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1 . Introduction

CHAPTER 6

A Unified Approach to Explanation
and Theory Formation

BRIAN FALKENHAINER

Deduction, abduction, and analogy are processes whose differences are
normally reflected by distinct computational mechanisms . Furthermore,
AI researchers typically decouple explanation and diagnosis from the-
ory formation and discovery. Yet these tasks are intimately related and
blend imperceptibly. Their integration into a unified view of explana-
tion offers the potential for graceful degradation in the presence of an
imperfect domain theory ; in this approach, one provides a deductive
explanation, if possible, and extends or revises the underlying theory
when necessary to make explanation possible .

In this chapter, I suggest that procedural separations between deduc-
tion, abduction, and analogy are superfluous for the purpose of con-
structing plausible explanations of a given phenomenon . A single mech-
anism that proposes explanations of phenomena by their similarity to
understood phenomena is sufficient, providing smoother adaptability to
unanticipated or underspecified events and enabling transfer of knowl-
edge from one domain to another . This similarity-driven view of expla-
nation also lets one extend or revise imperfect theories when they fail
to produce an explanation . Rather than being produced by separate
processes, distinctions between the different explanation types result
from the preferential ordering imposed when competing hypotheses are
evaluated .
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The plausibility of this conjecture is demonstrated by PHINEAS, a
program that uses a single similarity-driven explanation mechanism to
focus its search for explanations using its existing knowledge and to
develop novel theories when its existing knowledge is insufficient . For
example, when given only knowledge of liquid flow, the system is able
to interpret the three situations shown in Figure 1 :

a . A beaker contains more water than a vial to which it is connected
by an unknown object . Why does the water level in the beaker
decrease and the water level in the vial increase?

b . Two containers sharing a common wall of unknown substance each
hold some solution . Why does one solution's level decrease and
concentration increase while the other solution's level increases and
concentration decreases?

c. What causes a hot brick and gold water to change to the same
median temperature when the brick is immersed in the water?

In each case, PHINEAS bases its explanation on the case's similarity to
liquid flow. In the first, the phenomenon most similar to an observa-
tion of liquid flow is liquid flow itself, thus suggesting that the unknown
object may be a fluid path . In this work, identicality is viewed as an
extreme form of similarity . The second behavior, called osmosis, repre-
sents a close generalization of liquid flow when viewed as flow of solute
under osmotic pressure through a selective kind of fluid path . In the
final "heat flow" observation, PHINEAS draws an across-domain analogy
to liquid flow phenomena and conjectures the existence of a new type
of fluid that affects an object's temperature . All three interpretations
are produced by a single mechanism that forms its explanations from
theories about phenomena most similar to the current situation .
This chapter begins with a discussion of the relationship between ex-

planation and analogy and suggests that they share a common core,
the search for explanatory similarity. It then describes PHINEAS, along
with a detailed example of its operation . The system's behavior on a
variety of examples is then discussed, which indicates success in achiev-
ing adaptability and provides impetus for a number of future research
themes .
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Figure 1 . Three phenomena that PHINEAS explains by their similarity to liquid
flow: (a) liquid flow, (b) osmosis, (c) heat flow .
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Abduction as Similarity-Driven Explanation

Theory formation, explanation, and diagnosis all follow a pattern of
reasoning called abduction, which can be defined as inference to the best
explanation. Josephson, Chandrasekaran, Smith, and Tanner (1987)
suggest that abduction is of the form :

D is a collection of data (facts, observations, givens) ;
H explains D (h would, if true, imply D) ;
No other hypothesis explains D as well as x ;
Therefore, x is correct .

FALKENHAINER

That is, if the hypothesis were true, it would explain the phenomenon .)
There are two key phrases here . "If it were true" indicates that not all
of the relevant knowledge may be available and that assumptions may
be required to fill in the gaps . The process of finding the candidate
hypotheses and of making assumptions along the way will be called the
interpretation-construction task . The phrase "it would explain the phe-
nomenon" indicates that the hypothesis would explain the phenomenon,
not that it is the correct explanation . There may be other hypotheses
that can also explain it . The process of deciding which hypothesis is
the best explanation will be called the interpretation-selection task .
Abduction is traditionally characterized as using a fixed set of back-

ground theories . Assumptions needed to fill gaps due to incomplete
knowledge of the situation are limited to ground atomic sentences (no
new or revised rules are considered), as in

given CAUSE(A, C), C

	

infer A

These systems suffer from the adaptability problem (Falkenhainer, 1988) :
They are unable to revise or extend an imperfect domain theory to make
conjectures about unanticipated events, and unable to apply knowledge
of one domain to the understanding of another .

There is a distinction between the abduction process, which is normally associated
with backward chaining on a set of rules, and its ultimate product, a deductive
proof tree typically having at least one assumption as a leaf. Throughout this
chapter, I am primarily interested in the abstract product, independent of the
chaining process, in which assuming some unknown antecedent facts is required
to complete the explanation .
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On the other hand, theory formation typically involves making as-
sumptions about both the situation and the incompleteness or incor-
rectness of current theories . It includes inferences of the form

given CAUSE(A, C) A A =~. C, A, C

	

infer

	

CAUSE(A, C)

Theory formation must face the problem of generating theory-revising
hypotheses and establishing a preference among a possibly infinite set
of hypotheses .
These problems can be resolved by noting the strong commonalities

between traditional abduction and analogy and developing a model that
encompasses both . For abduction, this unified model provides the power
to extend the underlying domain theory when needed . For theory for-
mation, it enables existing knowledge, possibly of other domains, to in-
fluence hypothesis generation and evaluation, thus taking into account
knowledge of the way things normally behave in the world and the way
theories about those behaviors are normally expressed . This view of ex-
planation is based on the conjecture that search for similarity between
the situation being explained and some understood phenomenon suffices
as the central process model for explanation tasks . Two arguments sup-
port this view .

First, consider the traditional abduction task. Simple backward-
chaining models work well for explaining atomic occurrences, such as
Wet (grass) . However, as the complexity of the phenomenon being ex-
plained increases, the ability to backward chain to a small set of plausi-
ble candidates diminishes . One must consider the entirety of the situa-
tion and take into account all the interrelations between aspects . Hence,
most abduction systems directed at complex phenomena are based on
some form of macro-matching, typically in terms of schemas or frames,
that seeks minimal hypothesis sets maximally fitting the data. This is
true of script or schema-based models of story understanding (Charniak,
1972 ; DeJong, 1982 ; Mooney, 1987), process models for interpreting the
behavior of a physical system (Forbus, 1986), and composite matching
models of abduction and diagnosis (Josephson, Chandrasekaran, Smith,
& Tanner, 1987; Reggia, 1983) . The desire for a minimal, best match is
also implicitly reflected in the Occam's razor heuristic found in simpler
systems, which backward chain on one datum at a time (e.g., Pople,
1973) . In other words, interpretation and explanation are a form of
best match process, with the goal of matching the current situation to
hypotheses that can explain it .
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A second argument involves the explanation scenarios shown in Fig-
ure 2, which are summarized below :

Deduction scenario . Given phenomenon P, where P represents a
set of observables, a complete explanation of P deductively follows from
existing knowledge. The only open question is whether it is the expla-
nation, as there may be others . For example, suppose fluid flow is
observed, and all the preconditions for fluid flow are known to hold (the
source pressure is greater than the destination pressure, the fluid path
is open, and so forth) . Then a fluid flow explanation directly follows .
Given the observed behavior and the existing preconditions, we could
say that the situation is literally similar (Gentner, 1983) to liquid flow .

Assumption scenario.

	

Phenomenon P is given, where P represents
a set of observables . No explanation can be found using current knowl-
edge because the status of some requisite facts is unknown. However, a
complete explanation follows from the union of existing knowledge and
a consistent set of assumptions about the missing facts . For example, if
one observes liquid flow but does not know if the fluid path valve is open
or closed, one can assume that the valve is open if there is no evidence
to the contrary.

Generalization scenario.

	

Phenomenon P is given, where P repre-
sents a set of observables . Existing knowledge indicates that candidate
explanation E cannot apply because condition C1 is known to be false
in the current situation . However, E does follow if condition Cl is re-
placed by the next most general relation since Cl 's sibling is true in the
current situation. This is a standard knowledge-base refinement sce-
nario (e .g ., Winston, Mitchell, & Buchanan, 1985) and is closely related
to approaches that generalize from a set of examples (Hayes-Roth &
McDermott, 1978 ; Winston, 1975) .

Analogy scenario. Phenomenon P is given, where P represents a
set of observables. No candidate explanation E is available directly, but
explanation Eb is available if a series of analogical assumptions are made,
that is, if the situation explained by Eb is assumed to be analogous to
the current situation . For example, if heat flow is observed but little is
known about heat phenomena, then an explanation may be constructed
by analogy to liquid flow .
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Figure 2.

	

Four alternative explanation scenarios : (a) deduction scenario, (b)
assumption scenario, (c) generalization scenario, (d) analogy sce-
nario. In each, P is the phenomenon being explained and implica
tions flow from the antecedents below to the explained consequents
above .
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Each scenario requires the interpretation-construction task : retrieve

from memory explanatory hypotheses that match the current situation .

Each also requires the interpretation-selection task: select from a set

of candidate hypotheses the one that is most probable, plausible, or

coherent . Importantly, each scenario represents the same process when

viewed as different forms of similarity to an existing theory :

* Deduction scenario: complete match of identical features

e Assumption scenario: partial match of identical features

Generalization scenario: matches between features having a close

generalization

Analogy scenario: a range of matches between different features and

relations

A system based on this view would offer the best explanation avail-

able, ranging from application of an existing theory to distant analogy.

It relies on the following conjecture:

Similarity conjecture : All interpretation-construction tasks may

be characterized as the search for maximal explanatory similar-
ity between the situation being explained and some previously
explained scenario. The previous situation may be drawn from
an actual experience, a prototypical experience, or an imagined
scenario derivable from general knowledge .

This conjecture suggests that there is no need for a strong distinction be-
tween deductive explanation processes and analogical explanation pro-
cesses . The same basic process may be used in each explanation sce-
nario, with distinctions between them emerging from how well existing

knowledge supports the explanation . Deductive operations correspond
to the high confidence derived from identicality matches . A corollary
to the similarity conjecture is that the same basic processes are at work

in both scientific theory formation and in everyday interpretation and
hypothesis formation, as suggested by Leatherdale (1974) .

The benefits of this view are that it suggests using a single compu-
tational architecture for explanation processes . Distinctions between
explanation types influence only the weighing of evidence and the de-
cision as to whether a new conjecture represents a revision of existing
knowledge or a new separate body of knowledge. This chapter seeks to
demonstrate the feasibility of this view .
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The similarity-driven model of explanation discussed in the previous sec-
tion is illustrated by PHINEAS, a program that offers qualitative explana-
tions of time-varying physical behaviors . The system uses remindings of
similar experiences to suggest plausible hypotheses and uses qualitative
simulation as a form of gedanken experiment to analyze the consistency
and adequacy of these hypotheses . This section begins with a discussion
of the representations used in PHINEAS to describe observations and to
reason about their underlying causes . It then presents an overview of
the PHINEAS system and the preference criteria that gives rise to its
intuitively appealing, flexible behavior .

3.1 Representation

PHINEAS' theories about the physical world and its methods for us-
ing these to generate predictions are based on research in qualitative
physics (Bobrow, 1985) . Given a qualitative model of a particular phys-
ical configuration, a qualitative simulator produces a description of the
possible behaviors for the given situation, called an envisionment. An
envisionment describes physical states and the possible transitions be-
tween them . Each state represents an interval of time during which the
qualitative description of behavior sloes not change . A specific behavior
of the system through time, either observed or predicted, may then be
represented as a single path through the envisionment . I will refer to
such a path as a history, after Hayes (1979) . For example, Figure 3(a)
shows a beaker connected to a vial and an observed qualitative history
for this configuration .
The present work uses Forbus' (1984) qualitative process theory as the

primary formalism to represent and reason about physical change. In
QP theory, a situation is represented as a collection of objects (e .g .,
contained liquid), a set of relationships between them (e .g., connected),
and a set of process schemas that account for all changes in the world
(e.g., liquid flow) . Each object has a set of continuous quantities,
such as Temperature and Pressure . Each quantity has an amount,
expressed as A [Temperature (brick)], and a derivative, expressed as
D [Temperature(brick)] .

Process definitions have five components : individuals, preconditions,
quantity conditions, relations, and influences . The individuals specify
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PROCESS Liquid-Flow
Individuals

7subst, liquid
?src, Can-Contain(?src, 7sub$t)
?src-cs, Contained-Liquid
?dst, Can-Contain(?dst, 7subst)
?dst-cs, Contained-Liquid
?path, Fluid-Path(?src, ?dst, ?path)

Preconditions Fluid-Allflned(?path)
QuantityConditions

	

Pressure(?src) > Pressure(?dst)
Relations

flow-rate = Pressure(?src) - Pressure(?dst)
Ctrans(Amount-of(?src), Amount-of(7dst), flow-ratel

FALKENHAINER

i Amount-of cs-beaker)
4 Amount-of (cs-vial)
i Pressure-in (beaker)
4 Pressure-in (vial)
> [Pressure-in (beaker),
Pressure-in (vial)1 -e

4 Amount-of (cs-beaker)
i Amount-of cs-vial)
4 Pressure-in (beaker)
i Pressure-in (vial)
< [Pressure-in (beaker),

Pressure-in (vial) ]

- Amount-of cs-beaker
- Amount-of (cs-vial)
- Pressure-in beaker)
- Pressure-in vial)
=[Pressure-in (beaker),

Pressure-in (vial) ]

Figure 3 .

	

Qualitative physics representations: (a) qualitative observation of
liquid flow from a beaker to a vial ; (b) liquid flow process model
and corresponding envisionment .

the objects involved in the process when it is active, the preconditions
and quantity conditions indicate when the process will be active, and
the relations and influences specify what relations will hold while the
process is active. Figure 3(b) shows a typical QP theory definition for
the liquid flow process and the envisionment it produces for the beaker-
vial configuration .2
The explanatory consistency of a proposed model is established if

there is a path through the envisionment derived from the model that
corresponds to the measurements (Forbus, 1986) . For example, the
darkened two-state path of Figure 3(b) corresponds to the observation
in Figure 3(a) .

2 . The predicate Ctrans refers to "continuous transfer" and is a macro
for the standard QP theory pair I-[Amount-of (?src) ,flow-rate] and
I+[Amount-of (?dst) flow- rate] . See Falkenhainer (1988) and Forbus (1984)
for more details .

i Amount-of cs-beaker) - Amount-of (cs-beaker)
4 Amount-of ~cs-vial) - Amount-of (cs-vial)
i Pressure-in beaker) - Pressure-in (beaker)

Pressure-in vial) - Pressure-in (vial)
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PHINEAS uses three sources of knowledge during its reasoning process .
These include:

1 . Initial domain theory. Domain knowledge consists of a collection
of qualitative theories about physical processes (e .g ., liquid flow),
entities (e .g ., fluid paths), and general physical principles (e .g ., me
chanical coupling) . This qualitative knowledge is represented using
the language of Forbus' (1984) QP theory .

2. Prior experiences. When comparing a new observation with prior
experience, PHINEAS consults a library of previously observed phe-
nomena (structure and behavior descriptions) . Focus on relevant at
tributes is ensured by the storage of only those aspects of a prior sit-
uation that participated in its explanation . Past reasoning traces are
summarized by storing with each state in an observation the instanti-
ated collection of theories (e .g ., process definitions) that were used to
explain it ; for example, Liquid-Flow (beakers , via18 ,
pipe2) might be stored with an observation of liquid flow .
Behaviors are indexed in memory via behavioral abstractions, which

record abstract characterizations and summaries of the phenomenon
not captured by the standard QP theory representation . These cor-
respond to graphic characterizations (e .g., linear, cyclic, asymp-
totic), movement continuity (e .g ., corpuscular, as in a ball, or
continuous, as in liquid flowing), and movement type (e.g ., phase-
change-movement or invariant-form-movement) . These are ar-
ranged in generalization hierarchies, forming a forest of behavioral
abstractions similar to the memory organization used by Kolodner
(1984) .

3 . Observation. The final source of PHINEAS' information is the obser-
vation targeted for explanation . The system records three classes of
information : the original scenario description (e.g ., Open(beaker)),
the behavior across time (e .g ., Decreasing [Amount-of (alcohol)] ),
and behavioral abstractions that apply to the observation (e .g ., as-
ymptotic) .

In response to a given observation, PHINEAS attempts to produce an
explanatory "theory" and the envisioned behaviors it predicts . A the-



16 8 FALKENHAINER

ory consists of a set of process descriptions, entity descriptions, and
atomic facts . The process and entity descriptions may be elements of
the existing domain theory or new postulated theories . The system
makes this distinction during hypothesis evaluation . The atomic facts
are assumptions about the scenario that are required to complete the
explanation .

3.2

	

Process Components

As depicted in Figure 4, PHINEAS operates in four stages : access, map-
ping/transfer, qualitative simulation, and revision . Falkenhainer (1988)
provides the details of each stage, but they are briefly reviewed in this
section . Throughout the discussion, the term "base" refers to a recalled
analogue, and "target" refers to the current situation to be explained.

3 .2 .1

	

THE ACCESS STAGE

A new observation triggers a search in memory for understood phenom-
ena that exhibit analogous behavior . This retrieval process involves two
stages . First, behavioral abstractions of the observed situation are used
to focus attention on a potentially relevant subset of memory. Second,
each phenomenon in this subset is inspected more carefully by matching
its detailed structural and behavioral description to the current situa-
tion . This comparison is performed by the structure-mapping engine
(SME) (Falkenhainer, Forbus, & Gentner, 1986, 1989) .3 This partial
mapping provides an indication of what objects and quantities corre-
spond by virtue of their behavioral similarity. It serves as an important
source of constraint during the mapping process .

The match also indicates where the phenomena correspond and thus
what portion of the base analogue's behavior should be considered rel-
evant . The problem of relevant theory selection is solved by retrieving
only those domain theories that had been used to explain the matched
portions of the base situation . Each behavioral state indicates what

3 . SME is a flexible analogical matching system motivated by Gentner's (1983)
structure-mapping theory of analogy. It may be configured to model a number
of different theories of analogical mapping and is discussed further in Subsection
3.2.2 .
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Figure 4. A functional decomposition of PHINEAS .

En vision men t

Observation

processes were active during that state . Thus, if the current observation
matches only a subset of the states in the base observation, only those
relevant process models are used .
The retrieved candidates are then ordered according to SME's eval-

uation score and are proposed one at a time as potential analogues on
PHINEAS' global agenda.
The system's behavior can be clarified with an example. The caloric

theory of heat, dominant during the eighteenth century, postulated a
material heat substance called caloric. The temperature of an object
was thought to be proportional to the amount of caloric present . Fur-
thermore, caloric tended toward equilibrium, causing it to flow between
bodies placed in contact until an equilibrium of their temperatures was
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(Physob brick)
(Solid brick)
(Volume-solid brick)
(Liquid vateri)
(Contained-liquid vaterl)
(Container-of waters bucket)
(Substance-of vaterl water)
(Immersed-in brick vateri)
(Contained-in vaterl bucket)
(Dual-approach-finish 2-obj-hf)
(Meets (Situation 2-obi-hf-sit0

(Set (Decreasing (Temperature-in brick))
(Increasing (Temperature-in vaterl))

T-P

	

(Greater-Than (A (Temperature-in brick))
(A (Temperature-in vaterl)))))

(Situation 2-obj-hf-sitl
waw (Set (Constant (Temperature-in brick))

(Constant (Temperature-in vaterl))
(Equal-to (A (Temperature-in brick))

(A (Temperature-in waters))))))

Figure 5.

	

An unexplained thermal situation . When a hot brick is immersed
in cold water, the brick's temperature decreases and the water's
temperature increases . This transitions to a state in which the tem-
peratures are constant and equal .

achieved . Let us consider how PHINEAS achieves a naive level of the
caloric view when it encounters thermal behavior for the first time .
The explanation task is illustrated in Figure 5 . When a hot brick

is immersed in cold water, their temperatures asymptotically approach
each other until reaching equality. PHINEAS begins by searching mem-
ory for analogous behavior . First, the behavioral abstractions describ-
ing the observation are used to probe memory. In this case, dual-
approach-finish applies, which characterizes two quantities
asymptotically approaching each other and reaching equality . Only one
candidate analogue demonstrates this abstract behavior-two-container
liquid flow . This scenario describes liquid flowing from one container
(beaker3) to another (via12), through a pipe (pipes) connecting them .
Using SME to compare the current and recalled situations, PHINEAS

determines that the roles of the beaker and vial in the liquid flow de-
scription correspond to the roles of the brick and water in the thermal
situation, respectively . Additionally, it finds that pressure in the liquid
flow situation corresponds to temperature in the thermal situation .



EXPLANATION AND THEORY FORMATION

	

171

3 .2 .2

	

THE MAPPING AND TRANSFER STAGE

The objective of the second stage is to generate an initial hypothesis
about the current observation . This stage has two components, mapping
and transfer.

Given a candidate analogue, PHINEAS retrieves the models used to
explain analogous aspects of the recalled experience . Mapping serves to
complete the initial set of correspondences (matching) and to propose
candidate inferences sanctioned by those correspondences (carryover) .
The model of mapping used in this work is called contextual structure-
mapping (Falkenhainer, 1988, 1989), a knowledge-intensive adaptation
of Gentner's (1983, 1988) structure-mapping theory of analogy. It uses
knowledge of the various contextual factors affecting analogical interpre-
tation, such as the role of each element in the two analogue descriptions,
to analyze the similarity between their descriptions . The mapping is
constructed by SMECSM, that is, by SME configured to run the rules
of contextual structure-mapping .

An important observation made in contextual structure-mapping is
that the correspondences and inferences proposed by the mapping stage
may be incomplete . The transfer stage analyzes the results of the map-
ping stage to elaborate its correspondences and minimize unnecessary
conjectures . This centers around two issues. First, if the candidate
inference references an object needed in the base scenario that has no
apparent target correspondent, one must find a corresponding target ob-
ject or conjecture its existence. These unknown objects are represented
by ( :skolem base-object) and are called skolem objects.' Second, candi-
date inferences represent relevant base expressions having no apparent
correspondent in the target . However, they may not be applicable to
the target . Thus, the domain theory is consulted, and more detail about
each candidate inference is sought . Alternate, analogous target expres-
sions may be found or a new vocabulary (predicates) may be created .
If new information is found, mapping is repeated to see how it affects
the overall mapping . A map and analyze cycle may ensue .

Let us return to the caloric heat flow example . Upon completion
of access, PHINEAS attempts to map the relevant liquid flow domain
theory into the current thermal situation. First, the domain theory

4 . The term skolem object derives from standard logical use of a skolem constant to
denote the existence of an unknown object and enable removal of an existential
quantifier.



17 2

	

FALKENHAINER

Table 1 .

	

A mapping from the liquid flow process instance to the hot brick in
cold water scenario, as generated by SMECSM .

Match Hypotheses :

	

pressure-in(beaker3) 4=#. temperature-in(brick)
pressure-in (vial2) 4=* temperature-in(water1)

beaker3 t--* brick
via12 bwaterl

Weight : 2 .07

Candidate Inferences :

Contained-Fluid(( :skolem cs-vater-beaker), ( :skolem water), brick)
EFFECTS Quantity[amount-of( :skolem cs-water-beaker)]

Quantity[temperature( :skolem cs-water-beaker)]
Qprop[temperature( :skolem ca-water-beaker),

amount-of( :skolem cs-water-beaker)]

Contained-Fluid(( :skolem cs-water-vial), ( :skolem water), waterl)
EFFECTS Quantity[amount-of( :skolem cs-water-vial)]

Quantity[temperature( :skolem cs-water-vial)]
Qprop[temperature( :skolem cs-water-vial),

amount-of( :skolem cs-water-vial)]

Liquid-Flow(( :skolem cs-water-vial), ( :skolem water), waterl)
PRECONDITIONS Liquid( :skolem water)

Can-contain(brick, ( :skolem water))
Fluid-path( :skolem pipel)
temperature-in( :skolem cs-water-beaker)
> temperature-in(:skolem cs-water-vial)

EFFECTS

	

Quantity [flow-rate]
flow-rate =temperature-in( :skolem cs-water-beaker)

- temperature-in( :skolem cs-water-vial)



used to explain the two-container liquid flow experience is retrieved .
This consists of the liquid flow process and two instantiations of

one for the beaker water and one for the vial water . SME is then in-
voked with knowledge of the partial mapping established during access,
giving the results shown in Table 1 . Its candidate inferences propose a
new contained-fluid relationship, in which the temperature of the con-
tainer (brick and waterl) is proportional to the amount of substance
it contains . This substance is currently unknown but is analogous to
the water in the liquid flow situation . Additionally, a new process is
proposed : When two objects of differing temperature are connected by
a physical path, the unknown substance continuously flows from the
object of higher temperature to the one of lower temperature, at a rate
equal to their difference in temperatures .
The candidate inferences are next passed to the transfer stage . It

first determines that none of the proposed expressions is inconsistent in
their current state . Next, these inferences are inspected for the pres-
ence of skolem objects, and four are found : ( : skolem cs-water-beaker),
( :skolem cs-water-vial), ( : skolem water), and ( :skolem pipei) . The
first two are compound objects (objects defined solely by their con-
stituents) and are therefore ignored . The unknown ( : skolem pipe 1)
indicates that no correspondent for the pipe connecting the beaker and
vial was found . However, when PHINEAS is given the task of locating
an object satisfying the conjunction

it finds that

and
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(Contained-Fluid contained-fluid substance container),

(Physical-Path brick waters ?pipe) n (Fluid-Aligned ?pipe) A
(Fluid-path ?pipe)

(Physical-Path brick waters (common-face brick waters))

(Fluid-Aligned (common-face brick waters))

are true in the current scenario and that the third conjunct can be as-
sumed . Therefore, the system establishes (common-face brick waterl)
as the analogue for pipe . This demonstrates the utility of the trans-
fer stage in filling out an incomplete analogical mapping. An analogy
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will often evoke additional information or perspectives about the two

analogues made relevant by its consideration .

The remaining unknown, ( :skolem water), indicates that no corre-

spondent for the water flowing from beaker to vial was found. Addition-
ally, no correspondent is found when an object satisfying the relevant

conditions is sought :

(Substance ?pipe) A (Liquid ?pipe) A
(Can-Contain brick ?pipe) A (Can-Contain wateri ?pipe)

However, when a new entity token is made for the missing water corre-

spondent, a contradiction arises :

(Liquid sk-water-1) n (Volume-Solid brick)
-n(Can-Contain brick sk-water-1)

As a result, (Liquid sk-water-1) is changed to (Phase-1 sk- water-1),

with Phase-1 added as a new kind of Phase . This illustrates PHINEAS'

ability to create new object tokens (sk-water-1) when it cannot resolve

a skolem object produced by mapping . Further, it is able to distinguish
between assuming the presence of an unobserved object and conjectur-
ing a theoretically novel entity . This is important information that it

can use in theory evaluation and selection .

At this point, the transfer task is completed, resulting in the model

shown in Table 2 . This model postulates that the brick and water
each contain sk-wateri-1 and that their temperatures are propor-
tional to the amount they contain . Additionally, it proposes the new
Process-1, which might be called a heat flow process . This indicates

that sk-wateri-1 will flow from the object of higher temperature to

the object of lower temperature . PHINEAS does not generalize beyond

replacing constants with variables, hence only the brick and wateri

are believed to contain sk-wateri-1 .5

3 .2 .3 THE VERIFICATION STAGE

Verification-based analogical learning (Falkenhainer, 1986, 1988) depicts
analogical learning as an iterative process of hypothesis formation, ver-
ification, and revision, centered around the requirement to confirm ad-

5 . Research on explanation-based learning has shown that this is not sufficient to
ensure proper generalization (DeJong & Mooney, 1986 ; Mitchell, Keller, & Kedar-
Cabelli, 1986). Explanation-based generalization might be performed at this
point, but it has not been necessary so far .
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Table 2.

	

A final PHINEAS hypothesis explaining the behavior of a hot brick in
cold water. This hypothesis was derived from the system's theories
about liquid flowing between two containers .

(DEFPROCESS (PROCESS-1 ?SUBST ?SOURCE ?SRC-CS ?DESTINATION
?DST-CS ?PATH)

INDIVIDUALS ((?SUBST :CONDITIONS (SUBSTANCE ?SUBST)
(PHASE-1 ?SUBST))

(?SOURCE :CONDITIONS (CAN-CONTAIN ?SOURCE ?SUBST))
(?SRC-CS :CONDITIONS (CONTAINED-FLUID-1 ?SRC-CS

?SUBST ?SOURCE))
(?DESTINATION :CONDITIONS

(CAN-CONTAIN ?DESTINATION ?SUBST))
(?DST-CS :CONDITIONS (CONTAINED-FLUID-1 ?DST-CS

?SUBST ?DESTINATION))
(?PATH :CONDITIONS (FLUID-PATH ?PATH)

(PHYSICAL-PATH ?SOURCE
?DESTINATION ?PATH)))

PRECONDITIONS ((FLUID-ALIGNED ?PATH))
QUANTITY CONDITI0NS

RELATIONS ((QUANTITY (FLOW-RATE ?SELF))
(Q= (FLOW-RATE ?SELF)

(- (TEMPERATURE-IN ?SOURCE)
(TEMPERATURE-IN ?DESTINATION)))

(GREATER-THAN (A (FLOW-RATE ?SELF)) ZERO))
INFLUENCES ((CTRANS (AMOUNT-OF ?SRC-CS) (AMOUNT-OF ?DST-CS)

(A (FLOW-RATE ?SELF)))))

(DEFENTITY (CONTAINED-FLUID-1 ?V-1 ?V-2 ?V-3)
(CONTAINER-OF ?V-1 ?V-3)
(SUBSTANCE-OF ?V-1 ?V-2)
(QUANTITY (AMOUNT-OF ?V-1))
(QUANTITY (TEMPERATURE-IN ?V-3))
(QPROP (TEMPERATURE-IN ?V-3) (AMOUNT-OF ?V-1)))

(ASSUME (SUBSTANCE SK-WATER-1))
(ASSUME (PHASE-1 SK-WATER-1))
(ASSUME (CAN-CONTAIN BRICK SK-WATER-1))
(ASSUME (CONTAINED-FLUID-1 SK-CS-WATER-BEAKER-1 SK-WATER-1 BRICK))
(ASSUME (CAN-CONTAIN WATER1 SK-WATER-1))
(ASSUME (CONTAINED-FLUID-1 SK-CS-WATER-VIAL-1 SK-WATER-1 WATERI))
(ASSUME (FLUID-PATH (COMMON-FACE BRICK WATERI)))

((GREATER-THAN (A (TEMPERATURE-IN ?SOURCE))
(A (TEMPERATURE-IN ?DESTINATION)))

(GREATER-THAN (A (AMOUNT-OF ?SRC-CS)) ZERO))
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equacy of use in explaining a given phenomenon . In PHINEAS, it sanc-

tions the use of gedanken experiments in the form of qualitative sim-
ulations to analyze the adequacy of proposed models . Specifically, the
predictions of a proposed model are compared against the observed be-
havior, enabling the system to test the validity of the analogy and sanc-
tion refinements where the analogy is incorrect . The system generates
an envisionment of the scenario, which it then compares with the orig-
inal observation. If the envisionment is consistent and complete with
respect to the observation, then the explanation is considered successful .
If it is inconsistent or fails to provide complete coverage, then revision
is aimed at the points of discrepancy.

PHINEAS produces envisonments of predicted behavior using Forbus'
(1988) qualitative process engine (QPE) . The process of comparing and
identifying points of discrepancy between the predicted and observed
behaviors is performed by DeCoste's . ( 1989) dynamic across-time mea-
surement interpretation system, DATMI .

Only one test remains in the ongoing caloric example, to verify the
adequacy of the model in explaining the original observation . As shown
in Figure 6, the model produces a five-state envisionment, with state
S2 transitioning to state S0, demonstrating that the model is able to
predict the observed temperature changes . In state S2, Process-1 is
active, the substance sk-Water-1 is flowing from the brick to the water,
and the temperature of the brick is decreasing while the temperature
of the water is increasing, each at a rate equal to the difference in their
temperature. In state S0, the brick and water temperatures are equal,
and all quantities are constant .

3 .2 .4 THE REVISION STAGE

If PHINEAS' initial hypothesis is inadequate, an attempt should be made
to adapt it around points of inaccuracy . We advocate, but have not fully
implemented, a model of revision that relies on past experiences to guide
the formation and selection of revision hypotheses (Falkenhainer, 1988) .
It considers behavior analogous to the current anomaly and considers
differences between the current anomalous situation and the prior situ-
ations that were consistently explained. This is the only component of
PHINEAS that is not fully implemented .
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Processes :
PIO : PROCESS-1(SK-WATER-1 WATERl SK-CS-WATER-VIAL-1 BRICK

SE-CS-WATER-BEARER-1 (COMMOK-FACE BRICK WATER1))
PI1 : PROCESS-1(SK-WATER-1 BRICK SK-CS-WATER-BEAKER-1 WATERI

SE-CS-WATER-VIAL-1 (COMMON-FACE BRICK WATER1))

S2-I

S1-1

Figure 6.

	

Envisionment produced by the hypothesized caloric model when
applied to the brick immersed in water scenario . States are distin-
guished only by derivative and process values . They are split by
QPE when this distinction produces a state lasting an interval of
time (S2) and also lasting for an instant (S2-I) .

PHINEAS is primarily concerned with interpretation construction-to
find candidate explanations and the assumptions on which they rest .
However, a system that exhaustively generated an unordered set of pos-
sible hypotheses would not be of much use . It should focus on the
most promising explanations first and provide a preferential ordering
on fully developed hypotheses . Correspondingly, PHINEAS incorporates
two types of preference criteria ; one influences the focus of problem-
solving efforts and the other selects among competing, fully developed
hypotheses .

The preceding sections presented PHINEAs as a sequential process con-
cerned with the development of a single hypothesis . However, its oper-
ation is controlled by a task agenda that maintains multiple hypotheses
in various stages of development . Eight task types are currently used,
including access, mapping, transfer, and simulate . Repeatedly, the
task-hypothesis pair at the front of the agenda is selected and executed,
resulting in further development of its corresponding hypothesis . This

so

Quantity S2-I S2 SO SS-I SI
Ds FLOW-RATE PIO - - - -1 -1
Ds FLOW-RATE PII -1 -1 - - -
Ds AMOUNT-OF SK-CS-WATER-BEAKER-1 -1 -1 0 1 1
Ds AMOUNT-OF SK-CS-WATER-VIAL-1 1 1 0 -1 -1
Ds PRESSURE(SK-CS-WATER-BEAKER-1) -1 -1 0 1 1
Ds PRESSURE SK-CS-WATER-VIAI 1 1 1 0 -1 -1
Ds TEMPERATURE-IN(BRICK -1 -1 0 1 1
Ds TEMPERATURE-IN WATERI 1 1 0 -1 - 1
A AMOUNT-OF SK-CS-WATER-BEAKER-1 >0 >0 >0 >0 =0
A AMOUNT-OF SK-CS-WATER-VIAL-1 =0 >0 >0 >0 >0
A[TEMPERATURE-IN(BRICK
A(TEMPERATURE-IN(WATERl)1

> > _ <

ACTIVE PIO F F F T T
ACTIVE PIl T T F F F
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task may in turn spawn other tasks, modify tasks waiting for execution,

or signal the acceptance of a hypothesis, which halts the cycle .

The first type of preference criterion influences the ordering of tasks

on PHINEAS's agenda and guides it toward developing the most promis-

ing hypotheses first . Each task is given a priority level, which induces

a roughly depth-first behavior . In addition, the mapping and transfer
tasks have an auxiliary score for sorting tasks within the same priority

level . This auxiliary score is SME's evaluation metric for the match be-

tween the current observation and the task's associated base analogue .

When determining which of two candidate analogues to consider next,

PHINEAS selects the one with the higher similarity score. This met-

ric supports the similarity conjecture-interpretation-construction tasks
may be characterized as the search for maximal explanatory similarity

between the situation being explained and some explainable scenario .

Once the system has formed a complete hypothesis (the output of the
transfer task), it uses a second type of preference criterion . This cri-

terion considers the characteristics of the hypothesis itself and enables

selection among competing hypotheses . A complete account of the-

ory selection requires consideration of many complex factors, such as a

theory's plausibility, coherence, effect on prior beliefs, simplicity, and

specificity in accounting for the phenomenon . Unfortunately, these are
significant open research problems in their own right and are certainly
beyond the scope of this chapter . However, a number of important,
more specific preference criteria are readily available and have been

found useful in PHINEAS for establishing preference between competing
hypotheses. These are :

CCE Conjectured entities . Does the hypothesis conjecture the existence

of a novel kind of entity, and, if so, how many?

CVE Vocabulary extensions. Does the hypothesis require the creation
of new predicates, and, if so, how many?

CCA Composite assumptions. Does the hypothesis conjecture the exis-
tence of new physical processes or new knowledge structures (e .g .,
schemas), and, if so, how many?

CAE Assumed entities . Does the hypothesis assume the presence of a
known type of entity not mentioned in the original scenario descrip-
tion, and, if so, how many?
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CAA Atomic assumptions. Does the hypothesis make additional as-
sumptions about the properties and interrelationships of objects in
the scenario, and, if so, how many?

The single-preference criterion used to evaluate a hypothesis or com-
pare two competing hypotheses is a function of these five metrics . The
method for combining them is adapted from Michalski (1983), who de-
scribes the use of a lexicographic evaluation functional (LEF) for evalu-
ating alternate inductive concept descriptions . This approach specifies
a list of elementary criterion-tolerance pairs, in which each elementary
criterion is applied sequentially to prune the space of hypotheses . In
PHINEAS, the elementary preference criteria are ordered according to
an approximate measure of decreasing "cost" :

LEF = (CCE, CVE, CCA, CAE, CAA)-

Thus, an explanation that postulates the existence of a novel kind of
entity (CCE) is at all times deemed inferior to one that does not . Each
criterion returns a number (N >_ 0) as described above, where a value
of zero indicates success and a value greater than zero indicates failure .
The function is used to select the most preferable explanation(s) from
a given set as follows : First, each proposed explanation is evaluated by
criterion CCE, and those that pass CCE are retained . The process is
repeated with the next criterion on the set of retained hypotheses until
only a single hypothesis remains or the list of criteria is exhausted .
If at any point all hypotheses evaluated by a particular criterion fail,
the process stops, and the current set is returned in increasing order
according to their score, N, for that criterion .
This evaluative function produces an interesting property when viewed

from the perspective of the four explanation scenarios described in Sec-
tion 2 :

1 . Deductive scenario . Given phenomenon P, where P represents a set
of observables, a complete explanation of P deductively follows from
existing knowledge. This corresponds to explanations passing every
criterion . It occurs when all the antecedent features of the base are
present in the target .

2 . Assumption scenario . No explanation can be grounded with current
knowledge because not all the relevant facts are known . However, a
complete explanation follows from the union of existing knowledge
and a consistent set of assumptions about the missing facts . This
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corresponds to explanations passing every criterion but one of the
last two, CAE and CAA. It occurs when some of the antecedent
features of the base have no correspondent in the target, but may be
consistently assumed to hold in the target .

3 . Generalization scenario. Existing knowledge indicates that candi-
date explanation 9 cannot apply because condition Cl is known to
be false in the current situation . However, E does follow if condition
C is replaced by the next most general relation since Cl's sibling is
true in the current situation . This corresponds to explanations pass-
ing the first two criteria, CCE and CvE, but failing CCA, in which a
knowledge structure is viewed as "new" if it represents a modifica-
tion of an existing knowledge structures It occurs when some of the
antecedent or consequent features of the base match an analogous set
of features in the target, thus mapping the base theory to a situation
beyond its declared scope .

	

.

4. Analogy scenario. No candidate explanation F is available directly,
but explanation Eb is available if a series of analogical assumptions are
made, that is, if the situation explained by Eb is assumed analogous
to the current situation . This corresponds to explanations failing
one of the first three criteria, CCE, CvE, or CCA . It occurs when
some of the features of the base match an analogous set of features
in the target or when new vocabulary must be created to complete
the mapping.

All four scenarios arise as a result of the same basic mechanism . The
evaluative function causes PHINEAS to propose standard, deductive ex-
planations if any are found . In their absence, conventional abductive
explanations will be preferred . If existing theories are insufficient to
provide an explanation, explanations adapting knowledge of potentially
analogous phenomena will be offered . By using similarity as the sin-
gle source for explanation generation, PHINEAS is able to offer a "best
guess" in the presence of an imperfect or incomplete domain theory.

4 .

	

Examples of PHINEAS' Behavior

The previous section focused on PHINEAS' explanation of heat flow us-
ing a cross-domain analogy with liquid flow . This section describes

6 . The issue of whether to actually create a new knowledge structure or modify the
existing one is an important but orthogonal issue . Here we are concerned with
hypothesis evaluation rather than storage of an accepted hypothesis .
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examples that begin to blur the distinction between analogous phe-
nomena and identical phenomena. In each example, PHINEAS initially
begins with knowledge of nine processes-liquid flow, liquid drain (to
constantly empty an ideal sink), heat flow, boiling, heat-replenish (e .g .,
to constantly maintain the heat of a stove), dissolve, osmosis, linear
motion, and spring-applied force . The section closes with a discussion
of what PHINEAS' behavior indicates about the utility of the proposed
analogical model of explanation .

4.1 Oscillation

Oscillation is a common phenomenon in physical systems . PHINEAS' ini-
tial knowledge contains theories about a prototypical spring-mass sys-
tem, in which a spring is anchored to a wall on one end and attached
to a mobile mass on the other. If the block is pulled and then released,
it will oscillate back and forth forever .? Drawing from this knowledge,
PHINEAS is able to explain several examples of simple harmonic motion,
such as an induction-capacitance (LC) circuit and a cantilever pendu-
lum. Here we consider the behavior of a torsion oscillator.

PHINEAS is initially given a description of a disk rotating while sus-
pended by a rubber rod, and the disk's sinusoidal behavior is represented
as a cycle of eight qualitatively described temporal intervals (Figure 7) .
Each interval contains facts describing the derivatives and amounts of
angle, and angular velocity . In addition, it is told that the disk is a
rotating object and the rod is a twisting object .

When PHINEAS probes memory for prior experiences with sinusoidal
oscillation, it finds the spring-mass system . A detailed comparison of
this behavior and that of the rotating disk reveals a correspondence
between the eight behavioral states of each system . This correspondence
indicates that the compressing spring corresponds to the twisting rod
and the translating block corresponds to the rotating disk . Additionally,
position is mapped to angle, and velocity is mapped to angular velocity,
due to their similar behavior .

With a behavioral correspondence established, PHINEAS fetches the
domain theory used to explain the spring-mass system . This consists of
a Force process that applies the spring's force to the attached block, a

7. Modeling friction and resistance in oscillators is a difficult problem in QP theory.
Ideal, frictionless oscillators are discussed throughout this section .
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(Connected rodl disk9)
(String rods)
(Ball disk9)
(Rotating-Object disk9)
(Twisting-Object rodl)
(Sinusoidal ball-oscillating)

(Situation ball-string-s3
(Set (Decreasing (Angular-displacement rodl))

(Decreasing (Angle disk9))
(Increasing (Angular-Velocity disk9))
(Less-than (A (Angular-Velocity disk9)) ZERO)
(Less-Than (A (Angle disk9)) zero)
(Less-Than (A (Angular-displacement rodl)) zero)))

Figure 7 . A torsional oscillator and its behavior when the disk is rotated and
then released .

spring-mass-system object definition describing the system's total en-
ergy and the relationship between the block's position and the spring's
displacement, and a spring object definition describing its restorative
force as a function of displacement . When the spring-mass theory is
mapped into the oscillating disk situation, transfer first examines each
relation and finds no inconsistencies . The transfer phase next checks for
skolem objects in the candidate inference and finds ( : skolem sm-sys) .
The symbol sm-sys is a token that represents the spring-mass sys-
tem taken as a whole. This compound object token is replaced by
sk-sm-sys-23, which represents the newly defined rod-disk system :

(spring-mass-system-22 sk-sm-sys-23 rods disk9)

The proposed model of the rotating disk scenario is now usable. When
the model is applied to the disk-rod pair, it produces an envisionment
containing an eight-state cycle, as shown in Figure 8 . When PHINEAS
examines the envisionment, it finds a perfect match between the ob-
served and predicted behavior . Thus, the model is adequate and the
explanation process is completed.
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In behavioral segment 3
(Angular-Displacement rods) is Decreasing
(Angle disk9) is Decreasing
(Angular-Velocity disk9) is Increasing
(A (angular-velocity disk9)) is Less Than zero
(A (angle disk9)) is Less Than zero
(A (angular-displacement rodi)) is Less Than zero

PIO : FORCE-PROCESS(ROD1,DISK9)
PI1 : DERIVATIVE-PROCESS (ANGLE(DISK9),AIGULAR-

VELOCITY(DISK9))

Due to the following processes being active :
FORCE-PROCESS(ROD1 RESTORATIVE-FORCE

DISK9 ANGULAR-VELOCITY)

Figure 8. Complete envisionment produced by the hypothesized torsional os-
cillator model .

Quantity S5 S2 S6 S10
i

S8 J S3 S7 S9 S4
Ds[ANGLE(DISK9)] -1 -1 -1 0 1 1 1 0 0
Ds ANGULAR-DISPLACEMENT(ROD1) -1 -1 -1 0 1 1 1 0 0
Ds ANGULAR-VELOCITY(DISK9) -1 0 1 1 1 0 -1 -1 0
Ds KINETIC-ENERGY DISK9) 1 0 -1 0 1 0 -1 0 0
Ds POTENTIAL-ENERGY(ROD1) -1 0 1 0 -1 0 1 0 0
Ds RESTORATIVE-FORCE(ROD1) 1 1 1 0 -1 -1 -1 0 0
ACTIVE PIO) T T T T T T T T T
ACTIVE PII) T T T T T T T T T
A[RESTORATIVE-FORCE(ROD1)] <0 -0 >0 >0 >0 =0 <0 <0 =0
A[ANGULAR-VELO CITY (DISK97 <0 <0 <0 -0 >0 >0 >0 -0 -0



184

	

FALKENHAINER

4.2

	

Liquid Flow

5. Discussion

Figure 9. A beaker and a vial, each containing water, are connected by object3 .
What is causing the water in the beaker to decrease while the water
in the vial is increasing?

Consider the scenario illustrated in Figure 9, in which a beaker and a
vial, each containing water, are connected by object3 . In this situa-
tion, the water in the beaker decreases while the water in the vial in-
creases . To explain this phenomenon, PHINEAS begins by probing mem-
ory for the best set of candidate analogues . It finds four initial possibil-
ities : two-container-liquid-flow (score = 28 .07), leaky-container
(score = 15 .77), dissolving (score = 14 .24), and boiling (score =
14 .14) .

Examining each of these possibilities, PHINEAS finds that not only
is the two-container-liquid-flow scenario most similar to the cur-
rent situation, it is the only candidate that produces a consistent set
of predictions . Thus, the system concludes with the single assumption
(Fluid-Path object3), which is sufficient to completely explain the ob-
served behavior. PHINEAS' explanation is shown in Table 3. Under this
assumption, the situation is viewed as a normal instance of liquid flow,
with object3 serving as the fluid path . The conclusion that this is
an instance of liquid flow arises because PHINEAS' model of liquid flow
mapped to the current scenario without change, rather than because
the liquid flow process was instantiated by deduction .

This chapter has described a unified, similarity-driven method for expla-
nation that seeks the best match between an observation to be explained
and understood phenomena. This enables explanation from existing
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PHINEAS' analysis of the observation that the amount of water in the
beaker is decreasing and the amount of water in the vial is increasing.
This analysis requires only a single assumption: obj ect3 is a fluid
path .

Hypotheses for theory OBJECT3-FLOW-THEORY-5 derived from
2-CONTAINER-LF :

(ASSUME (FLUID-PATH OBJECT3))

Analysis of OBJECT3-LF according to theory OBJECT3-FLOW-THEORY-5

In behavioral segment 1

(PRESSURE-IN VIAL6) is Increasing

(AMOUNT-OF CS-WATER-VIALI) is Increasing

(PRESSURE-IN BEAKER6) is Decreasing

(AMOUNT-OF CS-WATER-BEAKER1) is Decreasing

(A (PRESSURE-IN BEAKER6)) is Greater Than

(A (PRESSURE-IN VIAL6))

Due to the following processes being active :

LIQUID-FLOW(WATER BEAKER6 CS-WATER-BEAKER1 VIAL6

CS-WATER-VIAL1 OBJECT3)

In behavioral segment 2

(PRESSURE-IN VIAL6) is Constant

(AMOUNT-OF CS-WATER-VIALI) is Constant

(PRESSURE-IN BEAKER6) is Constant

(AMOUNT-OF CS-WATER-BEAKERI) is Constant

(A (PRESSURE-IN BEAKER6)) is Equal To
(A (PRESSURE-IN VIAL6))

There are no processes active .
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theories if possible and theory formation or revision when necessary.
Importantly, all explanations are formed with a single mechanism, with
distinctions among deductive, abductive, and novel analogical explana-
tions arising out of the evaluation process . Initial viability of the method
has been demonstrated by PHINEAS on a variety of complex examples
from several domains .

This work may be viewed as addressing problems in abduction . Tradi-
tional abduction systems reason from a fixed set of theories . However,
most concepts, particularly when a theory is developing, do not lend
themselves to precise, intensionally defined theories whose boundaries
are perfectly specified by a set of necessary and sufficient conditions .
Thus, in this work the underlying domain theory is assumed to be im-
perfect . Reasoning from similarities enables adaptation of the underly-
ing domain theory when needed to explain observed phenomena.

This work may also be viewed as addressing problems in theory for-
mation, in that it provides a way of constraining the set of possible
revisions or extensions to existing theories . Reasoning from similarities
suggests which theories are relevant and thus are candidates for revi-
sion. Also, it enables existing knowledge, possibly of other domains, to
influence hypothesis generation and evaluation . It takes into account
knowledge of the way things normally behave in the world and the ways
theories about those behaviors are normally expressed .

This section briefly evaluates the viability of the approach, reviews
related approaches to explanation, and closes the chapter with a discus-
sion of plans for future research .

5 .1

	

Viability of the Model

PHINEAS has been tested on over a dozen examples representing varia-
tions on a set of nine basic explanation tasks . In addition to those dis-
cussed previously, these examples include explanations of evaporation
by analogy to boiling, liquid flow, and dissolving ; osmosis by analogy to
liquid flow ; and floating of a balloon by analogy to an object floating in
water.
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5 .1 .1

	

SUCCESSES OF THE APPROACH

One of the goals of this work has been to show the feasibility of similarity
as a single mechanism for both analogical and more traditional expla-
nations involving deduction or abduction . In PHINEAS, the distinctions
between deductive, abductive, and analogical explanations arise as an
emergent result of the evaluation process . This offers an elegant, gen-
eral alternative to special case solutions for theory inadequacy problems,
such as generalizing a theory's preconditions or developing novel theories
through cross-domain analogies . In the examples presented, PHINEAS

was shown to explain a simple instance of liquid flow, apply linear oscil-
lation concepts to an angular case, and develop a new "caloric" model
of heat flow by analogy to liquid flow.

The primary region of flexibility and power corresponds to what I
termed the "generalization scenario" (also classifiable as a form of within-
domain analogy) . PHINEAS adapts very well to situations close to, but
not included in, the stated applicability boundaries of existing theories .
An example of this is the mapping of liquid flow through a pipe to liquid
flow through an open conduit . Informal experiments have shown that
PHINEAS' behavior degrades smoothly with "analogical distance," the
degree to which a distant, cross-domain analogy is required .

Due to attempts to find alternative justifications for unsupported de-
pendencies, many of the within-domain analogies examined possess an
another interesting characteristic . A new explanation may fall within
the scope of existing knowledge, but the relevant explanation schema
(i .e ., QP theory process definition) is conservatively associated with a
more restricted set of scenarios than may be applicable . This would cor-
respond to the often observed comment "I never thought of it working
for such a case, but I can see why it should ." In other words, one often
has the knowledge to safely extend a theory beyond its preconceived
boundaries . When viewed from the perspective of explanation-based
generalization (DeJong & Mooney, 1986 ; Mitchell, Keller, & Kedar-
Cabelli, 1986), PHINEAS is able to apply a compiled explanation schema
by adapting it to fit the current situation, rather than being forced to
abandon the explanation schema and solve the current, similar expla-
nation task from scratch . This view is similar in spirit to SWALE (Kiss,
1986) and is examined further in Falkenhainer (1989) .



188

	

FALKENHAINER

5 .1 .2

	

LIMITATIONS OF THE APPROACH

PHINEAS falls short of a complete model of explanation in several ways .
First, it will always produce a conjecture, no matter how weak, unless
it cannot find a candidate analogue to initiate the explanation process
or cannot form a hypothesis that is consistent with the observation .
This is part of the intended design, and manifests itself in PHINEAS'

ability and willingness to generalize a theory in response to an unan-
ticipated observation . However, this is a two-edged sword ; violations of
existing knowledge are used to indicate new phenomena rather than to
indicate false hypotheses . Although the preference criteria will ensure
that such hypotheses are selected only if nothing better exists, an ex-
planation system should also be able to know when it lacks knowledge.
The framework needs an evaluative measure that takes into account the
cost of overthrowing prior beliefs for the benefits of a more coherent
belief state . Additional factors, such . as plausibility and specificity in
accounting for the phenomenon, are required as well .

PHINEAS also differs from more traditional abduction methods in its
inability to recognize simultaneous instances of the same phenomenon.
Extending the example of liquid flow between two containers in the
previous section to "three-container liquid flow" demonstrates this lim-
itation . Three containers connected in series (cant to can2 by pipe12
and can2 to can3 by pipe23) produce two simultaneous instantiations
of the liquid flow process . When PHINEAS is given a description of the
scenario, it finds two different analogies with the potential analogue,
"two-container liquid flow ." One analogy is with the can2 to cans flow;
the other is with the can2 to can3 flow . These are processed as two inde-
pendent candidate explanations . Additionally, they are both adequate,
since QPE fortuitously applies the proposed liquid flow model (intended
for the can2 to cant pair, for example) to both container pairs . Thus,
the system concludes with two consistent, functionally equivalent expla-
nations . It does not possess the knowledge that a single phenomenon
was simply occurring twice . This is an important problem that research
in analogy has yet to address .

Finally, PHINEAS lacks composability and flexibility to situations that
do not fit prepackaged patterns . This is due in part to its inability
to merge multiple analogies when forming candidate explanations, as
described by Burstein (1983). It is also due to the granularity of theories
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considered . Schema-application approaches to explanation typically do
not adapt as well as rule-chaining systems to novel configurations .

5 .2

	

Related Approaches to Explanation

Although explanation systems differ along many dimensions, two as-
pects seem particularly relevant in forming class-wide comparisons with
PHINEAS . First, knowledge content and use range from rule chaining
and schema application to extensionally defined instance-based models .
Second, explanation systems differ in how they treat lack of knowl-
edge about the domain or lack of knowledge about the scenario to be
explained . This subsection briefly reviews selected approaches to expla-
nation along these two dimensions .
The traditional model of explanation in artificial intelligence depicts a

knowledge-rich process that draws inferences from general, intensionally
defined domain knowledge in the form of rules or schemas . This infer-
ence process further requires a match of antecedent information that
is complete (all required features are present) and exact (each required
feature is present in its prespecified form) to enable inference chain-
ing . These characteristics lead to brittleness due to the lack of exact
or complete matches to the real world and the need to anticipate all
future scenarios . There have been attempts to remedy this situation.
For example, Anderson's (1983) ACT system allows partial matching of
antecedents using activation levels to control production-rule firing . Al-
ternatively, probabilistic or default reasoning models enable inference in
the presence of incomplete knowledge (e .g., Josephson, Chandrasekaran,
Smith, & Tanner, 1987 ; Pearl, 1987) . However, these systems still re-
quire exact matches of antecedent features and are thus insensitive to
the presence of analogous but syntactically distinct features . These
limitations are addressed by PHINEAS' analogy mechanism . It enables
matching of analogous rather than identical features, reduces the need
to have a precisely defined set of necessary and sufficient conditions for
each theory, and enables knowledge of a familiar domain to aid reasoning
about another domain.
This work shares much of the philosophy behind case-based reason-

ing, which uses similar past problem solving experiences to solve new
cases (Hammond, 1989 ; Kolodner, Simpson, & Sycara-Cyranski, 1985) .
Systems in this paradigm have predominately been knowledge weak,
with "match strength" used as a basis for believing that the current
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and retrieved cases share common principles . More recently, attempts
have been made to include knowledge in the process, both in match-
ing equivalent yet nonidentical features (Bareiss, Porter, & Wier, 1987)
and in subsequent testing and transformation of the initial hypothe-
sis through examination of deeper domain knowledge (Kass, Leake, &
Owens, 1986 ; Simmons & Davis, 1987) . Both processes are found in
PHINEAS, in which the domain and the concern with across-domain
analogies required more sophisticated representations and a more so-
phisticated notion of analogical similarity. Further, it required a deep
causal analysis of the consistency of a hypothesis, both internally and
with respect to the observation . Finally, neither the case-based or the
traditional knowledge-intensive models tend to address problems in the-
ory formation, such as anticipated yet unknown objects or the creation
of new terms (e.g ., postulating intrinsic properties of objects) .'
Explanation systems also differ in,their reaction to gaps in available

knowledge . As in PHINEAS, most explanation systems can offer expla-
nations in the presence of incomplete knowledge about the scenario to
be explained . Probabilistic approaches (Buchanan & Shortlife, 1984 ;
Josephson, Chandrasekaran, Smith, & Tanner, 1987; Pearl, 1987) exam-
ine a priori probabilities assigned to antecedent information. When ad-
dressing open-ended, common-sense problems about the world, having
such probabilities seems unrealistic . PHINEAS follows work in interpre-
tation and story understanding (e .g ., Charniak, 1988; DeJong, 1982),
that tends to use schema-based models and identify the assumables as
the unknown elements of a relevant and consistent schema . More work
is needed to better understand what can be assumed and when .
Explanation systems rarely address a second type of knowledge gap-

lack of applicable knowledge about the domain . However, there are a
few exceptions in addition to PHINEAS . Pazzani's (1987) OCCAM can
infer new causal rules by using knowledge of abstract patterns of causal-
ity (e.g., temporally and spatially connected events), and Rajamoney's
(this volume) COAST revises existing theories primarily through ex-
perimentation . Falkenhainer and Rajamoney (1988) show how COAST
and PHINEAS have been integrated, with similarity-driven explanation
providing focus and experimentation providing empirical testing of hy-
potheses . O'Rorke et al . (this volume) introduce explicit metatheoret-

8. See Karp (this volume), O'Rorke et al . (this volume), and Rajamoney (this
volume) for alternative approaches to theory formation and explanation .
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ical rules that elegantly give the effect of extending the basic notion of
abduction to include assumption of new causal rules . However, that
work is still in progress and has not yet addressed problems associated
with focusing this process or relating elements of a developing theory
to existing theories .

5 .3

	

Directions for Future Research

The problem of retrieving a plausibly useful analogue from memory
still stands as the least understood, most important unsolved prob-
lem in analogy. Some important progress has been made (Hammond,
1989; Kolodner, 1984), but models of access are still limited by simple
representations and specialized forms of within-domain analogy. The
two-stage mechanism described in this chapter (first use abstractions to
focus on a candidate set, then use structural comparison to prune and
order this set) sidesteps important issues . How are these abstractions
formed for the stored situations? How are they recognized in the tar-
get situation? How are they organized so that an excessive number of
analogues are not retrieved?

Composability is a fundamental requirement for any model of explana-
tion . However, in its current form PHINEAs relies on a single analogous
explanation structure to explain each new observation . Two capabilities
are needed to address this limitation . First, the ability to draw from
multiple sources of knowledge is required, as in Burstein's (1983) work
on multiple analogies and their composition . Second, a theory revision
ability is needed to let PHINEAs repair initial hypotheses that provide
incomplete or inconsistent explanations. The two capabilities must in-
teract, since an explanation's inadequacy may arise from an incomplete
theory, which requires retrieval of additional knowledge, or a slightly
incorrect theory, which requires modification of its components .

PHINEAs and most analogy systems built to date use analogy as their
sole learning method . However, analogy, like any other single learning
mechanism, is best viewed as a single component in a synergistic cooper-
ation of learning methods . In addition to analogical inference, learning
and explanation may be accomplished through sufficient knowledge of
unexplained components (Hall, 1989) or abstract patterns of causality
(Pazzani, 1987) . In scientific investigation, an analogically derived hy-
pothesis may suddenly "come to mind." However, this flash of insight
may have been preceded by a tedious, incremental process in which
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data were collected and analyzed, patterns sought, and overall famil-
iarity increased (Langley & Jones, 1988) . In order to build a general
investigative system, we must integrate analogy with directed exper-
imentation, empirical learning, and analytic learning. Some work on
developing a general protocol enabling such interaction has already be-
gun (Falkenhainer & Rajamoney, 1988) . However, the protocol leaves
many questions unanswered, such as how to take advantage of prior
problem solving and trend detection and how to integrate the results of
analogy into memory.
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