but is extremely difficult.  On 
the other hand, by putting complex coaching facilities on a server at our site, we can 
make improvements in coaching strategy without asking users to reinstall our software.  
The potential value of a distributed coach becomes especially apparent when considering 
the issue of extending and maintaining a case library.  A large, rich case library with lots 
of associated media (e.g., pictures of the real physical systems corresponding to the 
CyclePad design) is probably best treated as a network resource, rather than installed on 
each student machine.  We are forming an editorial board for the web- 
based design library, to ensure quality control, and encouraging submissions from 
CyclePad experts worldwide, much in the manner of the Eureka community-maintained 
database of tips (Bell et al 1996). 
 
 

3.5 Discussion 
 
CyclePad has been distributed for free via the Web since September 1997 and has been 
used in classrooms scattered all over the world.  As of  September 1999, we had over 
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2500 distinct downloads from 63 countries.  While some downloaders never use the 
software or do not find it to their liking, we know from surveys and email feedback that a 
number of instructors have adopted it successfully and use it in their courses in a variety 
of ways.  Although the project is now over, we will continue to distribute CyclePad and 
run the CyclePad Guru server, and will make CyclePad's source code publicly available 
through an open-source license. 
 
CyclePad provides strong evidence for the utility of articulate virtual laboratories.  It has 
been adopted by instructors in a variety of educational institutions for both introductory 
and advanced courses.  Some institutions use it with traditional textbooks, while others 
are developing new curricula around it.  In universities where we have direct 
collaborators, we have seen various benefits of CyclePad.  For example, advanced 
thermodynamics students at the US Naval Academy were able to tackle more complex 
term projects than they were able to previously, resulting in some cases in publishable 
technical papers (cf. Wu & Burke, 1998; Wu & Dieguez, 1998).   
 
In Engineering Technology curricula, i.e., curricula aimed at producing technicians rather 
than engineers, students often learn calculus later than thermodynamics.  This makes the 
analysis-heavy approach of standard thermodynamics courses even less useful for this 
population.  CyclePad provides a “simulated hands-on” experience for such students, 
helping them build solid, accurate intuitions about thermodynamics. (Baher, 1998).    For 
example, at University of Arkansas, Little Rock, students use CyclePad in laboratory 
exercises to experiment with systems that would be too expensive or dangerous to 
physically build.  
 
The design approach of articulate virtual laboratories fits quite naturally into many 
advanced thermodynamics courses.    Regrettably, in the United States this has not been 
true of introductory courses.  Traditional thermodynamics courses, like many current 
engineering courses, are analysis-centered, lavishing classroom time on mathematical 
derivations of thermodynamic principles at the expense of helping students understand 
the principles themselves and their implications.  Many courses still spend time teaching 
students how to do complex analyses, including table interpolations, with just a simple 
calculator, even though as practicing engineers they will have more sophisticated 
computer support.  This necessarily reduces the time available for understanding the 
principles of thermodynamics and time available for learning design skills.  This has been 
a significant barrier in introducing CyclePad in introductory courses.  Indeed, using 
CyclePad in such courses can lead to drops in student performance,  since students are 
being tested on mechanical calculation skills that in practice are automated.  This 
problem is analogous to the introduction of calculators into mathematics education.  The 
introduction of intelligent systems that handle more of the analytic load of engineering 
tasks suggests rethinking what we should be teaching and how it can be taught.  For 
example, in pilot studies we have experimented with exercises where students use 
CyclePad to do simple design and optimization tasks, weighing their written reports as to 
the "how" and "why" of their work as much as the specific answers they provided.  A 
positive trend is the recent interest by ABET, the US engineering education standards 
organization, on infusing design tasks throughout engineering curricula.   
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The articulate virtual laboratory architecture CyclePad embodies can, we believe, be 
fruitfully applied to many other engineering domains.  The nature of the analysis tools 
will vary from domain to domain.  AVLs for electronics or chemical engineering might 
end up looking very much like CyclePad, whereas AVLs for mechanism design or 
computer programming might be able to utilize similar structured explanation systems 
and distributed coaching, but with very different analysis and design methods.  AVLs 
could make spreading design work through the engineering curriculum much more 
practical, for instance by providing support for portfolio assessment.   
 
We also believe that with appropriately simplified domains, articulate virtual laboratories 
could also be used in science teaching.  Design activities are commonly used in 
constructivist learning systems and curricula because they are so motivating (cf. Papert 
1980; Lehrer 1998).  The National Science Education Standards have identified design 
activities as a means of motivating learning of scientific content and process as well as a 
vehicle for understanding the technological world for K-12 education (National Research 
Council, 1996).  Experience with physical systems is often an important aspect of 
learning through design, but AVLs could provide valuable complementary activities, and 
make rich design activities possible in domains for which it is now impossible.  For 
example, CREANIMATE (Edelson, 1992) used the idea of modifying animals as a 
motivation for students to watch videos that showed how animals behave.  While this 
video-driven case-based approach has its attractions, an AVL for such a domain would 
provide much richer explanations and more freedom for students to explore animal 
behavior and biomechanics. 
 

4 Active Illustrations 
 

The power of illustrative examples is well-known in education.  Traditional media 
offer high authenticity but low interactivity.  Textbook illustrations and posters can 
provide thought-provoking pictures, tables, charts, and other depictions of complex 
information. Movies and video can provide gripping dynamical displays.   But none of 
these media provide interaction.  Students intrigued by a picture of a steam engine in a 
textbook (or a movie of a steam engine) cannot vary the load or change the working fluid 
to see what will happen.  They cannot ask for more details about explanations that they 
don’t understand.  They cannot satisfy their curiosity about how efficiency varies with 
operating temperatures by testing the engine over ranges of values.  The Active 
Illustrations architecture uses AI techniques to provide such interactive capabilities.  An 
active illustration can be thought of as a hands-on museum exhibit, consisting of a virtual 
artifact or system, and (ideally) a guide who is knowledgeable about the exhibit and 
enthusiastically helps satisfy your curiosity about it. Active illustrations support student 
explorations, by allowing students to change parameters and relationships to see what 
happens.  They are articulate, in that students can ask why some outcome occurred or 
some value holds, and receive understandable explanations that ultimately ground out in 
fundamental physical principles and laws. 
 



Draft of 7/5/00 24

4.1 Example: The Evaporation Laboratory 
Suppose a student is interested in how evaporation works. Since evaporation happens in 
everyday circumstances that are neither dangerous nor expensive to set up, it can easily 
be experimented with.  The student begins to set up different jars of water, varying in 
width and amount of water, and measures their initial level.  The student places these jars 
on the window ledge in the classroom, and looks for something else to do while waiting 
for the outcome of the experiment.  Seeing an unused computer, the student starts up an 
Active Illustration on evaporation, to try to gain some insights in minutes instead of days.   

The student’s interaction with the simulation laboratory starts with setting up a scenario.  
The student selects, from an on-screen catalog, a cup to use in an experiment.  The cups 
are all the same shape and size, but they are made from a variety of materials, ranging 
from Styrofoam to tin to titanium and even diamond.  The student chooses a Styrofoam 
cup, since such cups are common.  From another catalog, the student selects an 
environment to place the cup in.  Since it is hot outside, the student selects Chicago in the 
summer, and sets the simulator to run for four hours of virtual time. A few moments later, 
the simulation is finished.  The student notices, by requesting a plot of how the level of 
water in the cup changes over time, that there is a slow but measurable decline. Using the 
explanation system, the student finds the following summary of the behavior: 

 
Between 0.0 and 14400.0 seconds: 
  evaporation from Cup occurs 
  flow of heat from Atmosphere to water in Cup 
       occurs 
  there is water in liquid form in Cup 
  water in Cup touches the atmosphere 

The student follows up by using the hypertext facilities of the explanation system: 

 
In Styrofoam cup in Chicago, 
mass of water in Cup can be affected by: 
  water loss via evaporation from Cup 
In Styrofoam cup in Chicago, 
water loss via evaporation from Cup can be affected by: 
  vapor pressure of Atmosphere 
  saturation pressure of Atmosphere 
  surface area of water in Cup 
  temperature of water in Cup 

 

At this point the student conjectures that higher temperature should lead to more 
evaporation.  To confirm this conjecture, the student runs a second simulation, using a 
diamond cup this time to increase the flow of heat from the atmosphere.  (This is 
obviously not an experiment that is easily carried out in the physical world.)  
Qualitatively the behavior is the same, but the higher thermal conductivity of diamond 
means that the temperature of the diamond cup will quickly become close to the ambient 
temperature, and indeed leads to increased evaporation (Figure 11). 
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Figure 11: Students can compare behaviors quickly across multiple 
simulations 

 
The student might continue their explorations by deciding to see what happens with the 
same cup on the top of a mountain, where it would be very cold, or in the tropics, where 
the temperature could be adjusted to be the same as on the desert, but with a much higher 
relative humidity. These explorations can be accomplished in minutes, with reports 
produced for further comparison and reflection. 
 

4.2 How Active Illustrations work 
The principle component of active illustrations for dynamical systems are self-
explanatory simulators  (Forbus & Falkenhainer, 1990; Iwasaki & Low, 1992; Amador, 
Finkelstein, & Weld, 1993).   A self-explanatory simulator combines qualitative and 
numerical representations to provide both accurate quantitative descriptions of behavior 
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and conceptual explanations of it.  The conceptual explanations are in terms of what 
physical processes are occurring in the system being simulated, and the causal 
relationships that govern its behavior.   As the Evaporation Laboratory example showed, 
a self-explanatory simulator can describe at every point in the simulation exactly what is 
happening in the system being simulated and why.  These explanations can in theory 
range from qualitative, causal explanations suitable for novices to sets of ordinary 
differential equations suitable for an expert audience. (We have focused on the former so 
far since many of our simulators have been designed for middle-school students.)   
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Figure 12: The process of creating self-explanatory simulators 
 

Traditional simulators can be difficult to build and tune, so it might at first seem that self-
explanatory simulators must necessarily be more complex.  This is not the case.  In fact, 
self-explanatory simulators can be constructed automatically, using AI techniques whose 
general form and operation are inspired by watching human simulation authors work.  A 
person writing a simulator must first decide exactly what phenomena need to be 
simulated -- what should be included and what should be left out.  For example, in 
simulating global warming, including the thermal effects of the oceans is important, 
whereas the gasses produced by cigarette smoking is not.  Once the phenomena to 
include have been decided, appropriate mathematical models must be found or derived.  
From these mathematical models simulation code is written, either from scratch or by 
assembling predefined modules.   In the ideal case, the conceptual understanding process 
that the simulation author went through is well-documented somewhere, perhaps even in 
material accessible to the simulation users.  In reality, such documentation is rare, and 
often produced by reconstruction rather than during construction.  This can lead to 
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problems, as when the simulated behavior clearly is not consistent with the explanations 
about how it is generated. 

A compiler for self-explanatory simulators operates in much the same way (Forbus & 
Falkenhainer, 1995).   The overall development process is illustrated in Figure 12, and 
the details of the compilation process are illustrated in Figure 13.  It relies on a domain 
theory  that describes relevant physical phenomena in general terms.  Given a specific 
system to write a simulator for, the compiler starts by figuring out which general 
descriptions from the domain theory need to be used to understand the system (e.g., in the 
Evaporation Laboratory, heat flow to and from the atmosphere through the cup needs to 
be considered as well as evaporation of water from the cup).  The compiler starts by 
creating a conceptual, qualitative description of the system, identifying what physical 
processes and parameters are relevant.  This conceptual understanding is then used to 
retrieve mathematical models from its domain theory, in the form of equations or code 
fragments, that are assembled into a quantitative model of the system.  The compiler then 
translates this quantitative model into efficient simulation code.  Writing simulation code 
can be complicated, since changes in the phenomena occurring can lead to significant 
changes in the mathematical model.  For instance, the set of equations that hold when 
simulating water heating on the stove is very different from the appropriate mathematical 
model needed to simulate that water boiling.  The qualitative model provides the 
necessary framework for detecting such potential situations, and for writing code to 
handle them properly.   
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Figure 13: Automatic compilation process for Self-explanatory simulators 

 
The rich explanatory power of self-explanatory simulators comes from exploiting the fact 
that the simulation compiler itself has a conceptual understanding of what is being 
simulated.  In addition to producing traditional simulation code, the compiler also 
produces a compact structured explanation system (Forbus & Falkenhainer, 1995) that 
embeds its conceptual understanding of the system into the simulator it builds.   Thus the 
explanations used to explain a simulation are based on the explanations used to generate 
the simulator itself.   The link between the numerical simulated behavior and the 
conceptual descriptions is maintained by tracking the corresponding qualitative 
distinctions as they change over time.  For instance, when physical processes start or stop 
or when objects come into existence, disappear, or change in a very significant way (e.g., 
phase changes), such physical events are noted in a history  (Hayes, 1985) that provides a 
qualitative summary of the behavior.  This history provides the bridge between the 
numerical behavior and the causal understanding of the system.    

From an algorithmic perspective, we note that self-explanatory simulators can be 
compiled in polynomial time, as a function of the size of the system to be simulated 
(Forbus & Falkenhainer, 1995).  This is important for scaling up: Simulators involving 
thousands of parameters can be created quickly.  It is equally important to note that the 
simulators produced are compact and efficient.  All qualitative reasoning is done at 
compilation time, not run time.  Thus the simulators produced run asymptotically close in 
speed to an equivalent numerical simulator for the same system.  The only extra overhead 
is the maintenance of the history, and this requires only a few extra tests per time step and 
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only requires space proportional to the qualitative complexity of the behavior (i.e., the 
number of significant physical events), rather than as a function of the time step chosen.  
This makes them practical in a wide variety of circumstances.  For instance, we have run 
simple simulators on MS-DOS palmtops (8mhz, 640KB of RAM), and as Java applets on 
web pages.    

Turning self-explanatory simulators into active illustrations involves two issues: 
Selecting the right levels of explanation, and providing the illusion of interacting with a 
physical system, rather than a complex piece of software.  We discuss each in turn. 

Providing appropriate levels of explanation:  The structured explanation system 
internally contains the full range of representations used to create the simulation.  Not all 
explanations are appropriate for all audiences: As noted above, middle-school students 
cannot be expected to understand differential equations.   Our solution has been to put 
filters on the explanation system, to hide information that would be inappropriate for the 
intended audience.  For middle-school students, for example, we focus on the kind of 
causal information that students are supposed to be learning.  As the interaction earlier 
demonstrated, questions that students can ask include what can affect a parameter and 
what can it affect.  The answers they receive are in terms of causal qualitative 
relationships (influences, in the terms of qualitative process theory (Forbus, 1984)), e.g. 
“X can be affected by…” in the dialog above.  While the explanation system knows the 
type and sign of the influence, this information is suppressed because it is something that 
the student should be learning, along with the relative magnitudes of various effects2.   

Even within the level of causal explanations, it is sometimes useful to filter out 
information.  For example, in the Evaporation Laboratory the concept of thermal 
conductivity is something that we, in the role of curriculum designers, want the student to 
discover, rather than telling them about it explicitly.  (The inclusion of a diamond cup is 
intended to lead students in this direction.  Few students can resist trying the diamond 
cup, and since diamond has a thermal conductivity that is orders of magnitude larger than 
most substances, they are faced with some dramatic behavior differences to explain.)  We 
tackle this problem by a "can't say, don't tell" policy in the software.  Each element in the 
structured explanation system has a natural language phrase associated with it.  These 
phrases are generated semi-automatically by the compilation process; they can be edited 
separately after the simulation is compiled to support localization.  If an explanation 
element does not have an associated natural language phrase, the explanation system will 
not use it in any explanation it constructs.  Editing tools are provided that enable 
curriculum designers to adjust the explanation system in this way. 

Providing the illusion of interacting with a physical system:  Initializing the parameters 
of even a simple simulation can be complicated, since the choice of parameters must be 
made with an eye towards physical consistency.  Yet the expertise needed to evaluate 
physical plausibility is part of what we want students to learn from doing simulation 
experiments.  This is a conceptual problem, not a standard HCI problem.  Providing a 
large menu of numerical and logical parameters, even in the cleanest, well-organized 
GUI, can easily lead to bewilderment.  Our solution is to simplify this process by using a 

                                                 
2 Several teachers have recommended adding a “nerd switch” so that interested students could see the 
equations.  We have not alas had the resources to do this yet. 
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metaphor from drama - the idea of a prop.  A prop on a stage represents something in the 
imagined world being created on-stage.  In our simulators, props represent a coherent 
subset of the simulator’s parameters that naturally make sense to consider together. Each 
simulator has a set of catalogs, each catalog containing props that impose different 
constraints on a particular subset of the simulator’s parameters.   In the Evaporation 
Laboratory, for instance, there are two catalogs, cups and environments.  The choice of 
cup constrains the shape and dimensions of the cup, as well as its thermal conductivity 
(e.g., the thermal conductivity of diamond is orders of magnitude higher than just about 
anything else).   Figures 14 and 15 show the catalog contents currently used in the 

Evaporation Laboratory.  The choice of environment constrains the temperature and 
pressure and vapor pressure of the atmosphere, as well as the limits over which these 
parameters can be varied.  (While it is possible in theory for Las Vegas to get colder than 

the top of Mt. Everest, it would be very surprising, and providing constraints that prevent 
two props from being identical in the simulator helps maintain the suspension of 
disbelief.)  

In addition to solving the technical problem of setting up a simulation, props also provide 
pedagogical benefits, by helping the student see relationships between physical objects 
and circumstances and their properties.   Props also provide a simple path to 
customization: Adding props representing familiar objects and situations (e.g., a student’s 
favorite cup or home town) also provides a simple form of customization that can make 
software more engaging.  
 

 
Cardboard 

 
Copper 

 
Diamond 

 
Oak 

 
Pyrex 

 
Styrofoam 

 
Titanium 

 
Tin 

Figure 14: Catalog of cups for the Evaporation 
Laboratory.  Students can change the amount and 
temperature of the water for whatever cup they choose. 

 
Boston 

 
Chicago 

 
Las Vegas  

Salt Lake City, 
Utah 

 
Mt. Washington 

Figure 15: Catalogs of environments used in the Evaporation Laboratory 
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4.3 How Active Illustrations can be used 
There are several settings in which Active Illustrations can be used.  We discuss each in 
turn. 

Simulation Laboratories.   Student can use Active Illustrations as a laboratory for running 
experiments, such as the Evaporation Laboratory above.  The Evaporation Laboratory 
and several other simulation laboratories have been publicly available from our web site 
for several years now, and the reasons given for downloading range from intended 
classroom use to science fair projects.  We are also developing two new simulations, an 
ecosystem for a hypothetical Mars base and a solar house simulation, to be used in 
curricula we are developing in collaboration with teachers from the Chicago Public 
Schools3 and as motivating phenomena in new research we are doing on helping middle-
school students learn how to create models.   

Hypermedia component.  Active illustrations can be a powerful new type of media in 
hypermedia systems.   A student might start using an Active Illustration included to 
provide a concrete example of some phenomenon, and branch back out to the rest of the 
hypertext network based on the concepts in the Active Illustration’s explanation system.  
For example, the on-line Principles of Operation Manual for a simulation based on 
NASA's Deep Space One autonomous spacecraft used several Active Illustrations to 
enable players to experiment with basic principles of rocketry and orbits4.  

Virtual artifacts in shared virtual environments.   Virtual environments are being 
explored by many groups as environments for students to interact with each other and 
instructors in an arena designed to support learning.    Because interaction is computer-
mediated, such spaces provide additional opportunities for software-based coaching and 
assessment of student progress.  In collaboration with Ken Koedinger and Dan Suthers, 
we have explored the use of Active Illustrations in Science Learning Spaces that support 
reflection and coaching (Koedinger et al. 1999).  In addition to providing preconstructed 
virtual artifacts, efforts are underway to develop a construction kit approach to enable 
students to significantly modify existing objects, and even create new designs (Erignac, 
2000). 
 
With the exception of on-line construction kits, the research groundwork for these 
applications is already in place.  Three things are needed for broad-scale deployment. 
First, significant investment in software engineering is needed.  The software prototypes 
described above are exactly that: research prototypes.  They are robust enough that they 
can be used in schools, but only by developers with strong expertise.  Making it easy for 
curriculum developers, teachers, and students to create simulators will require making the 
runtime shells far more robust.  Better tools for design, debugging, and tuning of domain 
theories and simulators are needed, combined in a supportive simulator development 
environment.  Second, libraries of domain theories, created by experts, are needed.  With 
off-the-shelf domain theory libraries and the automated modeling capabilities of self-

                                                 
3 This is thanks to the National Science Foundations’ Center for Learning Technologies in Urban Schools, a 
joint project of Northwestern University, University of Michigan, and the Chicago and Detroit public 
school systems. 
4 http://www.qrg.nwu.edu/projects/vss/docs/index.html 
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explanatory simulation compilers, the burden of modeling will be greatly reduced for 
curriculum designers, enabling them to focus more on pedagogical issues.  Third, we 
need to learn how to best exploit this new technology in curricula and activities that 
achieve educational goals.   
 

5 Discussion 
Advances in artificial intelligence, particularly in qualitative reasoning, provide the 
scientific foundation for new kinds of educational software.  Articulate software, this 
chapter has argued, has revolutionary potential for science and engineering education.  I 
believe that software that embodies a conceptual understanding of its domain can help 
students learn better.  As the CyclePad experience shows, articulate virtual laboratories 
can be valuable in engineering education.  As the Active Illustrations we have built 
suggest, simulators that provide causal, qualitative explanations can help students explore 
complex physical phenomena.   
 
The examples presented here are, I think, only the beginning.   The architectures 
described here can be applied to a broad set of phenomena and systems to support science 
and engineering education.  And other architectures for articulate software could also be 
valuable.  Consider these: 

• Articulate training simulators.  Combine self-explanatory simulators of a complex 
system that people operate  (i.e., ships, aircraft, spacecraft, power plants) with a 
model of the goals and context of a system and the procedures for operating that 
system, to teach someone how to operate that system.  By context, I mean what 
the system is used for and what social and economic, as well as physical, 
constraints govern its operation.  Tankers should not produce oil slicks, for 
example.  The context provides the background needed for the simulator to 
understand why the procedures are the way they are, and the potential 
consequences of mistakes.  This understanding can be used to set up challenging 
problems for trainees, and provide better post-mortems than would otherwise be 
possible (cf. Wilkins & Bulitko, 1999).  

• Articulate game engines.  Computer games can provide a highly motivating 
setting for students, who happily learn complex ideas for the sake of successfully 
interacting with and in a simulated world.  Often the simulated world underlying 
these games (e.g.,  SimCity, SimEarth, Civilization) operate by combining 
dynamical models with a spatial, map-like model of some sort (e.g., a cellular 
automata).   Domain theories that describe the physics and economics of the 
simulated world could be used in compiling game engines that embody that 
conceptual understanding, as a new form of self-explanatory simulator.  This 
conceptual understanding can then be used by in-game tutors, coaches, and 
opponents (Dobson & Forbus, 1999). 

 
In the long run, I believe software that understands in a human-like way what is to be 
learned, and uses that understanding to help people learn, will be ubiquitous in education.  
Someday we will not give students educational software that does not contain such 
understanding, any more than we would today give them software without a graphical 
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user interface.  There are still many challenges -- scientific, software engineering, and 
pedagogical design -- to be met before that day will come, but even our first steps are 
providing enough benefits to convince us that the journey is worth it. 
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