
Learning Paraphrase Identification with Structural Alignment

Chen Liang1, Praveen Paritosh2, Vinodh Rajendran2, and Kenneth D. Forbus1

1Northwestern University, Evanston, IL
2Google Research, Mountain View, CA

Abstract
Semantic similarity of text plays an important role
in many NLP tasks. It requires using both local
information like lexical semantics and structural in-
formation like syntactic structures. Recent progress
in word representation provides good resources for
lexical semantics, and advances in natural language
analysis tools make it possible to efficiently gen-
erate syntactic and semantic annotations. How-
ever, how to combine them to capture the seman-
tics of text is still an open question. Here, we
propose a new alignment-based approach to learn
semantic similarity. It uses a hybrid representa-
tion, attributed relational graphs, to encode lexi-
cal, syntactic and semantic information. Alignment
of two such graphs combines local and structural
information to support similarity estimation. To
improve alignment, we introduced structural con-
straints inspired by a cognitive theory of similar-
ity and analogy. Usually only similarity labels are
given in training data and the true alignments are
unknown, so we address the learning problem us-
ing two approaches: alignment as feature extraction
and alignment as latent variable. Our approach is
evaluated on the paraphrase identification task and
achieved results competitive with the state-of-the-
art.

1 Introduction
Semantic similarity of texts are used in many semantic tasks
like paraphrase identification [Dolan and Brockett, 2005],
textual entailment [Dagan et al., 2005], and question answer-
ing [Voorhees, 1999]. Although simple bag-of-words models
work well for large documents, short texts are challenging
because those simple models would suffer from sparsity.

The semantics of text has two important parts. The first
part is the local information, i.e., semantic of lexical units.
Recently there has been a lot of improvements in seman-
tic tasks using word embeddings learned from a large cor-
pus [Baroni et al., 2014; Mikolov et al., 2013]. The second
part is the structural information, i.e., syntactic and semantic
structure. For example, a sentence pair from recently intro-
duced Stanford NLI corpus [Bowman et al., 2015] “A man

wearing padded arm protection is being bitten by a German
shepherd dog/A man bit a dog” is wrongly predicted as hav-
ing entailment relation by both a lexicalized classifier and a
sentence embedding model. If explicit syntactic and semantic
structures are used, the difference between the two sentences’
meanings will be obvious. And development of natural lan-
guage analysis tools [Manning et al., 2014] makes it easy to
efficiently generate a variety of syntactic and semantic anno-
tations like dependency trees, POS tags, entity mentions as
well as semantic role labeling and open relation extraction.

Despite the progress on both sides, how to effectively
combine the local and structural information is still an open
question. In this work, we propose an alignment-based ap-
proach to learn semantic similarity. It uses a hybrid repre-
sentation, attributed relational graphs [Sanfeliu and Fu, 1983;
Zhang and Chang, 2004], to encode lexical, syntactic and se-
mantic information together. In order to utilize all the infor-
mation, we use structural alignment as an intermediate step
to support similarity estimation. Different from word align-
ments, structural alignment forms consistent correspondences
between both words and syntactic and semantic structures
of two pieces of text. To get better alignment, we intro-
duce structural constraints to utilize the predicate-argument
structure encoded in the graphs. These structural constraints
are inspired by Structure Mapping Theory [Gentner, 1983], a
cognitive theory of similarity and analogy.

Learning an alignment-based similarity estimator needs to
overcome the challenge that usually only similarity labels are
given in training data and true alignments are unknown. We
investigated two approaches to deal with this problem: align-
ment as feature extraction and alignment as latent variable.

We evaluated our approach on the paraphrase identification
task [Dolan and Brockett, 2005] and achieved results compet-
itive with the state-of-the-art.

2 Related Work
A lot of different approaches have been proposed for text sim-
ilarity. We focus on two main categories most related to ours.

Neural network models extend the idea of word embed-
ding to larger constructions like phrases, sentences and para-
graphs. A variety of architectures have been explored. The
recursive neural network in [Socher et al., 2011] used a con-
stituency tree and recursive autoencoder to learn composi-
tion functions of word embeddings to phrase embeddings



and eventually sentence embeddings. Tree-LSTM [Tai et al.,
2015] generalizes LSTM from sequences to tree structures.
Other recent approaches include Siamese architecture with
syntax-aware multi-sense embeddings [Cheng and Kartsak-
lis, 2015] and convolutional neural networks [He et al., 2015;
Yin and Schütze, 2015]. Despite strong performance, dis-
tributed representations are usually less interpretable than ex-
plicit structured representations, and it is unclear whether
fixed length vectors are expressive enough to represent all lin-
guistic structures. Our approach also uses word embeddings,
but instead of trying to compress all the information into one
fixed length vector, we use word embeddings together with
other linguistic structures explicitly encoded in the attributed
relational graph.

Some approaches explore syntactic structures of two sen-
tences. Tree kernels and graph kernels with SVM have been
used on syntactic structures extended with relational links be-
tween matching words [Filice et al., 2015] to predict relations
between texts. Quasi-synchronous grammar was used in [Das
and Smith, 2009] to model divergence of syntactic structure
between paraphrases. [Beltagy et al., 2014] used probabilis-
tic soft logic to combine logical and distributional represen-
tations through weighted inference rules. Our method takes a
similar hybrid approach, but uses attributed relational graphs
as an extensible representation to encode various different
kinds of lexical, syntactic and semantic information.

Alignment has been used as an intermediate step in several
NLP tasks. For example, word alignment as latent variable
was used in machine translation [Liang et al., 2006]. Neu-
ral attention models in machine translation [Bahdanau et al.,
2014] and textual entailment [Rocktäschel et al., 2015] can
be seen as jointly learning soft alignments between words in
source and target sentences or words in text and hypothesis.
The problem that alignments are latent in data is a common
challenge for these alignment-based approaches. Latent vari-
able model and joint learning is a commonly used solution.
We take a similar approach here. However, different from
word alignment, our alignment is carried on both words and
syntactic structures. By using structural constraints, it uti-
lizes the predicate-argument structure in the text, which is
generally ignored in other works. [Sammons et al., 2009]
and [Chang et al., 2010] used alignment of structured annota-
tions from different resources for textual entailment and para-
phrase identification. This work follows a similar approach,
but shows that using simpler alignment and learning methods
and adding word embeddings as another resource can achieve
state-of-the-art performance on paraphrase identification.

Structural alignment as an intermediate step to support
similarity estimation also has support from cognitive science.
Structure Mapping Theory (SMT) [Gentner, 1983] states that
similarity judgment and analogy is done through structural
alignment of mental representations. In the alignment pro-
cess, humans prefer structurally consistent alignment of deep
nested structures, which is called structural consistency and
systematicity principle. This theory and its computational
model Structure Mapping Engine (SME) [Falkenhainer et al.,
1989] has been proven to fit human performance in various
different experiments [Forbus, 2001]. A variation of the algo-
rithm was used in the IBM Watson Jeopardy system for eval-

Figure 1: An overview of the full pipeline consisting of three
main components to turn raw texts into attributed relational
graphs, structurally align them and estimate their similarity.
The color indicates how the nodes and edges from two graphs
match with each other in the alignment.

uating candidate answers [Murdock, 2011]. Recently [Liang
and Forbus, 2015] combined SME with statistical learning
and showed state-of-the-art performance on knowledge base
completion task using orders of magnitude less training data
than other approaches. Structural alignment is a major com-
ponent of our approach, and the structural constraints we in-
troduced to our alignment model is inspired by SMT’s struc-
tural consistency principle.

3 Method
The problem of semantic similarity is, given two pieces of
text, the system must produce a score indicating the degree
that their meanings are equivalent. In this work, we focus
on a special case, paraphrase identification, in which the sys-
tem predicts whether two sentences can be considered se-
mantically equivalent or not. We solve this problem with a
pipeline of three components similar to RATER [Sammons et
al., 2009], as shown in Figure 1.

1. Graph extractor: Given two pieces of text, it uses word
embeddings and a set of automatic annotators to extract
the tokens, syntactic relations, POS tags and entity men-
tions to generate the attributed relational graphs.

2. Structural aligner: Given two attributed relational
graphs, the structural aligner generates an alignment. An
alignment of two attributed relational graphs is a set of
matches, and each match is a correspondence between
two nodes or edges.

3. Similarity estimator: Given an alignment, the simi-
larity estimator produces a similarity score between the
two graphs or a label indicating whether they are similar
enough to be considered equivalent or not.

3.1 Data Representation & Preprocessing
Our method uses a hybrid representation, attributed relational
graphs (directed graphs with attributes attached to the nodes



and edges). The attributes store local information about a
unit/node or a relation/edge, which will later be used to ex-
tract features for each match between two nodes or two edges.
These features are used to estimate the similarity and im-
portance of the match. In our experiment, for fair compar-
ison with other methods, we just use tokens as units/nodes
and dependency arcs as relations/edges. For attributes, we
used dependency label, token, lemma, POS tag, NER tag and
word embedding. These annotations can all be obtained eas-
ily through standard natural language analysis tools. Here we
used Stanford CoreNLP and pretrained Word2Vec word em-
beddings1 [Mikolov et al., 2013].

For example, as shown in Figure 2, given a sentence “A
man plays a guitar”, the graph extractor would first get to-
kens, lemmas, dependency tree, POS tags and NER tags from
Stanford CoreNLP, and word embeddings from pretrained
Word2Vec model. Then it creates one node for each token
and one edge for each dependency arc2 connected to the two
nodes that correspond to its head and dependent token. The
annotations of each token, like its lemma, POS and NER tag
and its word embedding would be attached to the correspond-
ing node as attributes, and the dependency label of the depen-
dency arc will be attached to the edge as an attribute.

There are two advantages of this representation. First, it is
expressive enough to encode heterogeneous structural infor-
mation in the same graph; second, local information can be
easily encoded as attributes. This makes the representation
easy to extend. New structural annotations such as semantic
role labeling or relation extraction and new lexical or phrasal
resources can be easily added to the representation. Com-
pared to finite length feature vectors that inevitably lose some
structural information, this representation preserves the struc-
ture explicitly. Compared to logic or purely symbolic rep-
resentations, this representation can easily include different
kinds of features to train feature-rich discriminative models
for learning alignments and similarity estimation from data.

3.2 Structural Alignment & Similarity Estimation
The two core components of our approach are the structural
aligner and similarity estimator. Given two input graphs,
the structural aligner finds the best alignment between them,
which can be seen as a structured prediction problem. Based
on the best alignment, the similarity estimator produces a
score indicating the degree of similarity or a binary output
indicating whether the two sentences are semantically equiv-
alent or not, which can be seen as a regression or classification
task depending on which output is produced.

An alignment is a set of matches. Each match is a pair of
nodes or edges from the two graphs. The structural alignment
has two steps. First, given two graphs, the structural aligner
generates all the possible matches that pass some criteria. In
this work, the criteria we used are that (1) two matched de-
pendency arcs must have the same dependency label; (2) the
cosine similarity between word embeddings of two matched
tokens must be greater than 0.4. This value is chosen from

1https://code.google.com/archive/p/word2vec/
2The root dependency arc is encoded as an attribute of the node

of the root token instead of an edge.

Figure 2: A example of annotations turned into an attributed
relational graph, structural information such as syntactic
structure is encoded in the graph structure, and local informa-
tion such as word embedding or dependency label is encoded
in the attributes attached to nodes and edges

pilot experiments with a subset of the data. The result is not
sensitive to it because most of the matches that passed this
threshold have similarities much higher than it. Second, it se-
lects the subset of matches that optimizes an objective defined
in Equation 1.

Formalized as a structured prediction problem, the input x
is a pair of graphs and the output a is an alignment. Φa(x, a)
is a function mapping input graphs and a candidate alignment
to a feature vector. The features used will be discussed in
Section 3.3. Let wa be the set of parameters for the structural
aligner, and A be all the possible subsets of all the possible
matches. Finding the best alignment is solving the following
problem:

apred = argmax
a∈A

wa · Φa(x, a) (1)

This argmax problem is intractable, so we use beam search
to find an approximate solution.

Formalized as a regression or classification problem, the
similarity estimator takes the pair of graphs and the pre-
dicted alignment as input, and uses another feature function
Φs(x, apred) to map them to a feature vector. Let ws be the
set of parameters for the similarity estimator. Here we con-
sider the paraphrase identification task. Since the correct sim-
ilarity label ytrue is usually given in training data, this is a
supervised binary classification problem. Using a linear clas-
sifier, the similarity label ypred is predicted as:

ypred = sgn(ws · Φs(x, apred)) (2)
In this work, we use SVM to learn ws.

However, learning wa is more challenging because the true
alignment atrue is usually latent. We address this problem
using two approaches, alignment as feature extraction and
alignment as latent variable.

In the first approach, we consider the structural aligner as
a feature extractor and ws as hyperparameters, and use grid
search over a validation set to select the best parameters. But
the problem is that the number of runs needed in grid search
grows exponentially with the number of hyperparameters, So
we have to restrict Φs to include just a small set of features.



In addition, the grid search cannot be very fine-grained due to
its computational cost.

To overcome these problems and utilize more features in
the structural aligner, the second approach jointly trains the
structural aligner and the similarity estimator through an iter-
ative process, as follows. First, we initialize the parameters to
some value w0

a, for example using the values obtained from
the first approach. Then we repeat two steps:

(1) Keepwa fixed, for each input xi, assume the alignments
produced by the structural aligner is “correct” and learn ws

from examples {(xi, aipred, yitrue), i = 1, 2 . . . , n}.
(2) Keep ws fixed, for each input xi, hallucinate the “cor-

rect” alignment ai∗ by solving

ai∗ = argmax
a∈Ai

wa ·Φa(xi, a)−C ·Loss(ytrue, ws ·Φs(x
i, a))

(3)
whereC is a hyperparameter that represents the confidence in
the classifier. Since we use SVM to learnws, the Loss here is
hinge loss. In the experiment, we set C to be very large (106).
Thus, this argmax solves for the alignment that causes the
lowest prediction error and, if there is a tie in the error, has
the highest alignment score wa · Φa(xi, a). Then, examples
{(xi, ai∗), i = 1, 2 . . . , n} are used to train the aligner using
the averaged structured perceptron algorithm [Collins, 2002].

Because this process will usually overfit the training data,
we use the performance on a validation set to decide when to
stop.

3.3 Features
In this section, we discuss the features used in feature func-
tions Φa and Φs, and focus on how the pairwise features are
used to encode the structural constraints. We first describe
a feature function Φ, then show how Φa and Φs are defined
using Φ.

The (global) feature vector Φ(x, a) is a concatenation of
global unary feature vector Φu(x, a) and global pairwise fea-
ture vector Φp(x, a) .

Φ(x, a) = [Φu(x, a); Φp(x, b)] (4)

The global unary and pairwise feature vectors are aggrega-
tions of local unary and pairwise feature vectors. In other
words, a global feature vector is just a sum of local feature
vectors. Recall that an alignment a is just a set of individual
matches {mi}. The local unary feature vector φu(x,mi) is
computed for each individual match mi, and the local pair-
wise feature vector φp(x,mi,mj) is computed for each pair
of matches (mi,mj).

Φu(x, a) =
∑
i

φu(x,mi) (5)

Φp(x, a) =
∑
i,j

φp(x,mi,mj), i 6= j (6)

For the structural aligner, only the ranking of candidate
alignments matters, because it just produces the one with
highest score as the output. In this case, the aggregation of
local features Φ suffices to be a good feature vector. So Φa is
simply defined as:

Φa(x, a) = Φ(x, a) (7)

For the similarity estimator, however, the value of ws ·
Φs(x, apred) matters because its sign decides the prediction
and its absolute value roughly represents the confidence in the
prediction. So the feature vector needs to be normalized.

Here we use the self alignments to normalize. Note that the
input x is just a pair of attributed relational graphs (g1, g2) ex-
tracted from the pair of sentences. The self alignment feature
vector is defined as:

Φself (x) =
Φ(x1self , a

1
self ) + Φ(x2self , a

2
self )

2
(8)

where x1self = (g1, g1) and x2self = (g2, g2). a1self and a2self
are the self alignments of g1 and g2, in which each node and
edge just matches to itself.

Then Φs is defined as concatenation of three vectors:

Φs(x, a) = [Φ(x, a); Φself (x);
Φself (x)− Φ(x, a)

Φself (x) + δ
] (9)

where δ is a very small smoothing term. The third vector is
the normalized difference between self alignment’s aggrega-
tion feature vector and the current alignment a’s aggregation
feature vector. Because each dimension i of the vector corre-
sponds to one feature and for most of the features3 we used,
0 < Φ(x, a)i < Φself (x)i. So each dimension of the third
term is bounded between 0 and 1. We still include the raw
aggregation feature vector Φ(x, a) and self alignment aggre-
gation feature vector Φself (x) in the final feature vector be-
cause the raw values of these features are also informative and
were shown to improve the performance in the experiments.

Unary Features
Unary features are used to estimate how similar two matched
tokens or dependency arcs are, and also how important they
are in their sentences. These features are used to compute
how much this match will contribute to the alignment score
or overall similarity. Listed below are all the unary features
we used in this work.

1. Lexical similarity: cosine similarity between word em-
beddings of the matched two tokens.

2. Lexical features: word features for words that appeared
at least twice, lemma features and an indicator fea-
ture for whether the two matched tokens have the same
lemma.

3. Syntactic features: POS tag features, and an indica-
tor feature of whether the matched two token has the
same POS tag; dependency label features, and an indi-
cator feature of whether the matched two dependency
arcs have the same dependency label.

4. NER features: NER tag features, and two indicator fea-
tures, one for whether the matched two tokens has the
same NER tag, and the other for whether the matched
two tokens have the same normalized entity name.

5. Position difference feature: the absolute difference be-
tween the positions of the matched two tokens in the
their sentences.

3The only feature that violates this is the position difference fea-
ture, so we don’t include it in this normalized term and just keep its
raw values.



Pairwise Features
Pairwise features are introduced to improve alignment by en-
coding the structural constraints between matches. These
structural constraints ensure that the final alignment is struc-
turally consistent. They are inspired by the structural consis-
tency principle of Structure Mapping theory. The principle
states that two constraints are used by human when align-
ing predicate-argument structures: (1) one-to-one mapping
that one entity or predicate should only match to one en-
tity or predicate; (2) parallel connectivity that if a predicate
matches another predicate, their roles and arguments should
also match correspondingly.

In this work, we adapted these constraints to work on to-
kens and syntactic relations. The one-to-one mapping is en-
coded as a hard constraint in the structural aligner so that
alignments that matches one token or relation to more than
one other token or relation would be filtered out. The parallel
connectivity constraint is adapted by considering dependency
tree as an approximate predicate-argument structure. So if
the heads of two dependency arcs match, the two dependency
arcs should also be more likely to match. If two dependency
arcs match, the dependent of the dependency arcs should be
more likely to match as well.

These two constraints are implemented as two pairwise in-
dicator features. For a match mi between two tokens ta and
tb, and a match mj between two dependency arcs da and db:

φp(x,mi,mj)1 =

{
1, if ta = head(da) & tb = head(db)

0, otherwise
(10)

φp(x,mi,mj)2 =

{
1, if ta = dep(da) & tb = dep(db)

0, otherwise
(11)

dep is short for dependent.
Note that in this work, for simplicity, we just used pairwise

features to demonstrate the utility of structural constraints.
Structural constraints involving more matches can be mod-
eled using higher-order features, and more fine-grained con-
straints can make use of the attributes of nodes and edges.

4 Experiment
We evaluated our model on the paraphrase identification task,
a benchmark for evaluating many semantic similarity models.

4.1 Dataset
The dataset is MSRP paraphrase corpus [Dolan and Brockett,
2005]. It contains 5801 pairs of sentences, each labeled with
a binary judgment indicating whether human raters consid-
ered the pair of sentences to be semantically similar enough
to be considered paraphrases. Among the sentences, 67% are
positive examples. As is described in the paper, “the majority
of the ‘equivalent’ pairs in this dataset exhibit ‘mostly bidi-
rectional entailments’, with one sentence containing informa-
tion that differs from or is not contained in the other”. Due
to its construction method, the lexical overlap between two
sentences in a pair are usually very high. We used the train-
ing and test split provided by the corpus (4076 training and
1725 test examples), and selected 20% of the training data by
stratified sampling as the validation set.

Model Accuracy F1
Das and Smith (2009) 76.1% 82.7%
Wan et al. (2006) 75.6% 83.0%
Socher et al. (2011) 76.8% 83.6%
Madnani et al. (2012) 77.4% 84.1%
He et al. (2015) 78.6% 84.7%
Filice et al. (2015) 79.1% 85.2%
Cheng and Kartsaklis (2015)∗ 78.6% 85.3%
Ji and Eisenstein (2013)∗ 80.4% 85.9%
This work
baseline 74.6% 82.6%
local similarity 76.9% 83.9%
+structural constraints 77.4% 84.2%
+syntactic features 78.2% 84.7%
+latent variable model 78.3% 84.9%

Table 1: Test results on MSRP paraphrase dataset. The results
labeled with * used extra data besides the given training set
(discussed more in Section 4.2).

4.2 Results & Analysis
We used different experiment settings to analyze the contri-
butions of different components, and compared our model to
other state-of-the-art models4. The result is shown in Table 1.

Despite its simplicity, our model is competitive to the state-
of-the-art. The two results labeled with * used extra data
besides the training set. [Ji and Eisenstein, 2013] used ma-
trix factorization on both training and test set to extract dis-
tributional features, and [Cheng and Kartsaklis, 2015] used
PPDB [Ganitkevitch et al., 2013], which is several orders
of magnitude larger, as training data. [Filice et al., 2015]
used trees as structured representations of text, and lexical
matching was also an important component in their method.
They achieved better results with more complex features and
a thorough comparison and combination of different graph
and tree kernels, while our much simpler alignment-based
method showed comparable performance.

For different experiment settings, we kept the features used
in the similarity estimator fixed, and varied the features used
in the aligner. For the first three settings, the parameters for
the aligner are decided using grid search over a validation set.

The baseline setting uses SVM with a set of simple fea-
tures: (1) cosine similarity between average word embed-
dings of the two sentences; (2) simple number features, per-
centage of words in the other sentence and sentence length
difference used in [Socher et al., 2011]; (3) BLEU1 through
BLEU4 as separate features.

The local similarity setting uses just lexical similarity and
same dependency label features. In other words, it uses only
local similarity of the matched two tokens or dependency arcs
to find the best alignment. Surprisingly, this simple approach
already outperforms the baseline and three other sophisticated
models. This showed that word embeddings and shallow fea-
tures are not good enough, but the combination of word em-
beddings with alignment and rich features is surprisingly ef-
fective.

4http://aclweb.org/aclwiki/index.php?title=
Paraphrase_Identification_(State_of_the_art)



Using only local similarity, the alignment contains sep-
arating matches that do not connect with each other. The
+structural constraints setting added the two pairwise in-
dicator features to promote structural consistency. With these
two features as structural constraints, the aligner prefers a set
of consistent matches between two connected syntactic tree
structure over matches between scattered pieces. This im-
proved the F1 score by another 0.3 percent.

Since the dependency tree is used as an approximation to
the predicate-argument structure, this approximation makes
more sense for some dependency relations, such as nsubj,
nsubjpass and dobj, and some words, such as verbs and
nouns, than others. Using this heuristic, the +syntactic fea-
tures setting added verb and noun POS tag features and fea-
tures for those three dependency labels. This would help the
aligner focus on the words and dependency relations that cap-
ture the predicate-argument structure better during the search
for a set of structurally consistent matches. This increased the
F1 score by another 0.4 percent.

The +latent variable model setting explored the full pa-
rameter space for the aligner using the iterative training de-
scribed in Section 3.2. It takes the best parameters from last
setting as initialization. We run averaged structured percep-
tron for 10 epochs. The averaged parameters after each epoch
is stored as {wi, i = 1, 2, ..., 10}, and we used a validation set
to decide which one to use as the final parameters. We also
used the validation set to decide when to stop the iterative
training. This further improved the F1 score by another 0.2
percent.

We used 5-fold cross validation on the whole dataset to
check the statistical significance of the differences between
settings. We found that the improvement of local similarity
setting to the baseline and the improvement of the full model
to the local similarity setting are both statistically significant.
But the differences within the three structural alignment set-
tings are more subtle and not statistically significant.

The alignment and rich features enabled the system to learn
which part of the sentences are more important to its se-
mantic rather than treating them all the same. This elimi-
nates many false positives caused by misleading lexical over-
lap. For example, “Gyorgy Heizler, head of the local disaster
unit, said the coach had been carrying 38 passengers.”, and
“The head of the local disaster unit, Gyorgy Heizler, said the
coach driver had failed to heed red stop lights.” was classified
wrongly as paraphrase by the baseline because of high lexical
overlap, but local similarity setting made the right prediction.

Structural alignment further eliminates false positives be-
cause it helps constrain the lexical matches. For example, “a
dog bites a man” and “a man bites a dog” have a perfect align-
ment in local similarity setting, but will not be recognized
as similar by the full model, because the syntactic structures
lead the aligner to match “dog” with “man” and “man” with
“dog”, which are not similar.

4.3 Discussion & Future Work
The results demonstrated the utility of the hybrid represen-
tation, attributed relational graphs. It enables the integra-
tion of two processes: (1) similarity estimation, which uses
a strong classifier based on aggregations of local features; (2)

structural alignment, which utilizes the structure to extract a
structurally consistent set of local features. Another major
advantage of using attributed relational graph is that it can be
extended with other local or structural resources easily. One
interesting future variation is to incorporate more structures,
such as relations from semantic role labeling and open rela-
tion extraction, as well as more units, such as phrases and
linked entities, into the attributed relational graph.

In addition, the results also showed the effectiveness of
alignment as feature extraction, and the utility of the two
structural constraints when the predicate-argument structure
(approximately) exists in the input. A next step is to test this
approach on other semantic NLP tasks like textual entailment
and question answering.

Moreover, learning the parameters for alignment from data
would be important for adapting to different datasets and
tasks. It would also increase the capacity of the model. The
improvement from using alignment as latent variable on this
dataset is limited for two reasons: (1) the alignment problem
is not so difficult due to the high lexical overlap of the pairs
of sentences in the corpus, so some simple features could al-
ready provide high quality alignments; (2) the dataset is not
large enough, so it is easy to overfit with the joint learning.
Thus, scaling up to large datasets and testing on corpus with
less lexical overlap and more structural differences would be
another next step, and might require integration with compo-
sitional models.

5 Conclusion
In this work, we proposed a new alignment-based approach to
learn semantic similarity of texts and evaluated it on the para-
phrase identification task. We used a hybrid representation,
attributed relational graphs, to encode local and structural in-
formation. This enables us to integrate structural alignment
and similarity estimation through two approaches: alignment
as feature extraction and alignment as latent variable. To im-
prove the alignment, we also introduced two structural con-
straints that make use of the predicate-argument structures.
In the experiment, our approach achieved results competitive
with other state-of-the-art models on the MSRP corpus. Fur-
ther analysis showed the strength of this hybrid approach and
confirmed contributions of structural alignment using struc-
tural constraints and joint learning.

Acknowledgments
We thank Thanapon Noraset for helpful comments on the
draft of the paper.

References
[Bahdanau et al., 2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. CoRR,
abs/1409.0473, 2014.

[Baroni et al., 2014] Marco Baroni, Georgiana Dinu, and
Germán Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting se-
mantic vectors. In ACL, 2014.



[Beltagy et al., 2014] Islam Beltagy, Katrin Erk, and Ray-
mond J. Mooney. Probabilistic soft logic for semantic tex-
tual similarity. In ACL, 2014.

[Bowman et al., 2015] Samuel R. Bowman, Gabor Angeli,
Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference.
In EMNLP, 2015.

[Chang et al., 2010] Ming-Wei Chang, Dan Goldwasser,
Dan Roth, and Vivek Srikumar. Discriminative learning
over constrained latent representations. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, pages 429–437. Association for Com-
putational Linguistics, 2010.

[Cheng and Kartsaklis, 2015] Jianpeng Cheng and Dimitri
Kartsaklis. Syntax-aware multi-sense word embeddings
for deep compositional models of meaning. In EMNLP,
2015.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of the
ACL-02 conference on Empirical methods in natural lan-
guage processing-Volume 10, pages 1–8. Association for
Computational Linguistics, 2002.

[Dagan et al., 2005] Ido Dagan, Oren Glickman, and
Bernardo Magnini. The pascal recognising textual
entailment challenge. In MLCW, 2005.

[Das and Smith, 2009] Dipanjan Das and Noah A.
Smith. Paraphrase identification as probabilistic quasi-
synchronous recognition. In ACL, 2009.

[Dolan and Brockett, 2005] William B Dolan and Chris
Brockett. Automatically constructing a corpus of senten-
tial paraphrases. In Proc. of IWP, 2005.

[Falkenhainer et al., 1989] Brian Falkenhainer, Kenneth D.
Forbus, and Dedre Gentner. The structure-mapping en-
gine: Algorithm and examples. Artif. Intell., 41:1–63,
1989.

[Filice et al., 2015] Simone Filice, Giovanni Da San Mar-
tino, and Alessandro Moschitti. Structural representations
for learning relations between pairs of texts. In ACL, 2015.

[Forbus, 2001] K Forbus. Exploring analogy in the large.
MIT Press, 2001.

[Ganitkevitch et al., 2013] Juri Ganitkevitch, Benjamin Van
Durme, and Chris Callison-Burch. Ppdb: The paraphrase
database. In NAACL, 2013.

[Gentner, 1983] Dedre Gentner. Structure-mapping: A theo-
retical framework for analogy. Cognitive Science, 7:155–
170, 1983.

[He et al., 2015] Hua He, Kevin Gimpel, and Jimmy Lin.
Multi-perspective sentence similarity modeling with con-
volutional neural networks. In EMNLP, 2015.

[Ji and Eisenstein, 2013] Yangfeng Ji and Jacob Eisenstein.
Discriminative improvements to distributional sentence
similarity. In EMNLP, 2013.

[Liang and Forbus, 2015] Chen Liang and Kenneth D. For-
bus. Learning plausible inferences from semantic web
knowledge by combining analogical generalization with
structured logistic regression. In AAAI, 2015.

[Liang et al., 2006] Percy Liang, Alexandre Bouchard-Côté,
Dan Klein, and Benjamin Taskar. An end-to-end discrim-
inative approach to machine translation. In ACL, 2006.

[Manning et al., 2014] Christopher D. Manning, Mihai Sur-
deanu, John Bauer, Jenny Rose Finkel, Steven Bethard,
and David McClosky. The Stanford CoreNLP natural lan-
guage processing toolkit. In ACL, 2014.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their composi-
tionality. In NIPS, 2013.

[Murdock, 2011] J. William Murdock. Structure mapping
for jeopardy! clues. In ICCBR, 2011.

[Rocktäschel et al., 2015] Tim Rocktäschel, Edward Grefen-
stette, Karl Moritz Hermann, Tomá s Kociský, and Phil
Blunsom. Reasoning about entailment with neural atten-
tion. CoRR, abs/1509.06664, 2015.

[Sammons et al., 2009] Mark Sammons, V. G. Vinod Vydis-
waran, Tim Vieira, Nikhil Johri, Ming-Wei Chang, Dan
Goldwasser, Vivek Srikumar, Gourab Kundu, Yuancheng
Tu, Kevin Small, Joshua Rule, Quang Do, and Dan Roth.
Relation alignment for textual entailment recognition. In
TAC, 2009.

[Sanfeliu and Fu, 1983] Alberto Sanfeliu and King-Sun Fu.
A distance measure between attributed relational graphs
for pattern recognition. IEEE Transactions on Systems,
Man, and Cybernetics, 13:353–362, 1983.

[Socher et al., 2011] Richard Socher, Eric H. Huang, Jeffrey
Pennington, Andrew Y. Ng, and Christopher D. Manning.
Dynamic pooling and unfolding recursive autoencoders
for paraphrase detection. In NIPS, 2011.

[Tai et al., 2015] Kai Sheng Tai, Richard Socher, and
Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory net-
works. In ACL, 2015.

[Voorhees, 1999] Ellen M. Voorhees. The TREC-8 question
answering track report. In TREC, 1999.

[Yin and Schütze, 2015] Wenpeng Yin and Hinrich Schütze.
Convolutional neural network for paraphrase identifica-
tion. In NAACL, 2015.

[Zhang and Chang, 2004] DongQing Zhang and Shih-Fu
Chang. Detecting image near-duplicate by stochastic at-
tributed relational graph matching with learning. In MM,
2004.


