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Abstract 
 

This chapter presents a theoretical framework that is being developed in an 
attempt to construct a computational account of human learning of physical 
domains. Qualitative Process theory is used to model portions of people's physical 
knowledge, and Structural Mapping theory is used to characterize the computations 
that move a learner from one representation to another. The chapter outlines the 
component theories and proposes a learning sequence for physical domains. 
 
 
12.1 INTRODUCTION 
 

People use and extend their knowledge of the physical world constantly. 
Understanding how this fluency is achieved would be an important milestone in 
understanding human learning and intelligence, as well as a useful guide for 
constructing machines that learn. The authors' purpose is to construct a 
computational account of human experiential learning in physical domains. 

This work is still at the stage where questions are being refined rather than 
answers provided. In many cases, there is no direct evidence for the claims made 
here. In other instances, support for the theory is obtained by combining evidence 
from several different areas, including developmental psychology, studies of 
learning, and other psychological research. No one of these is adequate by itself. 
When extrapolating from adult learning research, we must keep in mind that cases 
of pure experiential learning are rare in adult life; some sort of instruction or prior 
expectation is typically involved. Developmental research provides a good source 
of data, since much of young children's learning is truly from direct experience. 
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Yet when developmental results are applied, it must be remembered that children 
are not only learning but also maturing. Therefore, in order to isolate and study 
experiential learning, the existing empirical findings must be examined, filtered, 
and carefully fitted together. Although space does not permit detailing all the 
relevant lines of evidence, the authors will try to give the reader some justification 
for our claims whenever possible. 

As this volume attests, the past few years have seen significant progress in 
machine learning. However, to construct programs that learn as well as (or better 
than) people do, it is important to understand how human learning works. 
Ultimately both psychological studies and direct computational experiments (i.e., 
constructing programs) will be necessary to provide a full account. To this end, the 
authors will try when possible to indicate how techniques developed in machine 
learning might be used to implement such programs. 
 
12.1.1 Overview 
 

A brief prologue may help to organize the material. Three key ideas underlie 
the theory: (1) the centrality of physical processes in mental models of science; (2) 
the importance of analogy in learning; and (3) the primacy of rich, contextually 
specific representations. The idea that the notion of process is central to human 
knowledge about physical domains is the chief tenent of Qualitative Process (QP) 
theory (Forbus, 1981, 1984). This is not to say that notions of process are there 
from the beginning. Rather; it is hypothesized that a person's experiential 
knowledge of a domain begins as a collection of scenarios that describe particular 
phenomena, out of which is developed a vocabulary of processes that provides a 
notion of mechanism for the domain. The second key idea concerns the role of 
comparisons among related knowledge structures. The authors conjecture that 
much of experiential learning proceeds through spontaneous comparisons-which 
may be implicit or explicit-between a current scenario and prior similar or 
analogous scenarios that the learner has stored in memory. Structure Mapping 
theory (see Gentner, 1980, 1983) describes these kinds of comparisons. 

The third idea is a rather paradoxical claim: in human processing, more is often 
easier.1  Rich, perceptually based representations are acquired earlier in learning 
than sparse abstract representations. That is, early domain representations differ 
from more advanced representations of the same domain in containing more 
information, especially perceptual information specific to the initial context of use. 
                                                 
1It should be noted that psychologists by no means generally agree with this claim. Consequently, the 
authors tried to be fairly explicit in presenting evidence for this position. 
 



A second aspect of the "more is easier" claim concerns comparisons: it is suggested 
that, for humans, similarity comparisons are easier when there is more overlap 
between the two knowledge structures being compared. 

On the basis of these three ideas, the authors propose a canonical learning 
sequence. The claim is that human learning of physical domains can be viewed as a 
sequence of different mental models: (1) protohistories, (2) the causal corpus, (3) 
naive physics, and (4) expert models. Briefly, protohistories are rich, contextually 
specific, highly perceptual representations of phenomena, capturing expectations 
about typical phenomenological patterns-for example, "If I turn the key, the car 
will start." With the causal corpus, the expectations of mechanism enters; here the 
representation consists of simple statements that some sort of causal connection 
exists between variables-"If the car has no gas, it will not start." In the naive 
physics stage, processes are introduced to provide the mechanism underlying the 
causal corpus-"Gas must flow from the tank to the carburetor and mix with air so 
that the mixture can be ignited by the spark." The disparate local connections of the 
causal corpus are replaced with qualitative models organized around the notion of 
process. Finally, in the expert models stage, quantitative representations are 
created-for example, models of the effects of different mixtures of oxygen and 
gasoline. 

In this chapter the authors discuss their conjectures about these models and 
about how a learner constructs one type of model from another. First, however, the 
component theories that underlie this framework are briefly summarized: 
Qualitative Process theory, which provides concepts needed to represent the 
models (particularly in the naive physics stage), and Structure Mapping theory, 
which characterizes the kinds of computations that move the learner from one 
representation to another. Then the overall role of structure-mapping comparisons 
is examined in the progression from rich to sparse representations. With these 
foundations in place, the four stages of learning for physical domains are then 
described. 

 
12.2 QUALITATIVE PROCESS THEORY 
 

The first requirement of this work is a language in which to describe people's 
commonsense knowledge about physical situations. People know about a great 
many kinds of physical changes: things move, collide, bend, break, heat up, cool 
down, flow, and boil. Intuitively we think of these as processes. Qualitative 
Process theory attempts to formalize this notion of process to provide a common 
form for qualitative theories of dynamics. As will become clear later on, the 
authors do not believe that the first models people construct of a domain take the 



form of process, nor even that they become knowledgeable enough to construct 
these models for every domain they experience. Nevertheless, some of the concepts 
of QP theory will be useful in describing models in other stages as well. 

In QP theory, a physical situation is modeled as a collection of objects and 
relationships among them, with processes responsible for causing changes. The 
continuous parameters of an object, such as temperature and pressure, are 
represented by quantities. A quantity has two parts, an amount and a derivative. 
Amounts and derivatives are both numbers. The model to keep in mind for 
numbers is that of the reals, but it is important to note that in QP theory particular 
numerical values are never used. Instead, the value of a number is described in 
terms of its quantity space-a collection of inequalities that hold between it and 
other quantities. Figure 12-1 illustrates a quantity space for the level of liquid in a 
container. The quantity space is a useful qualitative representation because 
processes typically start and stop when inequalities between parameters change. 

Figure 12-2 illustrates a typical process, called LIQUID-FLOW. A process 
has five parts: individuals, preconditions, quantity conditions, relations, and 
influences. Roughly speaking, the individuals part describes where instances of a 
process might occur, the preconditions and quantity conditions tell when it will be 
acting, and the relations and influences describe what holds as a consequence of it 
acting. In more detail, for any collection of objects that matches the individual 
specifications there is a process instance that represents the potential for that 
process to occur between those individuals in a particular way. For example, there 
will be two instances of LIQUID-FLOW between the liquid in the containers in 
figure 12-2, each corresponding to flow in a particular direction. 

A process instance is active whenever both its preconditions and its quantity 
conditions are true. The distinction between preconditions and quantity conditions 
is that quantity conditions can be determined within QP theory but preconditions 
cannot. Quantity conditions concern what inequalities hold and what other 
processes (or individual views, which are introduced below) are active. 
Preconditions concern any relevant factors other than quantity conditions, such as 
spatial boundaries. For example, in "real" physics we can solve equations to figure 
out how fast a ball will be moving when it hits the floor, but the equations will not 
tell us a priori where the floor is Or, returning to the present example, if we know 
that all the valves in the fluid path between the two containers are open (i.e., the 
fluid path is aligned), then fluid will flow, but we cannot predict within QP theory 
when or if someone will walk by and turn off a valve. Because these factors still 
affect dynamical conclusions, preconditions must be explicitly represented. 

 



 wb 
wa  a   b   

 
BOTTOM(a)   LEVEL(wa)   TOP (a)   

         
             LEVEL(wb) 

 
Figure 12-1: A quantity space describes the value of a number by the inequality relationships that hold between it and other 
numbers. An arrow indicates that the number at its head is greater than the number at its tail. Thus LEVEL(wa) is less than 
LEVEL(wb) and greater than BOTTOM(a), and LEVEL(wb) and TOF(a) are unordered. 
 

Process LIQUID-FLOW 
 
Individuals: 
 source, a CONTAINED-LIQUID  
dest, a CONTAINED-LIQUID  
path, a FLUID-PATH, FLUID-
CONNECTION(source, dest, path) 
 
Preconditions: 
 ALIGNED(path) 
 
Quantity Conditions: 
 A[PRESSURE(source)] > A[PRESSURE(dest)] 
 
Relations: 
 Let flow-rate, diff be quantities 
diff = PRESSURE(source) - PRESSURE (dest) 
flow-rate αQ+ diff 
 
Influences: 
I + (AMOUNT-OF(dest), A[flow-rate]) I - 

(AMOUNT-OF(source), A[flow-rate]) 
 

Figure 12-2:  A typical process. This process specification describes a simple kind of liquid flow. It can occur between two 
contained liquids that are connected by a fluid path, whenever the path is aligned-that is, all valves in the path are open-and the 
pressure in the one taken as source is greater than the pressure in the contained liquid taken as destination. The quantity type 
AMOUNT-OF represents how much "stuff" there is in an object. (Recall the function of A maps a quantity into the number that 
is its amount, a number, as opposed to AMOUNT-OF, which is a function that maps a piece of stuff into a quantity.) 

 
 Whenever a process instance is active, its influences and relations hold. 



The influences component of a process specifies the direct effects of a process; 
the rela5 component describes other facts that are true while the process is active. 
The direct effects-called direct influences-take the form 

I + (Q, n) 
or 

I - (Q, n) 
depending on whether n is a positive or negative contribution to the derivative of 
Q. If a quantity is directly influenced, its derivative will be the sum of all the direct 
influences on it. Returning to the description of LIQUID-FLOW, for example, we 
see that when an instance of LIQUID-FLOW is active, there will be a positive 
influence on the amount of liquid in the destination and an equal, negative 
influence on the amount of liquid in the source. 

The relations field can describe new individuals that are created by virtue of 
the process being active (such as the steam produced by boiling water), as well as 
properties needed by representations outside QP theory (such as the appearance of 
boiling water). An especially important kind of fact expressed in the relations 
component is functional dependency between quantities. Functional dependencies 
between quantities are expressed by 
 

Q1 αQ+ Q2 
 
(read "Q1 is qualitatively proportional to Q2," or informally, "Q1 q-prop Q2"), 
meaning there exists a function that determines Q1 and is strictly increasing in its 
dependence on Q2. OCQ indicates that the dependence is strictly decreasing. Note 
that qualitative proportionalities express partial information, since the exact nature 
of the function relating the parameters is not known and the function may or may 
not depend upon other quantities.2  If a quantity Q1 is functionally dependent on a 
quantity Q2, and if Q2 is influenced by a process P, then we will say that P 
indirectly influences Q1R; that is, when P is acting it can cause Q1 to change. If, 
for instance, the PRESSURE and LEVEL of a liquid are qualitatively proportional 
to the AMOUNT-OF of the liquid, then LIQUID-FLOW will indirectly influence 
both PRESSURE and LEVEL because it directly influences AMOUNT-OF. It is 
important to note that the only way a quantity can change is if it is directly or 
indirectly influenced. This means that one can reason by exclusion: If nothing is 
                                                 
2QP theory also provides ways to specify dependence on properties that are not quantities (such as shape, 
in relating the level of a liquid in a container to its volume) and to make stronger statements about 
functional relationships, such as "Q1 depends on Q2 directly, with no intervening parameters" and "Q 
depends on Q1 and Q2 and nothing else" when required for framing stronger hypotheses about a domain 
However, precise specifications of functions (e.g., Q1 = |Q2|*2) are not permitted. 
 



influencing the amount of fluid in a container, then it isn't changing, but if the 
amount is changing, something must be influencing it. No changes happen by 
themselves. Furthermore, we can trace the possible paths of influences in a 
situation and determine whether or not particular kinds of changes can occur. 

Two other important types of descriptions should also be mentioned here. 
individual views are descriptions used to represent both objects whose existence 
are subject to dynamical constraints and states of objects. "The water in a cup," for 
example, is described as a CONTAINED-LIQUID (see figure 12-3) because we 
can get rid of it by 
 
 

INDIVIDUAL-VIEW CONTAINED-LIQUID 
 

Individuals: 
c a CONTAINER 
s a SUBSTANCE 

 
Preconditions: 
CAN-CONTAIN-SUBSTANCE( c, s) 

 
Quantity Conditions: 
A[AMQUNT-OF-IN(s, c)] > ZERO 

 
Relations: 
THERE IS g, a PIECE-OF-STUFF 

HAS-QUANTITY ( g, AMOUNT-OF) 
AMOUNT-OF(g) = AMOUNT-OF-IN(s, c) 
HAS-QUANTITY(g, LEVEL) 
LEVEL(g) αQ+ AMOUNT-OF(g) 
HAS-QUANTITY( g, PRESSURE) 
PRESSURE(g) αQ+ LEVEL(g) 

 
 
Figure 12-3: This typical individual view describes a piece of liquid in a container, using the ontology for liquids described in 
Hayes (1979a). THERE IS is just "syntactic sugar" for stating that whenever the preconditions and quantity conditions are true, 
g will exist. 
 
reducing its amount to zero (perhaps by making it the source of an instance of 
LIQUID-FLOW). Another example is a model of a spring. Springs have three 
states-relaxed, compressed, and stretched-each of which can be modeled by 
individual views. Individual views are specified in the same way as processes, in 
that they have individuals, preconditions, quantity conditions, and relations. 



However, they do not have an influence component; directly influencing quantities 
is the sole prerogative of processes. 

The other kind of description is the encapsulated history. How an object 
changes through time is represented by its history (Hayes, 1979b). Histories are 
annotated pieces of space-time; thus they are object centered, have finite spatial 
extent, and extend over time.3  As its name suggests, an encapsulated history is a 
schematized description of some fragments of histories for a collection of objects. 
Encapsulated histories are useful for summarizing behavior and for directly 
describing phenomena that have not been accounted for by process descriptions. 
An example of the latter usage is describing collisions between moving objects. A 
very simple way to model collisions is to say that the very next thing that happens 
after, say, an object hits a wall is that its velocity reverses and it starts moving the 
other way. Given how rapidly collisions occur, this model is quite adequate for 
most purposes, and encapsulated histories allow it to be written this way. 

A reasoner's theory of dynamics for a particular domain  characterized in 
terms of (1) a process vocabulary that describes the kinds of processes the reasoner 
believes can occur and (2) a view vocabulary that describes dynamical objects and 
relevant states of objects. All changes are assumed to be directly or indirectly 
caused by processes-the sole mechanism assumption-which provides a strong 
constraint on the form of dynamical theories. Importantly, the content of dynamical 
theories is not tightly constrained-incorrect theories can be expressed as easily (and 
sometimes more easily!) than correct theories. For example versions of Newtonian, 
Aristotelian, and Impetus theories of motion have all been encoded using QP 
theory. 

QP theory sanctions several basic deductions. For example, the kinds of pro-
cesses that might occur in a situation can be determined by using the process and 
view vocabularies to construct instances representing the different possibilities. 
The collection of processes acting at any time characterizes "what is happening" 
then in that situation, and these processes can be found by evaluating the 
preconditions and quantity conditions for these instances. 

Consider again the example in figure 12-1. There will be two instances of the 
LIQUID-FLOW process, and since the level in wb is greater than Wa, the 
LIQUID-FLOW instance representing flow from wb to wa will be active. By 
taking into account all the influences on each quantity (called resolving its 
influences), we can often determine the sign of its derivative. The sign of the 
derivative is important because it represents how the amount of the quantity is 

                                                 
3By contrast, the classic situational calculus description of change (McCarthy and Hayes, 1969) consists 
of situations that describe the whole universe at some particular instant of time. 
 



changing- increasing, decreasing, or remaining constant. In this example there is 
only one process instance acting, which makes things simple. AMOUNT-OF(wb) 
is directly influenced, and since this influence is negative, it will decrease. By the 
αQ+ statements in the CONTAINED-LIQUID description, LEVEL(wb) and 
PRESSURE(wb) will be indirectly influenced and thus will also decrease. 
Similarly, AMOUNT-OF(wa), LEVEL(wa), and PRESSURE(wa) will increase. 

From the ways the quantities are changing we can determine how the process 
and view structures themselves might change, since they depend in part on the in-
equalities stated as quantity conditions. This computation is called limit analysis. 
In the example two things might happen- the pressures in wb and wa might 
equalize, or AMOUNT-OF(wb) could become zero, thus ending wb's existence 
(the geometry of this example rules out the latter). 

The basic deductions of QP theory can be combined to perform more complex 
reasoning tasks. Two examples of more complex deductions are qualitative simula-
tion (Forbus, 1984) and measurement interpretation (Forbus, 1983). Qualitative 
simulation consists of performing limit analysis repeatedly. It is useful for making 
predictions, for instance, that boiling water in a sealed container could cause an 
explosion. Measurement interpretation provides a link between physical theories 
and observations; for example, it might be hypothesized that the level of a fluid in 
a container is dropping because the fluid is flowing out somewhere. Measurements 
taken at a single instant may be interpreted by searching through the space of 
process and view structures for situations in which the results of influence 
resolution match the observations. Algorithms for interpreting measurements taken 
over a span of time are still under development. 
 
12.3 COMPARISONS AND STRUCTURE MAPPING 
 

So far this chapter has considered how portions of a person's knowledge about 
the physical world might be represented. Let us now turn to the question of how 
such domain models might be learned. The authors conjecture that a major process 
in experiential learning is comparing the current situation with stored descriptions. 
Consider the example of a person who has just moved to a cold climate and is 
learning to operate a furnace. Suppose that at first he wrongly believes that the 
house will get warm faster if the thermostat is set to a temperature higher than the 
desired temperature. (Kempton shows that this view is quite common; Kempton, 
1985.) How can he reach the correct conclusion that the rate of heating does not 
depend on the temperature setting? There are at least three different ways, each 
based on a different kind of implicit comparison. First, he could compare his past 
furnace experiences with each other and notice a regularity in the rate of heating 



that is independent of the thermostat setting. Second, he may compare the furnace 
situation with known abstractions and realize that it is best described as a 
positional-action controller (as opposed to a proportional-action controller). Third, 
he may use an analogy, comparing the furnace situation with a description from 
another domain, such as fluid flow, to suggest governing principles. Each of these 
ways of learning relies on some form of comparison, either with a stored record of 
literally similar events, with a stored abstraction, or with a stored description that 
can function as an analogy. 
 Structure Mapping theory is concerned with such comparisons (see Gentner 
1980, 1982, 1983; Gentner and Gentner, 1983). The theory describes the rules that 
are used to import a descriptive structure from one domain (the base domain) into 
another (the target domain). The central intuition is that an analogy implies that a 
predicate structure from one domain can be applied in another domain with arbi-
trarily different objects and surface appearances. Literal similarity, analogy, mere 
appearance mappings, and abstraction mappings (applications of general laws) are 
viewed as different kinds of mappings between descriptions. The types of compari-
sons are defined syntactically, in terms of the form of the knowledge 
representation, not in terms of its content. Each type of comparison will be 
considered in turn. 
 

1. An analogy is a comparison in which relational predicates, but few or no 
object attributes, are mapped from base to target. The particular relations 
mapped are determined by systematicity, as defined by the existence of 
higher-order constraining relations that can themselves be mapped.4  The 
correspondences between objects of the base and objects of the target are thus 
determined by the roles of the objects in the relational structure, not by any 
intrinsic similarity between the objects themselves. 

 
2. A literal similarity statement is a comparison in which a large number of 

predicates, both attributes and relations, can be mapped from base to target. 
Here, the model is based on one proposed by Tversky (1977), which states 
that the similarity between A and B increases with the size of the intersection 
of their feature sets and decreases with the size of the intersection of the two 

                                                 
4Object attributes are predicates that take one object as an argument, such as RED(x) . Relations are 
predicates that take two or more arguments, such as COLLIDE (x, y). We define the order of a 
proposition as follows: Constants have order zero, as do functions on them. The order of a proposition is 
one plus the maximum of the orders of its arguments. Thus COLLIDE(x, y) would be first order if x and 
y are domain objects, and CAUSE(COLLIDE(x, y), BREAK(x)) would be second order. Examples of 
higher-order relations are CAUSE and IMPLIES. 
 



complement sets.5 Thus, there are many more shared predicates than 
nonshared predicates. 

 
3.  An abstract mapping is a comparison in which the base domain is an abstract 

relational structure. Predicates from the abstract base domain are mapped into 
the target domain. As in analogy, the mapped predicates are a relational 
structure. Abstraction differs from analogy in the nature of the base domain. 
There are almost no object attributes in the base, so there are few, if any, one-
place predicates to be left behind. Applying a rule to a situation is an example 
of abstraction mapping. Sometimes the relational structure so mapped will 
also be referred to as an abstraction. 

 
4. A mere appearance match is a comparison in which the object attributes 

match but the relational structure does not. In a sense it is the opposite of 
analogy. Such matches are easily made, but they guarantee nothing beyond 
similarity in appearance. 

 
A series of related examples using the analogy between heat flow and water 

flow will illustrate these distinctions. Figures 12-4a and 12-4b show a water-flow 
situation and the corresponding heat-flow situation (adapted from Buckley, 1979, 
15-25). Figure 12-5 shows a possible representation a person might have of the 
water situation. Notice that the description contains both object-attribute 
predicates, such as CYLINDRICAL(beaker), and relational predicates, such as 
GREATER-THAN 

 

                                                 
5Again according to Tversky, the negative effects of the two complement sets are not equal; for example, 
given the question How similar is A to B?, the set (B - A)-features of B not shared by A-counts more than 
the set (A - B). 
 



Figure 12-4: These two physical situations involving flow will be used to illustrate the kinds of comparisons sanctioned by 
Structure Mapping theory and later to illustrate how QP-style domain descriptions can be used in analogies: (a) A water-flow 
situation; (b) the corresponding heat-flow situation. 



 
 

[PRESSURE(water, beaker), PRESSURE(water, vial)]. Let us consider the 
comparison types as exemplified here: 

1 The analogy Heat is like water conveys that certain aspects of the 
water description can be mapped onto the heat domain. In particular, (1) 
object attributes should be dropped; (2) some relational predicates should 
be carried over; and (3) systematicity determines which relations should be 
mapped. Thus, CYLINDRICAL(beaker) is dropped, along with other 
object attributes; 

 
 
 
 
 



 
        IMPLIES 
  
 
           condition               implication 
 
 
 
 
GREATER THAN           GREATER THAN            FLOW 
         (a1, a2)            (a1, a2) 
 
 
 
       a1                 a2          a1              a2 
 
 
DIAMETER       DIAMETER            PRESSURE                  PRESSURE 
 
 
 
 
 

     object 

                   obj.1 

      object 
                 goal   object   path   source 
            obj.1  
 
           obj.2  
                 water   pipe 
            obj.2   
 
CYLINDRICAL 
               beaker        water       vial 

  CLEAR 
       GLASS 

FLAT-TOP   SHINY 
 
 
 
 
Figure 12-5: A representation of the water situation. This network represents a portion of what a person might know about the 
water situation illustrated in figure 12-14. In this and other figures, predicates are written in upper case and circled. Objects are 
written in lower case and uncircled. A simplified representation is used to illustrate the rules of analogy. A more detailed model 
will be shown. 
 
 



that is, the target objects do not have to resemble their corresponding base objects. 
Some relations are carried across, such as, GREATER-THAN [PRESSURE(water, 
beaker), PRESSURE(water, vial)]. Yet not all relations are carried across. By the 
systematicity principle, this GREATER-THAN relation is preserved because it is 
part of the mappable chain governed by higher order relation IMPLIES. In 
contrast, the relation GREATER-THAN[DIAMETER (beaker), DIAMETER(vial)] 
is not carried across, since it is not part of any mappable system of constraining 
relations in this representation of the base domain. 

 
 
 

IMPLIES 
  

 
condition                                 implication 

 
 
 

GREATER THAN           FLOW 
(a1, a2)                            

 
 

 
 
 

TEMPERATURE         TEMPERATURE 
 

a1    a2 
goal    object    path    source 

 
 

object                object 
    

heat       bar 
 

coffee        ice cube    
 

        
 
 
 

Figure 12-6: A representation of the heat situation that results from the heat/water analogy. This network represents the 
knowledge a person would map across into the heat domain from the water situation illustrated in figure 12-5. As in that figure, a 
simplified representation is used here. A more detailed treatment of this analogy is presented later. 
 



 
 
 Figure 12-6 shows the representation in the target domain of heat flow that 
results from the analogical mapping. Given the arbitrary object correspondences 
heat/water, beaker/coffee, vial/ice cube, pipe/bar, and PRESSURE/ 
TEMPERATURE,6 systematicity operates to enforce a tacit preference for 
coherence and predictive power. The systematic relational structure in the water 
domain 
 
 
IMPLIES(GREATER-THAN [PRESSURE (water, beaker), 

PRESSURE(water, vial)], 
FLOW(water, pipe, beaker, vial)) 

 
is mapped into 

 
IMPLIES(GREATER-THAN[TEMPERATURE(heat, coffee), 

TEMPERATURE(heat, ice cube)], 
FLOW(heat, bar, coffee, ice cube)) 

 
 

2. The literal similarity comparison Kool-Aid is like water conveys that most 
of the water description can be applied to Kool-Aid. In literal similarity 
both object attributes, such as FLAT-TOP (water), and relational 
predicates, such as the systematic chain discussed above, are mapped over. 

3. The abstraction Heat is a through-variable might be available to a student 
who knows some system dynamics. This abstraction conveys the idea that 
heat can be thought of as something that flows across a difference in 
potential (i.e., some sort of across-variable-in this case, temperature). This 
is much the relational structure as conveyed by the analogy in 1, above; the 
difference is that in the abstract base domain of through-variables and 
across-variables there are no concrete properties of objects to be left 
behind in the mapping. 

4. A mere appearance match is a match with overlap chiefly in lower-order 
predicates, such as object attributes, but little or no relational match. An 

                                                 
6In this analogy, the first-order predicate of PRESSURE in the water domain must be replaced by 
TEMPERATURE in the heat domain. Although systems of relations can often be imported into the target 
without change, substitutions of lower-order relations, as well as of objects and their attributes, are 
sometimes made in order to permit mapping a larger systematic chain. 
 



example is The tabletop gleamed like water. Such a match typically yields 
little or no useful information about the target; here, for example, little can 
be learned about the table by mapping across knowledge about water. 
These matches, however, cannot be ignored in a theory of learning, 
because a novice learner may be unable to tell them from true literal 
similarity matches. 

 
 

Table 12-1 summarizes the kinds of predicate overlap that characterize literal 
similarity, analogy, abstraction, and mere appearance matches, as well as one other 
kind of comparison, anomaly. An anomaly is a match with little or no predicate 
overlap; it is included simply for completeness. 

It should be clear that the contrasts described here are continua, not dichotomies. 
For example, analogy and literal similarity lie on a continuum. Given that two 
domains overlap in relational structure, then the comparison becomes more a literal 
similarity match to the extent that their object attributes also overlap, and more an 
analogy to the extent that few or no object attributes overlap. A different sort of 
continuum exists between analogies and general laws. In both cases, a relational 
structure is mapped from base to target. If the base representation included 
concrete 
 
 
OBJECT  ATTRIBUTES RELATIONS EXAMPLE 
Literal Similarity Many  Many          Milk is like water. 
 
Analogy  Few     Many  Heat is like water. 
 
Abstraction  Few   Many  Heat flow is a through- 
     variable. 
 
Anomaly  Few     Few  Coffee is like the solar 
     system. 
 
Mere Appearance  Many     Few The glass tabletop   
      gleamed like a pool of   
      water. 
 
 
 
 
objects whose individual attributes must be left behind in the mapping, the 



comparison is an analogy. As the object nodes of the base domain become more 
abstract and variablelike, the comparison is seen more as a general law. 
 
 
12.4 STRUCTURE MAPPING AND LEARNING 
 

The role of a comparison in learning depends on at least two things: (1) 
accessibility-the likelihood that the match will be noticed-and (2) usefulness- what 
can be deduced from the match if it is accessed. Accessibility, in turn, depends at 
least on (a) the familiarity of the base description and (b) the overall similarity 
between the base description and the current target. The immediate usefulness of a 
match depends, of course, on whether the content of the match is appropriate to the 
task at hand. In addition, the usefulness of a match depends on the inspectability of 
the matching content- the degree to which it can be consciously analyzed and 
articulated. The comparisons discussed above behave very differently with respect 
to accessibility and inspectability. 
 For novice learners, literal similarity matches are the most accessible 
comparisons, and abstractions are the least accessible. In contrast, abstraction 
matches are far more inspectable than literal similarity matches. On both 
dimensions, analogies are intermediate. That is one reason that analogy is crucial in 
learning. Some evidence for these conjectures will now be reviewed. 
 Literal similarity matches are highly accessible. It has been shown in 
education and training literature that the more similar a new situation is to an 
original situation the more readily transfer of training occurs (cf. Brown and 
Campione, 1985). The term generalization gradient expresses the fact that a 
learned response generalizes more readily the more similar the new situation is to 
the original situation. In contrast, subjects are often quite slow to use an available 
analogy. In research done by Reed, Ernst, and Banerji (1974) and later by Gick and 
Holyoak (1980, 1983), subjects were asked to solve a rather difficult problem, such 
as how to cure an inoperable tumor with radiation without killing the flesh along 
the path of the rays. Just prior to receiving the problem some of the subjects read 
material that contained an analogous solution, such as a story about a general who 
split his troops up so that they all converged simultaneously on a fortress he 
wished to capture 
 There are three interesting results here. First, a good analogy can be very 
powerful if it is noticed. Without the analogy, only about 10 percent of the subjects 
could solve the problem. Once the experimental subjects were told to use the prior 
story as an analogy, 80 to 90 percent of them solved the problem correctly. Second, 
a potentially powerful analogy can easily go unnoticed. Before the analogy was 



pointed out, only about a third of the subjects spontaneously noticed and used it. It 
cannot be taken for granted that a potential analogue will be spontaneously noticed 
and used. Third, literal similarity is far more accessible than true analogy. In one of 
their studies, Gick and Holyoak (1983) happened to set up a literal similarity match 
between the story and problem. Subjects had to solve a problem that involved tying 
two ropes together, and the story they were given involved tying two ribbons 
together. In this case, 70 to 80 percent of the subjects were able to access the 
matching story spontaneously.   
 There is also developmental evidence that literal similarity matches appear 
prior to analogies and abstraction matches in learning. One example is early word 
learning. In spontaneous labeling, one-year-old children frequently apply words to 
objects that closely resemble the original referent of the word; for example doggie 
will be applied to another dog or to a cat, and car to cars, trucks, or other vehicles 
(Clark, 1973). Truly analogous or metaphorical usages are seldom heard until the 
age of two or three years; for example, a three-year-old child remarks about his 
dirty bedraggled blanket, "It's out of gas" (Gentner and Stuart, 1984; Winner, 
1979). 
 Children are said to move from rich, concrete representations to more 
abstract, rule-based systems (cf. Bruner, Olver, and Greenfield, 1966; Gibson, 
1969). Even three-year-olds can sort objects into perceptually similar categories; 
for example, they can group a cat and a dog and exclude a hen. However, not until 
they are five or six years old can they succeed if the match is more abstract; for 
example, a category like "living thing" requires grouping perceptually dissimilar 
things. 
 In the same vein, research on the novice-expert shift in adult learning has 
demonstrated that whereas novice science students typically match situations on 
the basis of surface features, experts use deeper and more abstract criteria (Larkin, 
1983). For example, Chi, Feltovich, and Glaser (1981) have shown that when 
novice physics students are asked to classify problems into similar groups they put 
together problems with similar surface features, such as "inclined planes" or 
"pulleys." Experts, on the other hand, use categories like "force problems" and 
"energy problems." 
 One final indication of the ease with which literal similarity matches are 
made involves an indirect, but very important, line of argument. In the realm of 
object concepts, there is some evidence that people automatically perform literal 
similarity comparisons to combine perceptually similar experiences into composite 
prototypes (see Posner and Mitchell, 1967; Rosch, 1973, 1975, 1978; Smith and 
Medin, 1981). 

7
 In the Posner and Mitchell study, people classified dot patterns 

                                                 
7The term prototype has been used in various ways in psychology. Here it is used to refer to a structured 



into categories. After they had sorted the patterns, they were asked to remember 
which patterns they had seen. Although the task called simply for accessing 
verbatim memory, subjects showed systematic misrecognitions: they falsely 
remembered having seen prototypical patterns that were never presented. Thus 
without being told to do so, people formed composite mental representations, 
apparently based on implicit comparisons among the patterns that they saw. The 
virtually automatic nature of prototype learning is further evidence that the literal 
similarity matches on which they are based are highly accessible-indeed, evidence 
that making such comparisons is a passive, essentially automatic process (see also 
Reber, 1967, 1976). 

However, prototypes also illustrate the limited usefulness of literal similarity 
matches. Although these implicit composites are often sufficient for recognizing 
and categorizing situations, they are of limited use in deriving causal principles. 
This is because (1) a match based largely on perceptual commonalities will often 
fail to contain the correct principles and (2) even when some of the correct 
relations are present, literal similarity matches are too rich to be inspectable. There 
is some evidence, albeit indirect, for this notion of rich, noninspectable 
representations. Nickerson and Adams (1979) studied people's memory of the 
common penny. Despite the overwhelming amount of experience that the subjects 
had with pennies, and despite their evident ability to recognize and categorize 
pennies, they were remarkably poor at recalling or recognizing the details of how 
pennies look. This demonstrates that possessing a description sufficient to 
recognize a class of objects is no guarantee that the description can be articulated. 

Studies of young children show that similarity judgments can be difficult to 
decompose. Shepp (1978) has found that three- and four-year-olds appear to base 
their similarity judgments on some kind of overall comparison; they are typically 
unable to judge one dimension independently of another. For example, they cannot 
ignore height when judging width. Unlike adults, they are unable to treat length 
and width as separable. 

By contrast an appropriate abstraction match is likely to be extremely useful 
in both respects: it should contain the correct principle, and the match should be 
inspectable. But abstractions are often not particularly accessible, especially for 
novices. Novice learners may not know the appropriate abstraction, or it may be so 
unfamiliar that they will not retrieve it when appropriate. Thus abstraction 
mappings, although ultimately important, are unlikely to play a major role in the 
early stages of learning. 
 Analogies lie between the highly accessible literal similarity matches and the 

                                                                                                                                                             
composite object. 
 



highly useful abstraction matches. Potential analogies are less accessible in 
experiential learning than literal similarity matches. This is because analogy 
requires that the learner's database be accessed via relational matches; object 
matches are of little or no use. However, once found, an analogy should be more 
useful than a literal similarity match in deriving the key principles, since the shared 
data structure is sparse enough to permit analysis. (Of course, educators often 
explicitly introduce analogies in teaching beginners for exactly this reason, In this 
case, the problem of noticing the analogical match is bypassed.) Moreover, by the 
systematicity principle, the set of overlapping predicates is likely to include higher-
order relations, such as causality and logical implication. Thus analogy can 
function to reveal principles in a domain that previously lacked the appropriate 
abstractions (Burstein, chap. 13 of this volume; Carbonell, chap. 14; Clements, 
1982; Darden, 1983; Gentner, 1980, 1982, 1983; Gentner and Gentner, 1983; Gick 
and Holyoak, 1983; Hoffman, 1980).  Winston's system (see Winston, 1980, 1982), 
which derives if-then rules by abstracting the predicates common to two analogues, 
is a case in point. 
 The analogical shift hypothesis concerns the role of these comparison in 
experiential learning. In the earliest stages most of the spontaneous matches are 
either mere appearance matches (and thus erroneous) or literal similarity matches 
based on massive feature overlap. This is to say that initial learning is surface 
oriented and conservative, based on rich, specific-case kinds of matches. As the 
domain becomes familiar, more distant comparisons begin to occur; matches are 
made in which fewer object attributes are shared. These sparse comparisons lead to 
the kinds of binary connections that form the bulk of the causal corpus- for 
example "Lighter farther when thrown." Analogy also serves as a means of 
introducing structured mental models. Successful analogies may yield abstractions 
that can be stored and accessed (Gick and Holyoak, 1983; Winston, 1980, 1982). 
Thus, analogy plays an important role in the middle and later stages of learning. In 
the final stages, when learning is well advanced, abstraction mappings play a major 
role. 
 
 
12.5 STAGES OF UNDERSTANDING 
 
The authors suspect that four kinds of mental models are generated in the process 
of understanding physical domains. The sequence of models proposed here is  
developmental, in that the theories of each stage are generated both by the 
phenomena being understood and by the theories of the stage before it. It is not 
proposed that every person go through every stage for every domain, nor that a 



person is at the same stage in every domain at the same time. 
 
 
12.5.1 Stage 1: Protohistories 
 
 Suppose some new physical phenomenon is being observed. If there is no 
prior model, all one can do is observe and remember what is happening. The 
authors conjecture that the simplest physical models of a domain are 
protohistories- prototype histories that serve as summaries of experience.8  Like 
object prototypes, protohistories are the "most typical instances" of phenomena. 
The terms in these descriptions are observables, and their deductive import can be 
roughly expressed as, "If I see X, then Y will happen (has happened)." 
 Consider a balance beam or seesaw. If a weight is placed on each side of the 
fulcrum, the seesaw will either tilt counterclockwise, tilt clockwise, or not tilt at 
all. Most people have had enough experiences with seesaws to have formed 
protohistories concerning their behavior. By the conjecture described here, a 
protohistory is automatically available whenever they encounter a seesaw. From it, 
they can often predict which way the particular seesaw will move. For example, 
they may have a protohistory that describes what happens if a small person gets on 
the seesaw opposite a large person. 
 However, the predictive power of protohistories is quite limited. There is no 
guarantee that the features matched actually correspond to relevant factors. For 
example, an observer will be fooled when a large person sits close to the fulcrum if 
the observer's seesaw protohistories have been formed from watching people 
sitting at equal distances. Massive overlap in features is needed for reliable use, 
which means protohistories will yield conclusions in fewer situations than a true 
theory would Consider, for example, two weights hung from opposite ends of a 
stick that is suspended by a string. The principle involved is the same, yet the 
situations look dissimilar enough that the protohistories for seesaws would not 
match. Furthermore, there is no certain way to decide between conflicting results if 
more than one protohistory matches a situation.9 
 
 
12.5.1.1  Learning Protohistories 
                                                 
8Some of diSessa's phenomenological primitives (1983) appear to be representable as protohistories. 
 
9There are of course heuristic criteria, such as using the protohistory that has worked most often. The 
problem with such heuristics is that little is learned from mistakes. 
 



 
 The process of constructing protohistories involves dividing up experience 
into classes according to literal similarity and abstracting a summary for each class. 
There has been little direct research on this process. However, investigations into 
the process of constructing object prototypes provide some hints. First, people 
seem to be able implicitly (i.e., unconsciously) to compute a kind of component 
match. Second, this intersection is not merely a simple feature intersection; rather, 
it appears that configurations among features are important in the prototype. Third, 
once this prototype is computed, it has powerful effects on the subsequent 
processing of experience. As mentioned previously, once people abstract a 
prototype from a set of patterns, they may be more confident of having seen the 
prototype-which was never presented-than they are of having seen the patterns 
actually presented (Posner and Mitchell, 1967). Finally, people may not be aware 
of forming prototypes, except as a general sense of increased familiarity with a 
category. 
 In summary, if protohistories behave like object prototypes, then they should 
be found to (1) be computed implicitly; (2) act as composite concepts; (3) be 
sensitive to perceptual configurations among events; and (4), once computed, show 
the recognition strength and other psychological privileges of prototypes. 
 The machine learning research that most closely captures this type of 
learning is concerned with conceptual clustering (see Michalski and Stepp, 1983). 
So far, such research has focused on classifying objects that can be characterized 
mainly by differing attributes. Extending such techniques to describe situations that 
depend critically on relational descriptions could provide a method for computing 
protohistories (Stepp and Michalski, chap. 17). 
 
12.5.2 Stage 2: The Causal Corpus 
 
 Protohistories summarize the phenomena, but they do not constitute a theory 
of them. Building a detailed theory directly can be quite difficult. The space of 
possible models connecting all observable (and possible) parameters in a typical 
situation can be quite large. The authors conjecture that weaker theories, theories 
that characterize which parts of the situation are relevant to desired conclusions, 
are formed first. In particular, it is conjectured that a collection of CAUSE 
statements, the causal corpus, is computed from prototype objects and 
protohistories. 
 CAUSE is viewed here as an approximate concept, a weak form of 
ontological commitment. In particular, saying CAUSE(A, B) expresses belief in 
the existence of some mechanism, specified by some theory T, such that IMPLIES 



[(AND A T), B]. Many, perhaps most, of the causal corpus relations are binary 
relations among variables-for example, "Bigger objects weigh more" (Piaget, 1951; 
Carey, 1985), or "Smaller objects have higher pitch when struck" (diSessa, 1983). 
 The notion of mechanism in the causal corpus is quite primitive: the causal 
beliefs need be neither explicit nor internally consistent. Later in the learning 
sequence, as will be seen, processes will assume the role of mechanisms for 
physical domains. Nevertheless, the authors conjecture that even at this early stage 
the learner makes a distinction between mechanistic connections and, say, 
definitional  connections.10  Further, they suspect that many of the initial causal 
connections are incorrect. Novices often include diagnostic and correlational 
relations in their causal corpus. For example, asked if an increase in the 
evaporation rate will cause a change in the temperature of the water, a novice may 
reply, "Yes, because it would have to be hotter to evaporate more." 

CAUSE, then, is a statement of belief in some mechanistic connection. The 
distillation of experience from protohistories into the causal corpus serves three 
purposes. First, it serves as a means of data reduction. Second, it provides a 
collection of heuristics that can be used directly to draw inferences. Even if the 
learner doesn't have firm grounds to consider the CAUSE statements complete or 
correct, the CAUSE statements may often suffice for the desired class of 
inferences. Third, the collection of CAUSE relations can be used to guide the 
search for a deeper theory of the domain. The CAUSE statements suggest 
connections among various aspects of the domain that a deeper theory must either 
explain or explain away. 

Returning to the seesaw example, suppose the causal corpus is now applied 
to a balance beam built out of blocks. Suppose the two blocks on it are called a and 
b. The causal corpus might be as follows: 
 
 
 

CAUSE(BIGGER(a, b), TILT-TOWARDS(a)) 
CAUSE(FARTHER(a, b), TILT-TOWARDS(a)) 

 
 
 
These statements can be interpreted as rules in several ways: If block a is bigger 
than block b, one can predict tilt, and if one sees tilt, one may hypothesize that one 
block is farther out than another. These statements are more broadly applicable 
                                                 
10For example, the statement CAUSE(TRIANGLE(f), HAS-THREE-SIDES(f)) is not a legitimate use of 
CAUSE by this account, since the required axioms of geometry do not specify a mechanism. 
 



than protohistories since they refer to fewer properties. Unlike protohistories, the 
causal corpus is sparse enough to be debugged to some degree. 

However, the approximate nature of the CAUSE relation limits the learner's 
ability to discriminate between conflicting predictions. With the causal corpus 
above, for instance, if block a is bigger and block b is farther out, we will have two 
predictions. Inhelder and Piaget (1985) and Siegler (1976, 1981) have documented 
such a stage in the development of understanding about the balance beam (with 
analogous developmental sequences in other domains). Initially, children focus 
only on weight. But there is an interesting second stage when they come to realize 
that both weight and distance are important but they do not yet know the 
interrelations. They can manage either property by itself if the other is constant; but 
if both properties vary, they tend to focus on one or the other inconsistently. 
Eventually they become able to coordinate weight and distance in the balance 
beam problem. At this stage, if not before, they have gone beyond the causal 
corpus. As will be discussed, in order to make more precise inferences the learner 
must eventually uncover the mechanisms whose behavior is described by causal 
corpus. 
 
 
12.5.2.1 Learning the Causal Corpus 
 
 The authors suspect that there are three techniques for computing and 
debugging a causal corpus. The first technique is to hypothesize causality from co-
occurrence: 
 

If you always see A before B, 
then hypothesize CAUSE (A, B) 

 
and 
 

If A is true whenever B is true,  
then hypothesize CAUSE (A, B) 

 
 
These rules make certain assumptions about the form of memory, namely, that 
some number of circumstances can be remembered and that they can be 
remembered in sufficient detail that A and B are either explicitly stored or 
computable from what is stored. Protohistories should serve as a means of initial 
data reduction from which a causal corpus can be constructed. 
 It is not clear exactly how the learner abstracts out particular variables from 



the rich representation of the protohistory stage. However this is done, the 
simplification achieved with the causal corpus is considerable. Another study by 
Siegler (1978) shows the power of focusing on particular variables. Three-year-old 
children were shown a balance beam, asked to predict which way it would tilt, and 
then shown what actually occurred. Even after large numbers of trials, their 
performance failed to improve. But when they were taught to think of the domain 
in terms of a few relevant variables-weight and length-their performance did 
improve with experience. The moral to be drawn is that the pace of learning is 
greatly accelerated when a small number of variables can be abstracted from all the 
possibly relevant factors. 
 As suggested earlier, many of the early causal relations will be incorrect. 
The authors suspect that there exists a class of rules that are used to debug a causal 
corpus in the face of new information (cf. Sussman, 1976). Each rule corresponds 
to a hypothesis about a bug in the structure of the causal corpus, such as a missing 
precondition. The authors believe that the task of judging a causal corpus for 
consistency is an example of an important but relatively neglected kind of learning, 
coherence- driven learning. Coherence-driven learning is learning that is driven 
not by a mismatch between the model and the world but by inconsistencies within 
the model itself. Williams, Hollan, and Stevens (1983) found evidence of such 
learning. They studied a subject who was learning about a heat exchanger and 
noted that one source of insight was a "boggle" experience, in which the person 
noticed that a current inference contradicted a prior belief. The authors are still 
examining the criteria for judging the consistency of a causal corpus.11   Such 
criteria will play a major role in controlling the debugging rules and the mixture of 
generation and debugging that occurs. 
 Analogy provides the third technique for extending a causal corpus (see 
Gentner and Gentner, 1983; Stevens, Collins, and Goldin, 1979). The CAUSE 
relations from one domain can be mapped into another, since CAUSE qualifies as a 
higher-order constraining relation (see also Winston, 1982). 
 
 
12.5.3 Stage 3: Naive Physics 
 
 The naive physics models replace CAUSE statements with theories about the 
specific mechanisms of change. The ontology is extended by adding processes to 
explain observed changes. The ontology also includes properties and objects that 

                                                 
11With Lance Rips of the University of Chicago, the authors are investigating the role of intransitives in 
debugging causal descriptions. 
 



are not directly observable (for example, heat and heat flow) and the new 
relationships (such as fluid path and heat path) required to reason about them. 
 An important advantage of these models is that they allow one to reason by 
exclusion. Unlike the previous stages, predictions that fail still yield information 
about the situation. For instance, if fluid is flowing into a container and the level is 
not rising, then it is reasonable to hypothesize that fluid is flowing out of it through 
some unknown path. 
 Returning to the balance beam example, a process SWING might be used to 
describe rotation around a contact point (see figure 12-7). The preconditions 
describe the geometric configuration of the system, and the quantity condition says 
that SWING will occur whenever there is a nonzero angular velocity. SWING 
directly influences the angular position of the beam. Thus a prediction concerning 
tilt becomes a prediction about which instance, if any, of the SWING process will 
be active.12 
 What influences ANGULAR-VELOCITY? The existence of an 
ANGULAR-ACCELERATION process (see figure 12-8) that directly influences 
ANGULAR-VELOCITY whenever there is a net torque will be assumed. It is 
further assumed that 
 

For-All (x) For-All (y) 
PHYSOB(x) and CONTACT-POINT(cp) 
implies NET-TORQUE(x, op) = SUM-OF(TORQUES-

ON(x, cp)) 
 
 

Process SWING 
Individuals: 
b a PHYSOB 
c a PHYSOB 
op a CONTACT-POINT 
dir a DIRECTION 

 
 

Preconditions: 
MOBILE(b) 
not MOBILE(c) 

                                                 
12An alternate, and equally good, representation for SWING would leave directions implicit in the sign of 
the velocity. In that vocabulary, the balance beam would give rise to only one instance of SWING, and 
determining which way the beam moves requires that one determine first whether the instance of swing is 
active and if it is, what the sign of the angular velocity is. 
 



CONNECTED(b, C, op) 
ROTATION-FREE(b, C, op) 
DIRECTION-OF(dir, ANOULAR-VELOCITY(b, op)) 

 
 

Quantity Conditions: 
An[ANGULAR-VELOCITY(b, op)] > ZERO 

 
 

Influences: 
I + (ANGULAR-POSITION(b, op), A[ANGULAR-
VELOCITY(b, op)]) 

 
Figure 12-7: A SWING process describes rotation of an object around another object. For the balance beam there will be two 
instances of this process, differing only in their bindings for the direction dir. In each instance b will be bound to the beam, c will 
be bound to the fulcrum, and op will be bound to the contact point between them.  
 It is assumed that each physical object (PHYSOB) has quantities to represent its angular position and velocity with 
respect to each point of contact with other objects. Directions will be noted by the symbols CW, CCW, and NULL, 
corresponding to clockwise rotation, counterclockwise rotation, and no rotation. 
 
 In other words, the net torque on an object around a contact point is the sum 
of the torques on that object measured around that contact point. The mass of the 
beam will be ignored, and the pull of gravity on the blocks on each side of the 
fulcrum will be assumed to be the only source of torques. Figure 12-9 describes 
this induced torque by means of an individual view. Notice that the factors 
illuminated in the causal corpus of BIGGER and FARTHER have become the 
quantities MASS and DISTANCE, and their role in producing swinging has been 
explicated. In particular, these properties determine how much torque each block 
places on the beam. The sum of the torques determines the net torque, which can 
cause the beam to accelerate and thus swing. 
This model comes one step closer to a model that can always determine which way 
something will tilt. There will still be cases in which exactly what will happen 
cannot be determined (e.g., if the mass on one side is increased and it is brought 
closer to the pivot), but this is a precise hypothesis about what all the relevant 
factors are. 
 
12.5.3.1 Learning Naive Physics 
 
The major problem in learning a naive physics is constructing a vocabulary of 
processes that consistently describes experience. The learner must strip away the 
 

Process ANGULAR-ACCELERATION 
 



 
Individuals: 
b a PHYSOB 
c a PHYSOB 
cp a CONTACT-POINT 
dir a DIRECTION 

 
 

Preconditions: 
MOBILE(b) 
not MOBILE(c) 
CONNECTED(b, c, cp) 
ROTATION-FREE(b, c, cp) 
DIRECTION-OF(dir, NET-TORQUE(b, cp)) 

 
 

Quantity Conditions: 
Am[NET-TORQUE(b, op)] > ZERO 

 
 

Relations: 
Let acc be a quantity 
acc αQ + NET-TORQUE(b, op) 
acc αQ- MASS(b) 

 
 

Influences: 
I + (ANGULAR-VELOCITY(b, op), A[acc]) 

 
Figure 12-8:  An ANGULAR-ACCELERATION process. 

 
 
irrelevant predicates that are part of his or her protohistories and causal corpus and 
construct more appropriate descriptions. In addition, the learner must sometimes 
hypothesize the existence of objects and properties that are not directly observable. 
Research in machine learning has developed several techniques for inductive 
learning that should prove useful (see Dietterich and Michalski, 1983; Mitchell, 
1982 Michalski, 1983). These problems are starting to be addressed directly in the 
study of scientific discovery (Langley, et al., 1983). 

The causal corpus provides a search space for potential process vocabularies. 
Each statement in the causal corpus must be elaborated into a consequence of a 
process vocabulary. It appears that there are only a small number of distinct ways 



to perform the elaboration, depending on the particular form of the arguments. For 
example, the statement 
 
 
 The decrease in AMOUNT-OF q 

causes the LEVEL OF Q to fall 
 
 

Individual View GRAVITY-INDUCED-TORQUE 
 
 

Individuals: 
b a PHYSOB 

  c a PHYSOB 
d a PHYSOB 
cp a CONTACT-POINT 

 
Preconditions: 
CONNECTED(b, c, cp) 
ON(d, b) 

 
Relations: 
Let f be a quantity 
f ELEMENT-OF TORQUES-ON(b, cp) 
f αQ + DISTANCE(C-M(d), op) 
f αQ MASS(d) 
;Assign positive torques to CW, negative 
torques to CCW 
ON(C-M(d), SIDE-OF(CW, b, cp)) iff As [f]  = 1 
ON(C-M(d), SIDE-OF(CCV, b, cp)) iff As [f] = -
1 
ON(C-M(d), SIDE-OF(NULL, b, cp)) iff As [f] = 
0 

 
Figure 12-9: A description of gravity-induced torque. 
 
 
indicates that some active process (or individual view) in the situation contains the 
statement 
 

LEVEL(q) αQ +  AMOUNT-OF(q) 
 



in its relations. 
 Hypothesizing a process vocabulary from a causal corpus should be much 
simpler than working from protohistories or direct observation. Yet it still appears 
difficult. The authors conjecture that there are several constraints that make the 
problem more tractable. First, people are apparently conservative in the 
introduction of unobserved properties. For example, some subjects have a model of 
a domain that appears to be organized around one parameter-a "generalized 
strength" attribute. In reasoning about fluids, for instance, they appear to use 
pressure, flow rate, and velocity as different names for the same thing. In 
electricity, they use voltage, current, power, potential, and velocity of electrons 
interchangeably. The advantage of this theory gene ration strategy is, of course, 
that simpler models will be explored first, with further distinctions made only 
when necessary. Second, some physical laws are used as constraints on what 
process vocabularies are possible. Conservation of energy, for example, demands 
that if a process directly influences a quantity representing some form of energy, it 
must also directly influence some other quantity representing some form of energy, 
but in the opposite direction. 
 Once again, analogy can provide a constructive mechanism. It can be used to 
import candidate processes from previously understood domains-for example, 
when one understands heat flow in terms of fluid flow. This is an especially 
powerful mechanism because if the model for the previous domain is consistent 
with physical laws, then it suggests that the model for the new domain may be so 
as well. Recall the liquid flow model presented in section 12-2. Figure 12-10 
illustrates a collection of assertions that describes the consequences of a particular 
instance of LIQUID-FLOW.13  
 Suppose a person hypothesizes that there is a process of heat flow analogous 
to the process of liquid flow. By Structure Mapping theory, this means that the 
person suspects that a similar relational structure holds among the objects in the 
heat-flow situation (the coffee, the ice cube, the silver bar, and the instance of heat 
flow) as holds among the objects in the liquid-flow situation (the water in the 
beaker, the water  in the vial, the pipe, and the instance of liquid flow). Mapping 
the systematic relational structure (see figure 12-11) leads to several predictions 
that the person can check to see whether the analogy is correct. For example, it can 
be determined whether or not the temperature of the ice cube is rising and the 
temperature of the coffee falling. The structure-mapping rules for analogy have 
                                                 
13The assertions were generated by an early version of GIZMO, a computer program being constructed to 
explore the computational aspects of QP theory. GIZMO was designed to make predictions and interpret 
measurements, not to be a learning system. In particular, these descriptions were not generated with 
learning or analogy in mind. 
 



provided an initial model for the process of heat flow; in particular, the 
preconditions, quantity conditions, relations, and influences are all carried across 
from liquid flow. Note that to make the analogy really work, a new kind of object- 
a HEAT-PATH-must be postulated. Thus analogy can provide candidates for 
extending ontologies.14 
 
12.5.4 Stage 4: Expert Models 
 
 The models generated so far have two important limitations. First, they still 
contain fundamental ambiguities, ambiguities that are inherent in the nature of 
qualitative representations.15 Second, they lack domain-independent 
generalizations (except in the raw form of the representation-CAUSE statements, 
processes, and so on). The final stage of learning consists of overcoming. these 
limitations, of discovering ways to resolve ambiguities. and to construct powerful 
generalizations. 
 Clearly several kinds of knowledge are involved, and the potential 
complexity of the models in this stage is open-ended (it includes. the whole of 
mathematical physics, for example). Examples of the kinds of knowledge involved 
include 

                                                 
14Of course, such extensions are not to be made lightly. The authors suspect that new types of objects are 
Postulated in the target domain only when necessary to preserve a much larger systematic structure. 
 
15The nature of ambiguity in qualitative descriptions is discussed by deKleer (1979) and Forbus (1984). 
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Figure 12-10: Relational structure for an instance of liquid flow. These important conclusions follow from the definition of 
liquid flow presented in figure 12-2 and the assumption that an instance of liquid flow exists involving the liquids in the two 
containers. Specifically, they describe the conditions for and consequences of the process instance pi = 0’s being 
active.
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equations to describe relationships between parameters, "rules of thumb" to specify 
useful default resolutions for ambiguities, and new ontologies to allow reasoning 
about more complex systems. The importance of mathematical models is fairly 
obvious. The rules of thumb are less obvious but equally important (see, e.g., 
Lenat, 1982). In physical domains they include empirical knowledge about the 
circumstances under which certain processes can be ignored (such as evaporation 
when water is poured from one glass to another) and what their net effect is (such 
as Black's law for the temperature of mixtures). Finally, different ontologies are 
sometimes necessary to deal with certain types of complex systems. In the process-
oriented physics discussed here, describing flow requires finding flow paths. 
Finding flow paths in complex networks such as electrical circuits can quickly 
become computationally intractable; switching to a device-centered physics such 
as that described in deKleer and Brown (1983) can reduce the computational 
burden to manageable proportions for such systems. 
 In the balance beam example, it is known that the force of a block on the 
beam is qualitatively proportional to the mass of the block and to the distance from 
the fulcrum. If it is also known that the torque is the product of distance and 
weight, then providing numerical values for these quantities will allow an 
unambiguous prediction about tilt. 
 
 
12.5.4.1 Learning Expert Models 
 
 The transition to expert models involves several kinds of learning. Some 
aspects of this transition probably lie outside the scope of experiential learning; for 
example, people typically learn mathematical models by being taught rather than 
by discovery. Some aspects of this learning-such as developing new ontologies-
involve improving the content of the representations. Other aspects of the 
transition from a naive physics to an expert physics are better described as 
translating the existing qualitative representations into quantitative statements, 
using mathematics to express laws. By converting a physical theory into a 
mathematical model, the learner gains the ability to make precise predictions and to 
recognize powerful generalizations more easily. An important part of this 
refinement is to elaborate αQ statements into constraint equations. Langley (1979; 
Langley, Zytkow, Simon, and Bradshaw, 1983) describes techniques that should be 
useful for converting qualitative laws into mathematical relations. 
 Developing rules of thumb means knowing not just what is possible but what 
is probable. The learner must discover which outcomes raised by qualitative 
reasoning are likely or unlikely and which potential interactions can be ignored. 



The techniques developed in machine learning for acquiring heuristics should be 
directly applicable (cf. Lenat, 1982; Mitchell et al., 1981). In addition, the authors 
suspect the possible behaviors raised by naive physics are compared against known 
protohistories. Hypothesized outcomes that have no corresponding protohistory are 
judged unlikely, and those corresponding to a highly familiar and accessible 
protohistory are judged very likely (see Tversky and Kahneman, 1973). 
 Further, it seems likely that at least some expert rules of thumb derive from 
learning new protohistories. This intuition is based in part on research in 
automaticity (Schneider and Fisk, 1983). It has been demonstrated that, given an 
orderly domain and sufficient practice, adult subjects can learn a new response 
pattern well enough so that it becomes essentially effortless (see also Anderson, 
1982; Rumeihart and Norman, 1978). Moreover, there is some transfer from the 
learned material to new similar material. These learned sequences have many of 
the essential qualities of protohistories. First, they are triggered by recognition (in 
the terms used here, by a literal similarity match between the present situation and 
a stored situation). Second, computing and carrying out the procedures that follow 
from the match are automatic; virtually no attentional resources are required. Third, 
these computations are implicit; subjects are typically poor at introspecting about 
what they are doing, and when they do introspect, it can interfere with the response 
(Brooks, 1978; Reber, 1967, 1976). It may be too simplistic to view protohistories 
as a special case of automatic pattern-response combination, but there is enough 
overlap to allow some confidence that protohistories can continue to be learned at 
all stages of expertise. Of course, the contents of expert protohistories may be 
different from those of novices, since experts' protohistories may reflect a more 
advanced ontology, as discussed below. However, the mechanism of a perceptually 
triggered. automatic match should be the same. 
 The authors suspect that ontological shift is driven both by the desire to 
under-stand more complex physical systems and by the emergence of domain-
independent mathematical abstractions. As an example of the first kind, consider 
the problem of reasoning about fluid flow in a complex system, such as a steam 
plant. Hayes (1979b) has distinguished two separate ontologies for liquids: a 
contained-liquid ontology, in which liquid is thought of as the fluid in a place, and 
a molecular collection ontology, in which water is thought of as little bits of fluid 
that move around inside the system. The contained-liquid ontology is appropriate if 
the goal is to determine what flows can occur. However, this view of water is not 
useful if one wants to know how changes the properties 6f the working fluid in one 
part of the system (say, the rising temperature of the inlet water in a boiler) affect 
properties of the fluid in another part of the System (say, temperature of the steam 
coming out of the boiler's superheater). In this case, liquid must be viewed in terms 



of molecular collections that move around inside the system. Conversely, 
establishing flows using the molecular collection view is very difficult. A learner 
with only one of these two ontologies will have a difficult time with certain 
questions, and such difficulties may drive the search for a new Ontology. 
 Mathematical abstractions provide another important driving force in 
ontological change. In system dynamics, for example, physical systems involving 
fluid elements, mechanical elements, thermal elements, and acoustical elements are 
viewed as variations on a common, abstract theme. This means that the analysis 
and synthesis tools developed for abstract mathematical models can be used to 
solve problems in several domains. This is a powerful motivation, as evidenced by 
the wave of interest in attempting diverse applications evoked by the publication of 
certain new mathematical formalisms (e.g., catastrophe theory and fractal 
geometry). 
 
12.6 SUMMARY 
 
 The authors have described their progress in weaving together Structure 
Mapping theory and Qualitative Process theory into a framework that aims to 
account for learning in physical domains. The learning sequence is built around 
three ideas. First, development proceeds from rich to sparse and from concrete to 
abstract-that is, initial representations differ from later representations in 
containing more, are more context-specific, information. Second, after sufficient 
experience people develop experiential models that are centered around the notion 
of physical process. as described by Qualitative Process theory. Third, the process 
of comparing are mapping between stored knowledge and the current situation, as 
described in Structure Mapping theory, is central to experiential learning. 
 Four stages of experiential learning have been laid out: protohistories, the 
causal corpus, naive physics, and expert models.16  The first stage, that of 
protohistories, embodies the idea that early representations are rich and context 
specific; this stage attempts to capture a combination of evidence from 
developmental patterns, similarity judgments, basic-level categories, and object 
prototypes. The third stage is the process-centered stage described by Qualitative 
Process theory. The fourth stage builds on the third-stage models, adding domain-
independent generalizations and it some cases mathematical models. There is some 
                                                 
16In deriving this sequence of learning stages, the authors have been influenced by Piaget's well-know 
theory of cognitive development (see Piaget, 1954; or for an introduction to the work, see Flavel, 1963) 
However, the four stages of learning presented here differ considerably from Piaget's four-stage account. 
One difference, for example, is that the authors view their stages as domain specific, whereas Piaget 
stages are intended as general stages of intellectual development. 
 



evidence for the third and fourth stages in the research on the novice-expert shift 
(Chi, Feltovich, and Glaser, 1981 Larkin, 1983). 
 The second stage, the causal corpus, is the most speculative. There is no 
direct evidence for its existence, nor do the authors currently have a detailed theory 
of the kinds of causal statements that can enter into the representations. Moreover, 
detailing how the causal corpus emerges from protohistories will not be easy. But 
something like the causal corpus seems necessary; a collection of simplistic, 
mostly binary directed regularities among dimensions and quantities that begin to 
be differentiated out of the tangled representations of the protohistory stage. The 
learner can now use these simple assertions as grist for further progress. 
 What happens to prior stages as new stages occur? First, stored 
representations have to be distinguished from new learning. The authors conjecture 
that learners retain much of their stored knowledge even when they go beyond the 
stage at which it was formed. Thus, a hydraulics engineer still uses the same 
protohistory he or she formed as a toddler to decide how fast one can carry a glass 
of water without spilling it. And, as deKleer points out (1979), expert physicists do 
not always resort to quantitative models (fourth stage); frequently the answer they 
want can be obtained by using a good qualitative model (third stage). 
 But what about new learning? Does new learning occur only at the leading 
edge, or do people continue to learn at levels below the most advanced stage they 
have attained? The authors suspect that even experts continue to learn at all prior 
stages, with the possible exception of the causal corpus. As described earlier, there 
is evidence that even experts continue to lay down new protohistories. Similarly, 
learners who are operating at the fourth stage, that of expert models, may continue 
to learn and refine their naive physics. This is because the mathematical models of 
the fourth stage are not a substitute for the process models of the third stage.17 

Improvements to a naive physics are useful whether or not mathematical models 
are also available. As expertise increases the least new learning is expected within 
the causal corpus. 
 Of the four levels, the causal corpus has the least claim to continued 
independent existence in an advanced expert. The causal corpus is not reliable for 
prediction, nor does it possess the advantages of automaticity.18  In summary, the 
                                                 
17Historically, philosophers of science have differed about whether the best conception of a domain is 
provided by a mathematical model or by a mechanical model. For an extended discussion of this 
historical debate, see Hesse (1966). The position taken here is that both mathematical models and 
mechanical models are important to full understanding of a domain. 
 
18This discussion, of course, concerns domains for which the learner eventually acquires expert knowl-
edge. We suspect that people rely heavily on causal corpus knowledge in domains in which they are inex-
pert. Further, there are many domains, such as child-rearing or getting rich, that lack definitive models. 
Collins's work on plausible reasoning (1978) suggests that in these domains, people rely heavily on this 



overall picture is that a learner moves from rich, perceptual protohistories to the 
sparser representation of the causal corpus. The causal corpus serves as a staging 
area in which rough connections among variables can be stored until they can be 
subsumed into a true system. If learning continues, a person develops a process-
centered naive physics and, for some domains, expert models. 
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