Molecular Collections:
An ontology for reasoning about fluids

’DP‘LP*_DO bl@,.@ﬁe_ QL@ wat fadigNrlote .
C svnrva ks Welcowx @
Stoudtlet fn mblieestio , Fet (726

John W. Collins
Kenneth D. Forbus

Qualitative Reasoning Group
Beckman Institute

University of Illinois at Urbana-Champaign
405 N. Mathews Avenue
Urbana, Illinois, 61801, USA

Abstract

An important problem in qualitative physics is reasoning about thermodynamic
systems. To identify a system as a refrigerator, for example, one must show that it
includes a closed thermodynamic cycle which transports heat from a cold region to a
warmer one. To draw such conclusions requires thinking of fluids in terms of “pieces
of stuff” whose movements can be tracked around the system. Capturing the ability
to reason about pieces of stuff in this way is clearly essential for creating intelligent
computer-aided engineering systems. This paper presents the molecular collection
(MC) ontology, which captures many important intuitions about pieces of stuff. We
claim that this ontology is parasitic on the contained-stuff ontology, in the sense that
descriptions in terms of MC must be derived from contained-stuff descriptions. We
describe the motivation underlying the molecular collection ontology and specify the
laws that govern the behavior of MCs. We describe an implemented algorithm that
uses these laws to generate MC envisionments. We show how the molecular collection
ontology can be used to analyze several examples, including a refrigerator and a simple
steam plant. Finally, we describe some open questions and planned future work.

1 Introduction

An important problem in qualitative physics is reasoning about thermodynamic systems.
To identify a system as a refrigerator, for example, one must show that it includes a closed
thermodynamic cycle which transports heat from a cold region to a warmer one. The

ability to detect a closed thermodynamic cycle requires tracing the mass flows around a
system, showing that “the stuff” which was in one place travels through the system in such
a way as to again be in that initial place. Simply tracing the connectivity of the system
isn’t sufficient, however. To establish heat transport, one must determine that “the stuff”
is absorbing heat when it is in contact with the colder place and giving up heat when it is
in contact with the warmer place. That is, one must reason about the properties of “the
stuff” that is travelling through the system.

As Hayes [15] pointed out, one of the most tricky parts in reasoning about fluids is
figuring out what “the stuff” is. What criteria should be used in individuating liquids?
Hayes proposed two ontologies for reasoning about liquids: the contained-stuff ontology
and the piece-of-stuff ontology. In the contained stuff ontology, one considers the liquid in
a place to be an object. For example, a river is considered to be whatever water resides in
its banks and bed. In this ontology, a river is the same river it was a century ago (shifts in
where it flows notwithstanding). If the river is dammed up the part that was downstream
vanishes, and if the dam breaks the river reappears. Alternately, the piece-of-stuff ontology
defines an individual of fluid substance as a particular collection of molecules. In this
ontology, one cannot step in the same river twice, since at any instant what you touch is a
different collection of molecules. What comprises the river is constantly changing, as little
pieces of water, each retaining their identity, pass by you on their flow to the sea.

Hayes noted that neither ontology alone suffices to explain common sense reasoning
about liquids. Similarly, neither ontology alone is sufficient for intelligent computer-aided
engineering. The contained stuff ontology provides the information needed to establish
flows, and thus ascertain the global behavior of a system. However, problems like recog-
nizing a system as a refrigerator require a different perspective. Under the contained-stuff
ontology, there is no sense in which stuff moves from place to place—the fluid in a con-
tainer is simply the fluid in the container, whose amount may be replenished or diminished
by various processes, but without the mechanism of moving stuff we intuitively associate
with such processes. In setting up quantitative analyses, one sees descriptions of elemental
pieces of stuff over and over again in fluid and thermodynamics textbooks (e.g.[27,21]) To
formalize these analyses, we need some form of the piece-of-stuff ontology.

This paper describes a specialization of the piece-of-stuff ontology, the molecular col-
lection ontology, which supports the kinds of reasoning outlined above. Section 2 describes
the basic idea of molecular collections, including how they are distinguished, what their
properties are, and their relationship with contained-stuffs. Section 3 provides a precise for-
mulation of the laws governing molecular collections. Section 4 describes an implemented

algorithm for constructing envisionments of molecular collections, and Section 5 illustrates

this algorithm through the analysis of several examples. Finally, Section 6 describes some
open questions and our plans for future extensions.

2 The nature of molecular collections

Almost every qualitative model of fluids uses the contained-stuff ontology (c.f. [8,2]). One
noted exception is the work of Gambardella et al. [13], which uses a cellular automaton
model to simulate properties of fluids and elastic objects. While the way their model derives
its conclusions is interesting, (e.g., the surface of a liquid in a container being horizontal
arises from the interaction of local rules associated with the “molecules” which comprise
the object, all of which are explicitly represented.) this scheme does not seem to capture
the notion of an “elemental piece of fluid” that engineering analyses use. Despite the
obvious need for it, effective formulations of the piece-of-stuff view have been surprisingly
difficult to achieve. Why?

We claim the relationship between the piece-of-stuff and contained-stuff ontologies is
not that of two “separate but equal” schemes for representing the world. Instead, we
claim that the piece of stuff ontology is parasitic on the contained-stuff ontology, in that
a description of a system in terms of contained-stuffs is a prerequisite to computing a
description of it in terms of pieces of stuff. The reason is that global information is
required to establish the behavior of a piece-of-stuff. Consider a little piece-of-stuff, say
10® molecules, in the middle of a can of water. What is happening to it? Is it moving? Is
it heating up? Without information about the surrounding fluid, we cannot say.

In classical physics the notion of gradient provides a local reflection of such global
conditions. But establishing the gradient requires a global view of the physical system.
This global view is exactly what the contained-stuff ontology provides. In particular,
the contained-stuff representation supports establishing the paths and conditions needed
to reason about flows and state changes. By starting with the results of the contained-
stuff description, the piece-of-stuff representation does not need the ability to derive those
conclusions.

Consider as a concrete example the system shown in Figure 1. This partial schematic
of a Navy Propulsion plant provides an illustration of the importance of the MC ontology.
A tricky question about this system is, “Given an increase in feedwater temperature,
what happens to the steam temperature at the superheater outlet?”.! The representation
developed in this paper provides a basis for answering this question.

Figuring out how fluid moves requires knowing the mass properties of the fluid, viewed

!Understanding what happens in this situation is one of the hardest problems given at the U.S. Navy
Surface Warfare Officers’ School, in NewPort, R.I.

Figure 1: The SWOS Problem

SUPER

BOILER

0]
0 0o 0
o 00 000

FEED
WATER G———

PUMP ' FUNACE TURBINE

with respect to the components of the system. Looking solely at a particular collection of
molecules, there is no way to establish the pressure differences between system components
that imply the direction of flow. Although it must play a role in the solution of the
problem, the piece-of-stuff ontology is inadequate. To determine facts like flow direction,
the contained-stuff ontology must be used. Given a contained-stuff description, we can
talk about pressure as a function of location rather than trying to find the pressure on an
arbitrary collection of molecules.

Now let us begin defining the molecular collection ontology. We assume as our starting
point a contained-stuff representation of thermodynamic substances and processes, written
in Qualitative Process theory [8,9]. As argued elsewhere [24], QP theory provides a useful
basis for formalizing thermodynamics concepts. For example, thermodynamic processes
map onto QP’s representation of physical processes, with restrictions like tsothermal and
adiabatic reflected in restrictions on Ds values. Our formulation of molecular collections
does not rely too heavily on the particular details of the representation of thermodynamic
properties, and what assumptions we do make are explained in context.

In Hayes’ work [15| no restriction is made as to the size of a piece-of-stuff. We define
the molecular collection (MC) ontology by stipulating that the collection be so small that
we can assume it is never distributed over more than one place. This tiny piece-of-stuff is
viewed as a collection of molecules—as opposed to a single molecule—so that it possesses
macroscopic properties such as temperature and pressure. Call the arbitrary collection of
molecules to be considered as a unit MC.

Any ontology must divide the world into individuals. For reasoning it is important that

the number of individuals be few. The contained-stuff ontology partitions a fluid system
into a few discrete objects using the natural boundaries provided by containment. But
the contained-stuff ontology fails to preserve molecular identity. Considering individual
molecules would be prohibitive and unnecessary, since all the billions of them in a particular
region act more or less alike. By considering the possible behaviors of a representative
collection of molecules, we constrain the possibilities for the whole by considering only one
individual.

By assuming MC to be sufficiently small to travel as a unit, we drastically simplify its
dynamics. In particular, if MC approaches a fork in the fluid path through which it is
flowing, it takes one branch or the other, without splitting up. If MC were large enough to
split up, we would then have to consider what happens when smaller MCs rejoined. And
given that an MC could split into smaller MCs, why not again, until it was smeared around
the volume of working fluid which comprises the system?

It is instructive to compare MCs with contained-stuffs further. We view contained-stuffs
as having an amount, which is directly influenced by processes representing flows and phase
changes. The amount of an MC is constant by definition. Conversely, the location of an MC
can vary, while the location of a contained-stuff is defined to be constant. (We are only
considering the fluid with respect to the coordinate frame of the physical system which
contains it; the fact that the freon in an automotive air conditioner has a component of
its velocity due to the motion of the car is irrelevant for our analyses.) Contained-stuffs
can vanish or appear, as the amount of substance in the particular state which defines
them changes. MCs cannot be created or destroyed (ignoring nuclear processes). Thus MC
makes explicit the notions of continuity of space and conservation of matter, while the
contained-stuff ontology makes explicit the notions of continuity at fixed locations, and

determines overall system behavior.

In figuring out how MC behaves, the critical observation is that each active process
specifies a fragment of MC’s history. Processes operate on objects, some of which (in fluid
systems) will be contained-stuffs. We can associate laws with each process to describe
what, if anything, its activity implies about the location and phase of MC. For example,
liquid flow implies that when MC is in liquid form in the source, it can move into the path
of the flow, and end up in the destination of the flow without changing state. Evaporation
implies that MC will undergo a liquid-to-gas phase transition within the same location. By
combining these partial histories, we can compute the full spatial extent of MC’s travels
and its associated phase transitions (if any).

Table 1: Two Ontologies for Fluids -

Ontology
Property Contained-Stuff Piece-of-Stuff
Defining Criteria Containment Molecular Constituents

Amount Variable Constant
Existence Fleeting Permanent
Location Constant Variable

(w.r.t. container)
Emphasis Determines Overall | Conservation of Matter,

Process Activity Continuity of Space

3 The laws of molecular collections

Now we precisely define the properties of MC and describe the laws governing its behavior.
These laws are used in Section 4 to generate MC envisionments.

We begin with the following simplifying assumptions. First, we only consider single-
substance fluid systems. Thus MC is always made of the same substance as the fluid which
surrounds it. Second, we assume that the places where fluids exist within a system can
be adequately modeled by a combination of abstract containers connected by paths. That
is, we ignore the detailed geometry of containers and fluid paths. Furthermore, when
reasoning in the contained-stuff ontology, we do not treat fluid in a path as a contained-
stuff, and do not give it any explicit existence. (This means we must model a heat exchanger
as two containers in contact, rather than two fluid paths in contact.) What is required to
remove these simplifying assumptions is considered in Section 6.

Intuitively, we know that MC is a small handful of molecules, moving along in its fluid en-
vironment, its properties changing continously according to its surroundings. How should
we quantize this behavior to yield appropriate qualitative states? To simplify what follows,
we use MC to both refer to the individual itself and to a slice, describing the individual at
a particular time (see [15] for the definition of slices).

3.1 Preliminaries

We need the following properties of contained-stuffs:

Definition 1 (Substance definition) The function substance maps from a contained-
stuff or MC to the substance it is made of.

Definition 2 (Phase definition) The function phase maps from a contained-stuff or MC
to its current phase. The only allowed values are 1iquid or gas. phase is undefined when
its argument does not physically ezist.

Definition 3 (C-S definition) The function C-S maps from a substance, state, and con-
tainer to the contained-stuff made of that substance in that state in that container. The
functions substance and phase are defined for a contained-stuff as follows:

substance(C-S(sub, phase,can)) = sub
phase(C-S(sub, phase,can)) = phase

Only minimal assumptions about connectivity are required:

Definition 4 (Path connections) The predicate Path-Connects(p,c1,c2) holds ezactly
when the path p connects containers ¢l and c2.

We also need to know when and where flows occur. We assume the following predicates
to provide this information:

Definition 5 (Flow definition) The predicate Flow-Thru(p) holds for path p ezactly
when there 1s flurd flowing through p. The predicate Flow-Between(s,d,p) holds ezactly
when there is a flurd flow from source s to destination d via path p. It follows that:

Vs,d, p[Flow-Between(s,d,p) = Flow-Thru(p)|
where p ts a path connecting containers s and d.
We define two special kinds of paths, pumps and compressors:

Definition 6 (Active paths) The predicate Pump(p) holds ezactly when p is a pump.
The predicate Compressor(p) holds ezactly when p is a compressor. Furthermore,

Vp|Pump(p) = Fluid-Path(p)]
Vp|Compressor(p) => Fluid-Path(p)]

Defining these components as paths means we cannot reason about the internal struc-
ture of pumps or compressors (e.g., what happens as MC swirls around the blades of a
compressor, or when it enters or leaves the cylinder of a reciprocating pump). In the
examples which have concerned us so far such reasoning is unimportant, and we believe
in any case that most of the laws stated here can be easily modified if a richer underlying
spatial description were used for describing structure.

Information about phase changes derived from the contained-stuff model is also needed
to derive information about MCs. The following predicates provide this information:

Definition 7 (Phase change information) The predicate Evaporating-Liquid(l) holds
exactly when some process or processes representing evaporation or botling are operating
on contained-liquid 1. The predicate Condensing-Gas(g) holds ezactly when some process
or processes representing condensation are operating on contained-gas g.

Typically one would include Evaporating-Liquid and Condensing-Gas in the relations
field of the appropriate process (or processes, if these phenomena is decomposed into sev-
eral cases).

3.2 Location

Clearly one important property of MC is where it is. There are two aspects to location:
the part of the physical structure which currently contains it, and the contained-liquid
which surrounds it. Since we do not distinguish contained-stuffs in paths, it is useful to
disentangle these notions.

Definition 8 (Location of MC) The function location maps from MC to the container
or fluid path in which 1t resides.

Definition 9 (Fluid location of MC) The function surrounding-stuff maps from MC
to the contained-stuff which surrounds it, if any.

When the location of MC is a container, its surrounding-stuff is defined as the contained-
stuff in that container having the same state as MC:

Law 1 (Locations and stuffs)
Container(location(MC)) =
Exists(surrounding-stuff (MC))
A surrounding-stuff (MC) = C-S(substance(MC),phase(MC),location(MC))

3.3 Previous properties

If we view MC as a slice which specifies the properties of the molecular collection, then
associated with it is some temporal extent. This temporal extent, as usual, could be an
instant or an interval. We assume an Allen-style semantics for time [1], wherein temporal
extents can meet with no intervening time. Thus it makes sense to talk about “the previous
MC” for any given MC slice. We continue leaving time implicit for simplicity. However, we
need to discuss changes in some properties from one slice to another:

Definition 10 (Previous properties) The function previous-location maps from an
MC slice to the location of the MC slice which meets it. Similarly, the function previous-phase
maps from an MC slice to the phase of the directly—preceeding MC.

The laws introduced in this section are used in Section 4 to compute MC envisionments.
Computing envisionments requires thinking about states instead of slices, and all these
laws can be so construed without any changes whatsoever. The only complication is that
an envisionment state can have many equally valid predecessors, but since an episode in
a history represents a single piece of actual space-time, there can only be (barring lack of
knowledge) one previous meeting epsiode [10].

Our theory must make explicit which distinctions are to be made concerning MC states.
If states were only distinguished by their present location and phase, then there would be
exactly one MC state for each contained-stuff. We need a more fine-grained distinction in
order to reason about the effects of a cold MC flowing into a hot contained-stuff, for example.
We could additionally differentiate states based upon this temperature inequality; however,
we take a different tack. We instead consider the previous-location and previous-phase of
MC. Thus two MCs which enter a contained-stuff through different paths are distinguishable
by their previous-locations. This introduces the possibility of multiple MC states having
the same location and phase, but with a different past. These in turn could transition to
a common MC state, which demonstrates that specifying MC’s previous location and phase
in no way guarantees a unique past. We postpone further discussion of this point until
Section 3.7.

A number of laws constrain transitions from one episode to another. We introduce the
notion of adjacency to rule out transitions between remote or disconnected parts of the
fluid system:

Definition 11 (Adjacency) Two locations are Adjacent ezactly when it is possible for
MC to move directly from one to the other.

This is enforced by the constraint that the current and previous locations are adjacent:

Law 2 (Continuity of location)
Adjacent(location(MC) ,previous-location(MC))

A container is considered adjacent to itself, to allow for phase transitions, equilibration,
and quiescence:

Law 3 (Container adjacency)
Ve[Container(c) = Adjacent(c,¢)

Since paths can only be connected to containers and not to each other, it is impossible for
two paths (or two containers) to be adjacent;

Law 4 (Adjacency nogoods)

Vpl,p2[Path(pl) A Path(p2) A [pl # p2| = -Adjacent(pl,p2)]
Vel, c2[Container(cl) A Container(e2) A [cl # ¢2] = -—Adjacent(cl,c2)]

A path can only be adjacent to itself if there is no flow through it:
Law 5 (Path dynamics)

Vp|Path(p) A Flow-Thru(p) = —Adjacent(p, p)]

A container which is not connected to either end of a path is not adjacent to the path:
Law 6 (Path continuity)

Vp, cl,¢c2, c3[Path-Connects(p, c1,c2)AContainer(e3)Ale3 & {c1,c2}] = —Adjacent(p, c3)]

These laws, combined with flow laws introduced below, suffice to pin down MC’s possible
locations.

3.4 Continuous properties of MC

Like other kinds of physical objects, molecular collections have a variety of continuous
properties. The values of these properties are included as constituents of an MC’s state.
These properties are described using the quantity space representation of QP theory [8].
Their intended semantics is that of the thermodynamical property with the same name,
e.g., the temperature of MC is specified by the function temperature. The inequalities
involving these quantities and their derivatives are determined by the surrounding fluids
and by the processes which contain MC within their “sphere of influence.” Most of the rest

of the laws of molecular collections serve to define these interactions.

Definition 12 (Quantities of MC) Molecular collections are assumed to possess the fol-
lowing quantities: mass, heat, temperature, volume, height, and pressure.

10

Table 2: Quantities in the two Ontologies

Quantity Ontology
Type Contained-Stuff MC

mass (L & G) Influenced Constant
heat (L & G) Influenced xXg temp
temp (L & G) heat/mass Equilizes
pressure (L) xg depth Inherited
height (L) (level) o¢ volume | Vertical Position
volume (L) xg mass Constant
pressure (G) heat/volume Inherited
volume (G) volume (Container) heat/pressure

3.5 Interactions with the surrounding stuff

We assume the molecules which comprise MC remain a fixed collection over time. Thus the
mass of MC cannot change; this enforces conservation of matter:

Law 7 (Conservation of Mass) For all MC slices,
Ds[mass(MC)| =0

While MC never loses or gains molecules from the stuff around it, the stuff does have
strong direct and indirect effects. When MC is in a container, its pressure is determined by
the surrounding stuff:

Law 8 (Pressure Inheritance)

Container(location(MC)) =

Ds|pressure(MC)| = Ds|pressure(surrounding-stuff(MC))]
Apressure(MC) = pressure(surrounding-stuff(MC))

Additional constraints are provided by the active processes, such as liquid-flow and
evaporation. The rules for each type of process are discussed in the sections below.

3.6 Fluid Flow Processes

When reasoning about contained-stuffs it is useful to distinguish between several varieties
of fluid flow (see [2] for details). Most of these distinctions are irrelevant from the MC

11

perspective. The reason is that the differences between different varieties of fluid flow
all affect the properties of the contained-stuffs they affect. Since most of MC’s properties
are derived from properties of its surrounding stuffs, these differences will be inherited
correctly. As stated above, we assume the predicates Flow-Between and Flow-Thru are
implied by any variety of liquid or gas flow process, either pumped or pressure-driven.

Roughly, what a flow implies for MC is this: When MC gets caught up in a flow, it changes
locations first from the source container to the flow path and then into the destination
container. A change in location means a change in episode, hence a flow gives rise to at
least three MC episodes. (More than three episodes can result due to thermal mixing, as
described below.)

We first define the upstream and downstream ends of a path during a flow process:

Definition 13 (Upstream/Downstream) The function upstream-end of a fluid path
p defines where the flow is coming from. The function downstream-end of p indicates
where the flow is going. Both upstream-end and downstream-end are undefined for times
when no flow occurs through p.

Vel, c2, p[Flow-Between(cl,c2,p) => upstream-end(p) = cl]
Vel,c2,p[Flow-Between(cl,c2,p) => downstream-end(p) = c2]

We must force MC to change locations as a result of a flow; if MC is in a path where
stuff is flowing, it must have come from the source container and must next flow into the

destination container:

Law 9 (Flow movement)
Vp [Flow-Thru(p) =
[previous-location(MC) = p = location(MC) = downstream-end(p)]
A [location(MC) = p = Flowing(MC)
A previous-location(MC) = upstream-end(p)]]

Some quantities can change within the path of an active flow process. For example, in a
normal flow path (i.e., no pumps), pressure decreases as MC flows downstream. These facts
have already been worked out by QPE using the contained-stuff ontology, and are stored
as relations between quantities at the two ends of the flow. These differences represent
the gradients which exist in the flow path, and are used to inherit the derivatives of MC’s
quantities as it flows through the path:

Law 10 (Gradient Implications)
Vp,Vq € {Pressure,Height}: [location(MC) = p A Flow-Thru(p) =
Ds[q(MC)] = As[q(downstream-end(p)) — q(upstream-end(p))]]

12

If the underlying model of structure is detailed enough to include portals, the quantities
involved should be taken to be the corresponding quantities of the portals connecting the
flow. See [2] for details. '

3.7 Thermal Equilibration

There are two ways for MC to enter a new contained-stuff. First, it can arrive as a conse-
quence of that stuff being the destination of a flow. Second, it can arrive as a consequence
of changing its phase: When MC boils, its surrounding stuff changes from the contained
liquid to the contained-gas of that container. (We require all phase changes to happen
within containers.) In both cases, it is reasonable to assume that MC’s pressure main-
tains equilibrium with its surroundings. However, the same assumption should not be
made regarding temperature. A pressure gradient exists through a flow path, allowing
MC to gradually transition between the two pressures at the ends of the path. But the
temperature of MC upon exiting a flow path will not necessarily equal the temperature of
its newly-surrounding fluid. For instance, a cold MC entering a hot contained-stuff will
eventually warm up enough to reach thermal equilibrium with its surroundings. In fact,
the effect of a temperature difference between MC and its surroundings is often of central
importance; such is the case in the refrigeration model described in Section 5.2. Therefore
we must explicitly represent the effects of MC reaching thermal equilibrium.

We represent this possibility by defining two new predicates, Equilibrating and
Equilibrated, which hold exactly when MC is achieving thermal equilibrium or has achived
it, respectively. These predicates are wholly determined by the constituents of MC’s state—
namely, its current and previous location and phase. An Equilibrated MC is one whose
previous-location and previous-phase are the same as its corresponding present values.

(4

This gives us an MC to represent the “prototypical collection of molecules” in a contained-
stuff. Any MC which has just entered a contained-stuff is Equilibrating. Hence an interval
over which one is true rather than the other comprises a distinct episode in MC’s history.
In fact, MC will always be in exactly one of the three behaviors: Flowing, Equilibrating,
Equilibrated.

Intuitively, what happens is this. Upon first entering a contained-stuff—as a result
of either a fluid-flow or a phase transition—MC is labeled as equilibrating, during which
time MC’s temperature approaches that of its surroundings. After some interval of time, MC
becomes equilibrated, such that its temperature simply follows that of its surroundings.”

The ability to determine whether MC is Equilibrating or Equilibrated was a primary

2In fact we will force these transitions by disallowing the direct escape of an equilibrating MC from its
surrounding contained-stuff. This is explained in detail in Section 4,

13

reason for looking at the previous-location and previous-phase properties. However, we
wish to know more than whether MC is Equilibrating; we want to know “from where” it
is Equilibrating, since this will determine how MC reacts to its surrounding stuff. The
previous values for location and phase provide this information.

We now define these two predicates. If MC has just arrived in a container, then it must
be equilibrating:

Law 11 (Equilibrating on entry)
Container(location(MC)) A location(MC) # previous-location(MC)
= Equilibrating(MC)

MC must also equilibrate after a phase change, since it enters a new contained-stuff, which
might have a different temperature:

Law 12 (Equilibrating on phase change)
phase(MC) # previous-phase (MC) => Equilibrating(MC)

After residing within a contained-stuff for a sufficient period of time, MC eventually becomes
equilibrated:

Law 13 (Eventual equilibration)
phase (MC) = previous-phase(MC) A location(MC) = previous-location(MC)
=> Equilibrated(MC)

Of course, with the given resolution of our qualitative information, we have no way of
knowing how long this takes. If MC’s temperature is the same as that of its surrounding
stuff, then we stipulate that the Equilibrating episode lasts for only an instant; otherwise,
the episode lasts for an interval of time. Furthermore, since MC is very small, we stipulate
that equilibration occurs long before MC could reach another path and leave the container.
We now specify some consequences of equilibration:

Law 14 (Equilibrated temperature) MC’s equilibrated temperature 1s inherited from
the surrounding stuff:

Equilibrated(MC) =
Ds|temperature (MC) | = Ds[temperature (surrounding-stuff (MC)) |

A temperature(MC) = temperature (surrounding-stuff(MC))

14

Note that MC must reach thermal equilibrium before it can leave its surrounding contained-
stuff. This relates its temperature to temperatures in the contained-stuff ontology. In the
case of liquid flow, MC’s temperature is constant during its travels from one container to
another. Thus by knowing the relative temperatures of the two contained-liquids, we can
infer the relation between MC’s temperature and that of its new surrounding-stuff. This in
turn determines how MC’s temperature changes while Equilibrating:

Law 15 (Temperature equalization) MC’s equilibrating temperature gradually equalizes
with the temperature of the surrounding stuff:

Equilibrating(MC) => Ds[temperature(MC)] =
As[temperature (surrounding-stuff (MC)) — temperature(MC)]

3.8 Height equilibration

Changes in location can also mean changes in height. Rather than introducing a separate
set of distinctions for this equilibration, we simplify the MC history by assuming that the
height of a liquid MC reaches its equilibrium by the time that its temperature equilibrates.
An MC’s equilibrated height is inherited from the level of the surrounding contained-liquid:

Law 16 (Equilibrated height for liquid)

Equilibrated(MC) A [phase(MC) = LIQUID] =
Ds|height (MC) | = Ds[level(surrounding-stuff (MC)) |
A height(MC) = level(surrounding-stuff (MC))

3.9 (Gasses

In the contained-stuff ontology, a contained-gas inherits its volume from its container, while
heat and mass are directly influenced by flow and other processes. These three quantities
(volume, heat, and mass) are the independent variables, which together determine the
remaining (dependent) quantities of temperature and pressure.

The quantities of a gaseous MC must be constrained diferently. In order to maintain our
premise that MC never divides itself between two paths, it is necessary to adopt a partial
volume view of gasses, instead of the more traditional view based on partial pressures.
Thus a gaseous MC does not fill its container, but instead occupies a small (infinitesimal)
volume determined by the local temperature and pressure. Because MC has constant mass,
the two quantities of heat and temperature will always correlate except during a phase
change. Thus the two quantities which are the dependent variables in the contained-stuff

15

ontology—namely temperature and pressure—become the independent variables for gasses
in the MC ontology.
The MC version of the ideal gas law is as follows:

Law 17 (Ideal gas law) The volume of a gaseous MC is influenced positively by its heat
and negatively by its pressure:

phase (MC) = GAS =

(Ds|heat (MC)] = O => Ds[volume(MC)| = —Ds[pressure(MC)|)
A(Ds|[pressure (MC) | = O = Ds[volume (MC) | = Ds|heat (MC)|)
A(Ds[pressure (MC) | = —Ds[heat (MC) | = Ds|[volume (MC) | = Ds|heat (MC)])

Adiabatic Expansion and Compression: Processes which do not involve a flow of
heat are called adiabatic. When a gas is expanded or compressed adiabatically, it does
work on (or is worked upon by) its surroundings. MC is assumed to expand or compress
adiabatically during gas flow, as well as when its surrounding contained-stuff undergoes
adiabatic expansion or compression:

Definition 14 (Adiabatic expansion and compression) The predicate
Adiabatic-Expansion holds ezactly when a contained-gas undergoes adiabatic expansion.
The predicate Adiabatic-Compression holds ezactly when a contained-gas undergoes adi-
abatic compression.

Whether or not a contained-gas is undergoing adiabatic expansion or compression can
be ascertained by the processes which are acting upon it and how its continuous properties
are changing. Specifically, if a contained-gas is the object of an expansion (compression)
process, and is not the source or recipient of a heat-flow process, then the expansion (com-
pression) is adiabatic. Thus we assume that information about the adiabatic expansion
and compression of contained-stuffs is available for MC reasoning.

Law 18 (Adiabatic expansion) MC undergoes adiabatic ezpansion when either:

Jdp[Fluid-path(p) A— Compressor(p) A Flow-Thru(p)
A location(MC)= pA phase(MC) = GAS]
vV [Adiabatic-Expansion(surrounding-stuff(MC)) A Equilibrated(MC)]

Furthermore,
Adiabatic-Expansion(MC) => Ds[temperature(MC)| = —1

16

The law for adiabatic compression is similar, but doing work on the fluid requires a com-
pressor:

Law 19 (Adiabatic compression) MC undergoes adiabatic compression when either:

dp [Compressor(p) A Flow-Thru(p) A location(MC)= pA phase(MC) = GAS]
V [Adiabatic-Compression(surrounding-stuff(MC)) A Equilibrated(MC)]

Furthermore,
Adiabatic-Compression(MC) = [Ds[temperature (MC)| = 1]

3.10 Phase changes

Recall that phase changes are assumed to only occur within containers (Section 3.7). Since
we are not considering the solid phase here, only two types of phase transitions are possible:
evaporation and condensation. For the purposes of this representation, we are considering
boiling as a special case of evaporation. A phase transition is represented in MC’s description
as differing values for current and previous phase; since phase transitions can only occur
within containers, state and location should not be allowed to change simultaneously:

Law 20 (Location/phase change isolation)

[previous-phase (MC) # phase(MC)| = [previous-location(MC) = location(MC)]
[previous-location(MC) # location(MC)] = [previous-phase(MC) = phase(MC)]

Evaporation We begin with evaporation. Recall that the predicate Evaporating-Liquid
indicates that a contained-liquid is undergoing evaporation or boiling (Section 3.1). Whether
or not MC is evaporating is determined entirely by its surroundings:

Law 21 (Conditions for evaporation)

[Equilibrated(MC) A Evaporating-Liquid(surrounding-stuff (MC))
4 Evaporating(MC)]

A [— Container(location(MC)) => — Evaporating(MC)]

A non-evaporating piece of liquid has constant volume, and its heat and temperature
are correlated:

Law 22 (Non-evaporating liquid)

- Evaporating(MC) A phase(MC) = LIQUID =
Ds[volume(MC)] = O
A Ds[heat(MC)] = Ds[temperature(MC)]

17

As part of the constraints to filter out inconsistent transitions, we must ensure that
the previously-surrounding liquid is really evaporating:

Law 23 (Evaporation phase compatibility)

[previous-phase (MC) = LIQUID| A [phase(MC) = GAS| =
Evaporating-liquid(C-S(substance(MC) ,LIQUID,location(MC)))

When MC is evaporating, its quantities are changing in certain ways:

Law 24 (Consequences of MC evaporation)
Evaporating(MC) = Ds[temperature(MC)] = O A Ds[heat(MC)] = 1
A Ds[volume(MC)] = 1 A Ds[height(MC)] = 1

Condensation The laws of condensation are very similar to those of evaporation. Whether

or not MC is condensing or not is completely determined by its surroundings:

Law 25 (Conditions for condensation)
[Equilibrated(MC) A Condensing-Gas(surrounding-stuff(MC)) <> Condensing(MC)]
A [— Container(location(MC)) => - Condensing(MC)]

A non-condensing gaseous MC has correlated heat and temperature:

Law 26 (Non-condensing gas)
—Condensing(MC) A phase(MC) = GAS = Ds[heat (MC) | = Ds|temperature (MC) |

As with evaporation, to ensure consistent transitions we must ensure that the previously-
surrounding gas is really condensing:

Law 27 (Condensation phase compatibility)

previous-phase(MC) = GAS A phase(MC) = LIQUID =
Condensing-gas(substance (MC) ,GAS,location(MC))

When a piece of gas condenses, it loses heat, shrinks and falls, while its temperature is
assumed to remain constant:

Law 28 (Consequences of MC condensation)
Condensing(MC) => Ds[temperature(MC)] = O A Ds[heat(MC)] = -1
A Ds[volume(MC)] = -1 A Ds[height(MC)] = -1

18

3.11 Summary of episode types

We have defined the following possible behaviors for MC: Equilibrating, Equilibrated,
Flowing, Evaporating and Condensing. The first three episode types: Equilibrating,
Equilibrated and Flowing form a taxonomy—MC will always be in exactly one of these
episode types. Phase transitions (i.e., Evaporating and Condensing) can occur only
during Equilibrated episodes.

Figure 2 shows a portion of a hypothetical scenario in which a container is connected to
four active fluid paths—two are flowing liquid and two are flowing gas. The large arrows
indicate the processes acting on the contained-stuffs. In addition to the flows, the liquid
in the container is boiling. The small circles represent MC states, while the small arrows
indicate the possible transitions which can occur among them. The table identifies the
types of episodes occuring in each MC state. This figure is included to summarize the kinds
of behavior in which MC can participate.

4 Reasoning about Molecular Collections

At this point we have introduced a number of definitions and laws which define what MCs
are, and what their behavior is under various circumstances. This section explores how
these laws can be used to envision the possible behaviors MC may experience in a fluid
system, and what kinds of conclusions can be drawn from MC envisionments. We begin
by motivating the choice of envisioning as the style of reasoning to use, then describe
our algorithm, and finally discuss some conclusions that can be drawn by inspecting MC
envisionments.

4.1 Why envision MCs?

The motivation for the MC ontology is to capture the sorts of intuitions associated with
“following a little piece-of-stuff around” a system. To do this we must be able to figure out
what states an MC might be in, and predict what can happen next. But the information
given in real tasks is often fragmentary, which suggests that generating alternate behaviors
is important.

To be concrete, suppose we were analyzing a new design for a refrigerator. We presum-
ably would be given a drawing of the parts, to some level of detail. We would generally
receive information about assumed operating conditions (e.g., the environment to which
heat is being dumped might always be warmer than 40° F, and the demanded internal
temperature was never lower than 32° F). Often our “input” would include some clues

19

Figure 2: A hypothetical scenario for MC

MC State
Episode Type || 81| S2 | S5 | Ss| S5 | Se | 87| 85 | So
Flowing Vv Vv Vv Vv
Evaporating vV
Condensing
Equilibrating N4 Vv Vv
Equilibrated Vv N4

20

about what processes are presumed to occur, perhaps noted on the diagram by arrows
indicating directions of mass and heat flows.

One of the first things we might ask ourselves is whether or not this design was at all
plausible. This question can be re-phrased as, “is there any possible behavior under which
this system does indeed behave like a refrigerator?” Given a QP domain model which
adequately captures our intuitions, one can quickly generate a constrained envisionment
to see if the presumed pattern of activity is possible. That is, the structural description
could be elaborated into a QP scenario model, and an envisionment generated under the
operating assumptions |7 that the indicated flows are all active and the system is in steady-
state. If the envisionment is empty, clearly the system cannot work as intended. If the
envisionment is non-empty, then one must ask whether or not any of these states satisfies
the behavioral requirements of refrigeration. As noted in Section 1, these conditions can
be precisely characterized using the MC ontology. So for each state in the contained-stuff
envisionment, one can generate predictions about MC’s behavior, and answer yes if one of
them satisfies the functional description of a refrigerator.

Given this (and similar) tasks, should we generate MC histories or envisionments? The
recognition criteria only requires finding cycles of behavior. Since most engineering ther-
modynamic analyses focus on steady-state behaviors [16|, the properties of MC will not
change as a consequence of successive passes through the cycle. This suggests that the
extra resolution gained by individuating states into episodes is not required. Furthermore,
the lack of precise state information means that even at the qualitative level of resolution,
there can be more than one contained-stuff state. Furthermore, each contained-stuff state
could contain several cycles, if the system being analyzed consists of several disconnected
fluid paths. This means we must check every MC state, since otherwise we may miss the
relevant cycle. Taken together, these conclusions suggest using envisioning rather than
history generation.

Before going on, two notes: First, for other tasks history generation will be better.
Tracking how a system reaches steady-state, for example, or determining which steady-
state a fluid system is approaching, would require the finer resolution of histories. Second,
in [3] we mistakenly used the term “MC history” for what were actually “MC envisionments”.
We apologize for the error.

4.2 An MC envisioning algorithm

Roughly, a total envisioner works like this: The scenario is analyzed to determine all
possible states, and then all legal transitions are found to connect these states into chains
of possible behaviors. Since the molecular collection analysis is based on the contained

21

Figure 3: The MC envisioning algorithm-
Given a domain model Mp using the contained-stuff ontology, scenario model Mg, and
modeling assumptions Ay, the algorithm below computes the MC envisionment for a par-
ticular contained-stuff state Scs. Notice that to analyze a different state, only steps 4 and
5 need to be repeated.

Generate the contained-stuff envisionment £ of Mg using Mp and Ay.
Construct choice sets representing possible locations and phases of MC.
Use interpretation construction to generate all possible MC states.
Project the MC states onto some state S¢sselected from €£.

U W R

Construct possible transitions between pairs of MC states.

stuff analysis, things get a bit more complicated. Our algorithm is summarized in Figure
3. This section examines it step-by-step, pointing out the information requirements and
analyzing its complexity. In what follows we assume an ATMS [4], although it could be
re-formulated without one, perhaps at a substantial loss of efficiency.

4.2.1 Step 1: Generating the contained-stuff envisionment

The parasitic nature of the molecular collection ontology means that we must start with
a contained-stuff description. We assume a domain model Mp has been defined which
provides a suitable model of thermodynamic phenomena. In particular, we assume the
predicates in Section 3.1 have been appropriately defined®. The structure of the system
to be analyzed is specified by the scenario model Ms. We assume an envisioner, such as
QPE [12], is used to apply Mp to Ms to find what individuals are implied by the struc-
tural description (such as instances of processes) and to generate possible contained-stuff
behaviors.

Supplying task-specific modeling assumptions (Ay) can provide signficant constraint
in this step [7]. Simplifying assumptions, which control perspective and level of detail, can
prevent consideration of irrelevant properties. Ignoring geometry, for example, is often
appropriate in the early stages of evaluating a design. Operating assumptions, such as the
steady-state assumption, can reduce the size of an envisionment from hundreds or even

3In our implementation, this is accomplished by using an interface file that defines the necessary predicates
in terms of the constructs of a particular domain model. Thus the MC envisioner can be applied to different
domain models simply by changing interface files.

22

thousands of states to a mere handful. While it is hard to estimate the complexity of
envisioning (c.f. [12]), this step can be quite rapid under the task constraints of interest.

4.2.2 Step 2: Generating choice sets

To generate MC states, we must first find the possible constituents of state. That is, we must
figure out what locations are possible, what phases exist, and so forth. To fully exploit
an ATMS, we use an implicit temporal notation. That is, the statements in our model
simply refer to MC, as opposed to MC at some particular time. The following choice-sets are
computed at this stage:

Locations Every container and fluid path in £ are assumed to be possible locations of
MC. The connectivity expressed in Mg is used to install adjacency information. Possible

values for previous locations are also generated.

Phase If any contained-gasses exist, then Phase(MC) = GAS is assumed. If any contained-
liquids exist, then Phase(MC) = LIQUID is assumed. Possible values for previous phases are
also generated.

These four choice sets—current and previous values for location and phase—are com-
bined in the next step to define the MC states. The constraints imposed by flow processes,
phase transitions and adjacency are sufficient to prevent inconsistent combinations from
being considered. Other aspects of MC’s behavior—such as the type of episode it is in and
the Ds values of its quantities—can be derived using the laws of Section 3. These laws are
exploited computationally by transforming them into antecedent rules which either justify
conclusions or install nogoods.

The complexity of this step is linear in the number of processes and phases in £, because
the rules to establish phases and episode types require matching only a single object. The
laws for establishing adjacency and ruling out inconsistent combinations require pairs of
antecedents, so they are quadratic in the total number of locations in M. Importantly,
this step (and all the others save Step 1) are independent of the number of states in £.

4.2.3 Step 3: Generating MC states

Once the choice sets have been established, a standard ATMS interpretation construction
procedure is used to generate the set of possible MC states. Each state is represented by an
ATMS enwvirtonment, consisting of a consistent collection of assumptions from the choice
sets above.

23

The general complexity of interpretation construction is at worst exponential, both in
time and in the size of the result. The constraints of the molecular collection formulation
yield much better performance than that, however. The time-complexity of interpretation
construction depends on the details of an ATMS implementation, so we ignore them in
favor of estimating the size of the result (e.g., the number of MC states). Each possible
location can only have a small number of MC states. If the location is a path, then there are
only three possible previous-locations, multiplied by two possible phases. If the location is
a container, MC can either be equilibrated, undergoing a phase change (two more types of
episodes), or equilibrating. MCs entering a container from different paths will have different
equilibrating episodes, so if there are n paths into a container, there could be at most 3+ n
distinct MC states* for that container. Thus we have as an upper bound on the total number
of states a small multiple of the number of distinct locations.

It should be emphasized that at this stage, these MC states are not specific to any single
situation in £; rather, they represent the union of all possible behaviors of MC for every
contained-stuff situation. Finding what happens in a specific contained-stuff situation is
the purpose of the next step.

4.2.4 Step 4: Projecting MC states onto a contained-stuff situation

The molecular collection ontology represents the “micro structure” of the behavior of
contained-stuffs. Thus to carry out an MC analysis requires choosing some particular pat-
tern of activity involving contained-stuffs. We restrict consideration to contained-stuff
situations that last an interval of time, to respect the intuition that if the chosen situation
only lasts for an instant, MC wouldn’t have time to do anything.

Let S¢cs be the situation selected from €. To find the complete MC situations that can
occur during S¢s, the environments corresponding to the MC states must be unioned with
the environment corresponding to S¢s.°

Those unions which are successful (i.e., consistent) comprise the situations of the MC
envisionment for Scg. In addition to eliminating MC states which are not consistent with
Scs, this computation augments the consistent MC environments with the details from Scg
needed to completely determine MC’s actual behavior (e.g., its inequality relations and
derivatives for each MC situation).

The complexity of this step is linear on the number of MC states, which as we saw earlier

is quite small. Obviously, the number of MC states surviving after this step can be no more

4One for each path flowing in to the container, plus one equilibrated for each of two phases, plus one
which just crossed a phase boundary.

°Two environments are unioned by building a new environment from the union of the two sets of
assumptions.

24

than the number which existed before it. In general, this step requires on the order of a
few seconds of run time.

4.2.5 Step 5: Finding state transitions

The final step uses the previous-location and previous-phase information to connect
consistent MC states together. First, each state environment is associated with some datas-
tructure to hold information about transitions. Next, pairs of states are tested to see if
one could be the previous state of the other. Given two MC states s; and s3,° such that
81 # S, 1 can transition to s, exactly when:

phase (at (MC,s;)) = previous-phase (at(MC,s;))
Alocation(at(MC,s;)) = previous-location(at(MC,s;))
A[-Equilibrating(at(MC,s;)) V Equilibrated(at(MC,s;))]

The first two constraints enforce the obvious requirements that the phase and location
of MC in the first state agree with the corresponding previous values in the second state.
The third constraint requires that if MC is equilibrating in the initial state, then it must
be equilibrated in the end state. This enforces our requirement that MC must equilibrate
before it leaves a contained-stuff. Note that it is impossible for MC to be equilibrated in
both states, since that would make them indistinguishable—i.e., the same state.

By linking the MC states with all legal transitions, we have a complete MC envisionment.
It should be noted that this envisionment can consist of several distinct components if the
fluid system is disconnected.

The complexity of this step is no worse than quadratic in the number of MC states,
since we could check each pair to see whether or not a transition can occur between them.
However, this bound can be greatly improved by indexing the MC states by their locations.
For each location we maintain two lists of MC states—one for MCs located there and one for
MCs previously-located there. For each location, transitions are found by checking one list
against the other. Only the phase and equilibration constraints need be verified, since the
locations automatically match. Given n paths into a container, there are at most n + 3
MC states in each list. Thus the actual complexity of this step is quadratic in the average
number of paths per container in the scenario.

% Although it is most convenient to avoid explicit temporal notations in actual implementations, we use
them here for clarity.

25

4.3 Conclusions supported by the MC envisionment

Several important fluid and thermodynamic properties of a system can be ascertained by
direct inspection of the MC envisionment. Phenomena such as global flow paths, branching,
and cycles of flow are made explicit in the connectivity of the graph. In real fluid systems
branching is very common. For example, steam coming out of a ship’s boiler is often
tapped off for several different purposes, such as driving the propulsion turbines, running
generators to produce electricity, and powering the ship’s laundry. The choice of which
path to take will depend on the goal of the reasoning. Sometimes it is the properties of
a specific path which are of interest (for instance, in checking whether or not the ship’s
laundry is receiving steam). In other cases all paths must be considered (for instance, in
computing the enthalpy balance of a steam plant).

One of the most important classes of behavior are cycles. Identifying cycles is fun-
damental to recognizing function in thermodynamics. Combined with inequalities and
derivative information, this information suffices to classify systems as refrigerators or heat
pumps|24|. These properties are explored in more detail in the next section.

5 Examples

The MC—Envisioner has been tested on a number of examples of varying complexity. For
concreteness this section describes several of them.

5.1 Pumped Flow

Figure 4 illustrates a scenario consisting of two open containers connected by a pump and
a return fluid path. This example is worth considering because it includes cyclic flow which
allows an equilibrium situation, where liquid exists in both containers and the flow rates
have equalized. We choose this state as our base environment for examining MC.

Figure 5 shows the MC envisionment for the equilibrium situation. The MC envisionment
is annotated with information about the type of process responsible for the movement, as
well as the derivatives and state (phase) of MC at each place in the envisionment. This
information becomes more useful for complex examples, such as in the refrigerator example
below. Even though the situation is in steady state (i.e., all derivatives in the Contained-
Stuff ontology are ZERQ), the MC envisionment shows that each little piece-of-stuff in the
system undergoes continuous change, both in position and in pressure. Note that even
though MC is always in thermal equilibrium with its surroundings, it still must pass through
an Equilibrating state upon entering a container. As stated earlier, Equilibrating in
such situations only occurs for an instant.

26

Figure 4: A Simple Pumped-Flow Example

One conclusion which the MC ontology makes possible involves conservation of matter.
Since there is no way for MC to enter or leave the system, one can conclude that the total
amount of stuff in the system is constant.

5.2 A Refrigerator

One of the motivations for looking at the MC ontology was to allow reasoning about
complex thermodynamic cycles such as that used in a refrigerator. Figure 6 shows a
simple refrigerator involving six separate processes: two heat flows, two state changes
(boiling and condensation), a compressor flow and a liquid flow. As in the pumped flow
example, the situation selected for the MC envisionment is the steady state, where all flows
have equalized. Unlike the pumped flow example, here we are matching flow rates with
rates of boiling and condensation. The presence of phase transitions of both types puts MC

through its hoops, in that every type of episode is encountered somewhere in the loop.

Figure 7 shows the MC envisionment. MC boils in the evaporator and then is pumped
through the compressor to the condenser, where it returns to the liquid phase and is finally
forced through the expansion valve back into the evaporator. This representation provides
the foundation for an important class of engineering conclusions. Since MC gains heat
during boiling and loses it during condensation, it must be moving more heat through
the compresser than returns via the expansion valve, so there is a net heat flow from the

27

Figure 5: The MC Envisionment for the Pumped-Flow Example

LEGEND:
PUMP1 [0 Equilibrated
Pumped-Flow Pumped-Flow O Equilibrating
® Flowing
CAN1 CAN2
(Eq)
Equilibration Equilibration
CAN1 CAN2
(Eq)

Fluid-Flow Fluid-Flow

PATH1
| Location | Canl [Pump | Can2 | F-P |
De[Heat] 0 0 0 0
Ds[Temperature] 0 0 0 0
Ds[Pressure] 0 1 0 -1
Ds[Volume] 0 0 0 0
Ds [Height] 0 0 0 0

28

Figure 6: A Refrigerator
COMPRESSOR

INSIDE
FRIDGE

EVAPORATOR EXPANSION CONDENSER
VALVE

evaporator to the condenser. Thus the refrigerator is pumping heat uphill to a higher
temperature.

5.3 The SWOS Problem

Here we return to the Navy propulsion plant scenario of Figure 1. Again we select
the equilibrium situation from the contained-stuff envisionment. Figure 8 shows the MC
envisionment. The result of an increased feedwater temperature can in principle be calcu-
lated by a differential qualitative analysis (DQ) based on this envisionment [9]. Roughly,
the increased temperature means that the boiling episode is shorter, making the steam
generation rate higher. The higher steam generation rate means the steam spends less
time in the superheater, hence less heat will be transferred, implying a lower temperature
at the superheater outlet. This argument could not even be stated in the cs ontology, since
stuff does not move from place to place.

Weld [25] describes a set of DQ rules which, combined with this representation, may
be powerful enough to draw this conclusion.

6 Discussion

The ability to reason with multiple views of a situation provides significant advantages
over using a single ontology. This paper formulates the molecular collection ontology,

which complements the contained-stuff ontology most commonly used to model fluids in

29

Figure 7: The Refrigerator MC Envisionment

LEGEND:
0 Equilibrated
COMPRESSOR O Equilibrating
® Flowing
Compressed Compressed
Flow
CONDENSER

EVAPORATOR (Gas)

Equilibration (Gas)

CONDENSER

EVAPORATOR (Gas)
(Gas)
Evaporating Condensin
EVAPORATOR
(Liquid) Equilibration CONDENSER
[Liquid]
uilibration~. EVAPORATOR
Eq Liquid) CONDENSER
(Liquid)
Fluid-Flow R
EXPANSION
VALVE
Location Evap | Evap | Comp | Cond | Cond | EValve
State Liquid | Gas Gas Gas | Liquid | Liquid
De[Heat] 1 0 1 -1 0 -1
Ds[Temperature] 1 0 1 0 % |
Ds[Pressure] 0 0 1 0 0 -1
Ds[Volume] o 0 -1 -1 0 0
Ds[Height] 1 1 0 -1 -1 0

30

Figure 8: The SWOS MC Envisionment

LEGEND:
PATH1 0 Equilibrated
O Equilibrating
® Flowing

BOILER-
GAS (EQ)
Eq PATH2

BOILER-
GAS

BOILER
(EQ)

Eq

FEEDWATER-
TANK

TURBINES

Pumped-Flow
pe BOILER

PUMP
Location Sea Pump | Boiler | Boiler | Pathl | S-H | Path2 | Env
State Liquid | Liquid | Liquid | Gas Gas | Gas | Gas | Gas
Ds[Heat] 0 0 1 0 -1 1 -1 0
Ds[Temperature] 0 0 1 0 -1 1 <1 0
Ds[Pressure] 0 1 0 0 -1 0 -1 0
Ds[Volume] 0 0 1 0 1 1 1 0
Ds[Height] 0 0 1 1 0 0 0 0

31

-

qualitative physics. We showed that the molecular collection ontology is parasitic on the
contained-stuff ontology, in that to reason about molecular collections requires an analysis
in terms of contained stuffs. The contained-stuff ontology provides the conditions to deter-
mine which processes are active, and thereby determines the overall behavior of the system.
The MC ontology provides the complementary ability to reason about where a piece-of-stuff
came from and where it might go from here. We demonstrated that MC envisionments
can be easily computed from QP models of fluids organized around contained-stuffs, and
argued that this representation provides the basis for several important engineering infer-
ences (i.e., closed-cycles, recognition of heat pumps and comparative analysis).

While we believe we have made significant progress, many avenues remain to be ex-
plored. We list some of them here.

Support for other forms of analysis: The conclusions reached using the MC ontology
are crucial for supporting engineering analyses of thermodynamic systems [24]. However,
we have only begun to explore how MC arguments can be used in reasoning. For example,
carrying out comparative analyses [25], as Section 5.3 suggests, remains to be implemented.

Several important kinds of quantitative analyses would appear to be facilitated by the
MC ontology. For example, many important system parameters, such as work output per
pound of working fluid, are more naturally expressed using MCs than contained-stuffs. One
could perhaps associate equations with each type of MC episode, and generate quantitative
expressions for such parameters from the MC envisionment. These equations could then be
analyzed to identify how these parameters could be optimized, or in general how a change
in one quantity will affect the behavior of the system (c.f., [20]).

Analyzing transient behavior: Most questions that arise in quantitative engineering
problems are about steady-state behavior, i.e., a single situation in the contained-stuff on-
tology. However, many textbooks (including [16]) feel obligated to describe what happens
as a plant starts up and achieves steady-state, despite the lack of accurate mathematical
models for such conditions and their irrelevance to the formal problems posed. Interest-
ingly, their descriptions of such phenomena are invariably qualitative (albeit informal).
Presumably, these descriptions are important for linking the steady-state picture of the
plant’s behavior to an engineer’s intuition about fluids and heat. Growing an MC envision-
ment across transitions between situations in the contained-stuff ontology could provide
the substrate necessary to reason about such situations, including explanation generation.

It is possible that interesting analyses could be made as the contained-stuff behavior
hits a limit point. For instance, what happens to MC when the boiler in a steam plant ex-

32

plodes? Since the need for such analyses have not shown up in engineering thermodynamics
problems we have examined, we have not addressed this issue thus far.)

Extended pieces of stuff It may be possible to generalize the MC ontology and envi-
sioning algorithm to spatially extended pieces of stuff. This generalization would provide
the ability to, for example, identify the spread of a contaminate through a fluid system.
One way to do this might be to add dimensionality to containers and paths, so that the
model could include submerged depth and length of travel along a path.

7 Acknowledgements

Brian Falkenhainer, Gordon Skorstad, and John Hogge provided valuable comments. This
research was supported by the National Aeronautics and Space Administration, Contract
No. NASA NAG 9137, by an IBM Faculty Development award, and by an NSF Presidential
Young Investigator’s award.

References

(1] Allen, J. “Towards a general model of action and time” Artificial Intelligence, 23(2),
July 1984.

(2] Collins, J. and Forbus, K. “Building qualitative models of thermodynamic processes”,
submitted for publication, 1990

3] Collins, J. and Forbus, K. “Reasoning about Fluids via Molecular Collections”, in
Proceedings of the National Conference on Artificial Intelligence, Seattle, July, 1987.

(4] de Kleer, J. “An Assumption-Based Truth Maintenance System”, Artificial Intelli-
gence, 28, 1986.

[5] de Kleer, J. and Brown, J. “A Qualitative Physics based on Confluences”, Artificial
Intelligence, 24, 1984.

6] de Kleer, J. and Bobrow, D. “Qualitative Reasoning with Higher Order Derivatives”,
in Proceedings of the National Conference on Artificial Intelligence, Austin, Texas,
August, 1984.

[7] Falkenhainer, B. and Forbus, K. “Setting up large-scale qualitative models”, Proceed-
ings of the Seventh National Conference on Artificial Intelligence, pages 301-306, St.
Paul, MN, August 1988. Morgan Kaufmann.

33

[13]

[14]

[15]

[16]

17]

18]

[19]

[20]

[21]

[22]

(23]

Forbus, K. “Qualitative Process Theory” Artificial Intelligence, 24, 1984.

Forbus, K. “Qualitative Process Theory”, MIT AI Lab Technical report No. 789, July,
1984.

Forbus, K. “The Logic of Occurrence”, Proceedings of IJCAI-87, August, 1987.

Forbus, K. “The Problem of Existence”, in Proceedings of the Cognitive Science
Society, 1985.

Forbus, K. “The Qualitative Process Engine” in Readings in Qualitative Reasoning
about Physical Systems, Weld, D. and de Kleer, J. (Eds.), Morgan Kaufmann, 1990.

Gambardella, L., Gardin, F., and Meltzer, B. “Analogical representation in modeling
naive physics”, Proceedings of QP W-88, Paris, 1988.

Hayes, P. “The Naive Physics Manifesto”, in Fzpert systems in the Micro-FElectronic
Age, D. Michie (Ed.), Edinburgh University Press, 1979.

Hayes, P. “Naive Physics 1: Ontology for Liquids”, in Hobbs, J. and Moore, B. (Eds.),
Formal Theortes of the Commonsense World, Ablex Publishing Corporation, 1985.

Haywood, R. W. Analysis of Engineering Cycles, Pergamon Press, 1980.

Iwasaki, Y., and Simon, H. “Causality in Device Behavior”, Artificial Intelligence, 29,
1986.

Kuipers, B. “Common Sense Causality: Deriving Behavior from Structure”, Artificial
Intelligence, 24, 1984,

Kuipers, B. “Abstraction by Time-Scale in Qualitative Simulation”, in Proceedings of
the National Conference on Artificial Intelligence, Seattle, July, 1987.

Mohammed, J., and Simmons, R. “Qualitative simulation of semiconductor fabrica-
tion”, Proceedings of AAAI-86, August, 1986.

Reynolds, W. and Perkins, H. (1977) Engineering Thermodynamics. McGraw-Hill
Press, New York, New York.

Shearer, J., Murphy, A., and Richardson, H. Introduction to System Dynamics
Addison-Wesley Publishing Company, Reading, Massachusetts, 1967.

Simmons, R. “Representing and reasoning about change in geologic interpretation”,
MIT Artificial Intelligence Lab TR-749, December, 1983.

34

[24]

[25]

[26]

[27]

28]

[29]

Skorstad, G. and Forbus, K. “Qualitative and quantitative reasoning about ther-
modynamics” Proceedings of the eleventh annual conference of the Cognitive Science
Society, Ann Arbor, MI, August, 1989. '

Weld, D. “Comparative Analysis”, Proceedings of IJCAI-87, August, 1987.

Weld, D. “Switching Between Discrete and Continuous Process Models to Predict
Genetic Activity”, MIT Artificial Intelligence Lab TR-793, October, 1984.

Welty, J. Wicks, C.E., and Wilson, R.E., Fundamentals of Momentum, Heat, and
Mass Transfer (second edition).John Wiley & Sons, New York, NY, 1984.

Williams, B. “Qualitative Analysis of MOS Circuits”, Artificial Intelligence, 24, 1984.

Williams, B. “The Use of Continuity in a Qualitative Physics”, in Proceedings of the
National Conference on Artificial Intelligence, Austin, Texas, August, 1984.

35

