
FROM:

Kenneth D. Forbus
Qualitative Reasoning Group

The Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue, Evanston, IL, 60201

Abstract

Qualitative reasoners have been hamstrung by the in-
ability to analyze large models . This includes self-
explanatory simulators, which tightly integrate qual-
itative and numerical models to provide both preci-
sion and explanatory power . While they have im-
portant potential applications in training, instruction,
and conceptual design, a critical step towards real-
izing this potential is the ability to build simulators
for medium-sized systems (i .e ., on the order of ten
to twenty independent parameters) . This paper de-
scribes a new method for developing self-explanatory
simulators which scales up . While our method involves
qualitative analysis, it does not rely on envisioning or
any other form of qualitative simulation . We describe
the results of an implemented system which uses this
method, and analyze its limitations and potential .

Introduction
While qualitative representations seem useful for real-
world tasks (c.f. [1 ; 15]), the inability to reason qual-
itatively with large models has limited their utility.
For example, using envisioning or other forms of qual-
itative simulation greatly restricts the size of model
which can be analyzed [14 ; 4] . Yet the observed use of
qualitative reasoning by engineers, scientists, and plain
folks suggests that tractable qualitative reasoning tech-
niques exist . This paper describes one such technique :
a new method for building self-explanatory simulators
'~101 which has been successfully tested on models far
larger than previous qualitative reasoners can handle .
A self-explanatory simulation combines the precision

of numerical simulation with the explanatory power of
qualitative representations . They have three advan-
tages : (1) Better explanations : By tightly integrating
numerical and qualitative models, behavior can be ex-
plained as well as predicted, which is useful for in-
struction and design . (2) Improved self-monitoring :
TYpically most modeling assumptions underlying to-
day's numerical simulators remain in their author's
heads . By incorporating an explicit qualitative model,
the simulator itself can help ensure that its results are
consistent . (3) Increased automation: Explicit domain

Proceedings of AAAI '92
July 12-16, 1992
San Jose, California

Self-Explanatory Simulations :
Scaling up to large models

Brian Falkenhainer
System Sciences Laboratory

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto CA 94304

theories and modeling assumptions allow the simula-
tion compiler to shoulder more of the modeling burden
(e.g ., [7])-
Applying these ideas to real-world tasks requires a

simulation compiler that can operate on useful-sized
examples . In [10], our account of self-explanatory sim-
ulators required a total envisionment of the modeled
system . Since envisionments tend to grow exponen-
tially with the size of the system modeled, our previous
technique would not scale .

This paper describes a new technique for building
self-explanatory simulations that provides a solution
to the scale-up problem . It does not rely on envision-
ing, nor even qualitative simulation . Instead, we more
closely mimic what an idealized human programmer
would do. Qualitative reasoning is still essential, both
for orchestrating the use of numerical models and pro-
viding explanations . Our key observation is that in the
task of simulation writing reification of global state
is unnecessary . This suggests developing more effi-
cient local analysis techniques . While there is room for
improvement, SIMGEN .MK2 can already write self-
explanatory simulations for physical systems which no
existing envisioner can handle .

Section outlines the computational requirements of
simulation writing, highlighting related research . Sec-
tion uses this decomposition to describe our new
method for building self-explanatory simulations . Sec-
tions and discuss empirical results . We use MK1
below to refer to the old method and implementation
and MK2 to refer to the new .

The task of simulation writing
We focus here on systems that can be described via
systems of ordinary differential equations without si-
multaneities . Writing a simulation can be decomposed
into several subtasks :

1 . Qualitative Modeling .

	

The first step is to iden-
tify how an artifact is to be described in terms of con-
ceptual entities . This involves choosing appropriate
perspectives (e.g ., DC versus high-frequency analysis)
and deciding what to ignore (e.g ., geometric details, ca-
pacitive coupling) . Existing engineering analysis tools

Forbus and Falkenhainer

	

685

(e.g ., NASTRAN, SPICE, DADS) provide little support
for this task . Qualitative physics addresses this prob-
lem by the idea of a domain theory (DT) whose general
descriptions can be instantiated to form models of spe-
cific artifacts (e.g ., [7]) . Deciding which domain theory
fragments should be applied in building a system can
require substantial reasoning .

2 . Finding relevant quantitative models. The
conceptual entities and relationships identified in qual-
itative analysis guide the search for more detailed mod-
els . Choosing to include a flow, for instance, requires
the further selection of a quantitative model for that
flow (e.g ., laminar or turbulent) . Current engineering
analysis tools sometimes supply libraries of standard
equations and approximations . However, each model
must be chosen by hand, since they lack the deductive
capabilities to uncover non-local dependencies between
modeling choices . Relevant AI work includes [3 ; 7 ; 171-
3 . From equations to code.

	

The selected models
must be translated into an executable program . Rele-
vant AI work includes [2 ; 211-
4 . Self-Monitoring .

	

Hand-built numerical simula-
tions are typically designed for narrow ranges of prob-
lems and behaviors, and rarely provide any indica-
tion when their output is meaningless (e.g ., negative
masses) . Even simulation toolkits tend to have this
problem, relying on the intuition and expertise of a hu-
man user to detect trouble . Forcing a numerical model
to be consistent with a qualitative model can provide
automatic and comprehensive detection of many such
problems [10] .

5 . Explanations . Most modern simulation toolk-
its provide graphical output, but the burden of under-
standing still rests on the user . Qualitative physics
work on complex dynamics [19 ; 16 ; 20] can extract
qualitative descriptions from numerical experiments .
But since they require the simulator (or equations)
as input and so far are limited to systems with few
parameters they are inappropriate for our task . The
tight integration of qualitative and numerical models
in self-explanatory simulators provides better explana-
tions for most training simulators and many design and
analysis tasks .

Simulation-building by local reasoning
Clearly envisionments contain enough information to
support simulation-building ; The problem is they con-
tain too much . The author of a FORTRAN simula-
tor never enumerates the qualitatively distinct global
states of a complex artifact . Instead she identifies dis-
tinct behavior regimes for pieces of the artifact (e.g .,
whether a pump is on or off, or if a piping system
is aligned) and writes code for each one . Our new
simulation-building method works much the same way.
Here we describe the method and analyze its complex-
ity and trade-offs . We use ideas from assumption-based

686

	

Representation and Reasoning : Qualitative

Qualitative analysis

truth maintenance (ATMS) [611, Qualitative Process
theory [8], Compositional Modeling [7], and QPE [9]
as needed .

Envisioning was the qualitative analysis method of
MK1 . The state of a self-explanatory simulator was
defined as a pair (,V, Q), with rV a vector of contin-
uous parameters (e.g ., mass(B)) and booleans corre-
sponding to preconditions (e.g ., Open(Valve23)), and
Q ranged over envisionment states .
Envisioning tends to be exponential in the size of

the artifact A. Many of the constraints applied are
designed to ensure consistent global states using only
qualitative information. For example, all potential vio-
lations of transitivity in ordinal relations must be enu-
merated. The computational cost of such constraints
can be substantial . For our task such effort is irrele-
vant ; the extra detail in the numerical model automat-
ically prevents such violations .
The domain theory DT consists of a set of model

fragments, each with a set of antecedent conditions
controlling their use and a set of partial equations
defining influences [8] on quantities . The directly in-
fluenced quantities are defined as a summation of in-
fluences on their derivative dQo dt = ulnf(Q o) Qi
and the indirectly influenced quantities are defined
as algebraic functions of other quantities Qo =
f (Q1, . . ., Qn). The qualitative analysis identifies rel-
evant model fragments, sets of influences, and tran-
sitions where the set of applicable model fragments
changes . The algorithm is :

1 .

	

Establish a dependency structure by instantiating
all applicable model fragments into the ATMS. The
complexity is proportional to DT and A.

2 .

	

Derive all minimal, consistent sets of assumptions
(called local states) under which each fragment holds
(i .e ., their ATMS labels) . The labels enumerate the op-
erating conditions (ordinal relations and other propo-
sitions) in which each model fragment is active .

3 .

	

For each quantity, compute its derivative's sign in
each of its local states when qualitatively unambiguous
(QPT influence resolution) . This information is used
in selecting numerical models and in limit analysis be-
low . The complexity for processing each quantity is
exponential in the number of influences on it . Typi-
cally there are less than five, so this step is invariably
cheap in practice .

4 .

	

Find all limit hypotheses involving single inequal-
ities (from QPT limit analysis) . These possible tran-
sitions are used to derive code that detects state tran-
sitions . This step is linear in the number of ordinal
comparisons .
This algorithm is a subset of what an envisioner

does . No global states are created and exponential
enumeration of all globally consistent states is avoided

(e.g ., ambiguous influences are not resolved in step 3
and no limit hypothesis combinations are precomputed
in step 4) . Only Step 2 is expensive: worst case expo-
nential in the number of assumptions due to ATMS
label propagation . We found two ways to avoid this
cost in practice . First, we partially rewrote the qual-
itative analysis routines to minimize irrelevant justifi-
cations (e.g ., transitivity violations) . This helped, but
not enough .
The second method (which worked) uses the fact

that for our task, there is a strict upper bound on the
size of relevant ATMS environments . Many large envi-
ronments are logically redundant [5] . We use labels for
two purposes: (1) to determine which model fragments
to use and (2) to derive code to check logical conditions
at run-time . For (1) having a non-empty label suffices,
and for (2) shorter, logically equivalent labels produce
better code . By modifying the ATMS to never create
environments over a fixed size we reduced the
number of irrelevant labels . The appropriate value for
£,nas can be ascertained by analyzing the domain the-
ory's dependency structure .' Thus, while Step 2 is still
exponential, the use of £,nom greatly reduces the degree
of combinatorial explosion .'
A new definition of state for self-explanatory simula-

tors is required because without an envisionment, Q is
undefined . Let N be a vector of numerical parameters,
and let B be a vector of boolean parameters represent-
ing the truth value of the non-comparative proposi-
tions which determine qualitative state . That is, B
includes parameters representing propositions and the
status of each model fragment, but not comparisons .
(Ordinal information can be computed directly from
N as needed.) The state of a self-explanatory simula-
tor is now defined as the pair (l1(, B) . In effect, each
element of Q can be represented by some combination
of truth values for B .

Finding relevant quantitative models
The qualitative analysis has identified the quantities
of interest and provided a full causal ordering on the
set of differential and algebraic equations . However,
because the influences on a quantity can change over
time, a relevant quantitative model must be found for
each possible combination .
This aspect of simulation-building is identical with

MK 1 . The derivative of a directly influenced param-
eter is the sum of its active influences . For indirectly
influenced parameters, a quantitative model must be
selected for each consistent combination of qualitative
proportionalities which constrain it For instance, when

'Empirically, setting £max to double the maximum size
of the set of preconditions and quantity conditions for DT
always provides accurate labels for the relevant subset of
the ATMS. The factor of two ensures accurate labels when
computing limit hypotheses .

'Under some tradeoffs non-exponential algorithms may
be possible : See Section .

a liquid flow is occurring its rate might depend on the
source and destination pressures and the conductance
of the path . The numerical model retrieved would be

Fluid Conductance(?path) x (Pressure(?source)-
Pressure(?dest))

If N qualitative proportionalities constrain a quan-
tity there are at most 2N distinct combinations . This
worst case never arises : typically there are exactly two
consistent combinations : no influences (i .e ., the quan-
tity doesn't exist) and the conjunction of all N possi-
bilities (i .e., the model found via qualitative analysis) .
N is always small so the only potentially costly aspect
here is selecting between alternate quantitative models
(See Section) .
The only potential disadvantage with using B over

Q in this computation is the possibility that a com-
bination of qualitative proportionalities might be lo-
cally consistent, but never part of any consistent global
state . This would result in the simulator containing
dead code, which does not seem serious .

Code Generation

The simulation procedures in a self-explanatory sim-
ulator are divided into evolvers and transition proce-
dures . An evolver produces the next state, given an
input state and time step dt . A transition procedure
takes a pair of states and determines whether or not
a qualitatively important transition (as indicated by
a limit hypothesis) has occurred between them .3 In
MK1 each equivalence class of qualitative states (i .e .,
same processes and Ds values) had its own evolver and
transition procedure . In MK2 simulators have just one
evolver and one transition procedure .
An evolver looks like a traditional numerical simula-

tor . It contains three sections : (1) calculate the deriva-
tives of independent parameters and integrate them;
(2) update values of dependent parameters; (3) up-
date values of boolean parameters marking qualitative
changes . Let the influence graph be the graph whose
nodes are quantities and whose arcs the influences (di-
rect or indirect) implied by a model (note that many
can't co-occur) . We assume that the subset of the in-
fluence graph consisting of indirect influence arcs is
loop-free . This unidirectional assumption allows us to
update dependent parameters in a fixed global order .
While we may have to check whether or not to update
a quantity (e.g ., the level of a liquid which doesn't ex-
ist) or calculate which potential direct influences are
relevant (e.g ., which flows into and out of a container
are active), we never have to change the order in which
we update a pair of parameters (e.g ., we never have to
update level using pressure at one time and update
pressure using level at another within one simulator) .
The code generation algorithm is :

'Transition procedures also enforce completeness of the
qualitative record by signalling when the simulator should
"roll back" to find a skipped transition [10] .

Forbus and Falkenhainer

	

687

Sample
(defprocess (Heat-Flow ?src ?dst ?path)

Individuals ((?src :conditions (Quantity (Heat '.src)))
(?dst :conditions (Quantity (Heat 7dst)))
(?path :type Heat-Path

:conditions
(Heat. Connection '.path ?are ?dst)))

Preconditions ((heat .aligned '.path))
QuantityConditions ((greater-than (A (temperature ?arc))

(A (temperature ?dst))))
Relations ((gnantit]F flow-rate)

(Q= flow-rate (. (temperature '.src) (temperature '.dst))))
Iaffneacas((I+ (heat ?dst) (A flow-rate))

(I. (heat ?src) (A flow-rate))))

Sample
(defeatit7 (Contained-Liquid (C-S '.sub liquid '.can))
(quantity (level (C-S ?sub liquid '.can)))
(quantity (Pressure (C-S ?sub liquid ?can)))
(Function-Spec Level-Function

(Qprop (level (C-S ?sub liquid ?cast))
(Amount-of (C-S ?sub liquid '.can))))

(Correspondence ((A (level (C-S .'sub liquid '.can)))
(A (bottom-height ?can)))
((A (amount-of (C-S ?sub liquid ?can))) zero))

(Punctioa-Spec P-L-Function
(Qprop (pressure (C-S ?sub liquid '.can))

(level (C-S ?sub liquid !c&s%)))))

(defpcocess (Liquid-flow ?sub !'src 'dst ?path)

:conditions
(Fluid-Connection !path ?src ?dot)))

Preconditions ((aligned '.path))
Quantityconditions

((greater-than (A (pressure ?src-cl)) (A (pressure 7dat-cl))))
Relations ((quantity flow-rate)

(Q= flow-rate (. (pressure ?Arc-cl) (pressure 'alas.cl)))
a a e)

Influences ((I+ (Amount-of-in ?sub LIQUID '.dst) (A Row-rata))
a e a))

Figure 1 : Code fragments produced by MK2 . The relevant model fragments are shown on the left, the corresponding
sample code fragments are shown on the right .

1 . Analyze the influence graph to classify parame-
ters as directly or indirectly influenced, and establish
a global order of computation.
2 . Generate code for each directly influenced quan-
tity. Update order is irrelevant because the code for
each summation term is independent .
3 . Generate code to update indirectly influenced
quantities using the quantitative models found earlier .
Updates are sequential, based on the ordering imposed
by the influence graph.
4 . Generate code to update 8, using label and de-
pendency information .

Figure 1 shows part of an evolver produced this way.
Step 1 is quadratic in the number of quantities and
the rest is linear, so the algorithm is efficient . The
code generation algorithm for transition procedures is
linear in the number of comparisons :

688

	

Representation and Reasoning : Qualitative

Sample of boolean update code

Explanation generation

of direct influence update code
(SETP (VALUE-OF (D (HEAT (C-S WATER LIQUID F))) AFTER) 0.0)
(WHEN (EQ (VALUE-OF (ACTIVE PIO) BEFORE) ':TRUE)
(SETF (VALUE-OP (D (HEAT (C-S WATER LIQUID F))) AFTER)

(. (VALUE-OP (D (HEAT (C-S WATER LIQUID P))) AFTER)
(VALUE-OP (A (HEAT-FLOW-RATE PIO)) BEFORE))))

(WHEN (EQ (VALUE-OP (ACTIVE P11) BEFORE) ':TRUE)
(SETP (VALUE-OP (D (HEAT (C-S WATER LIQUID F))) AFTER)

(+ (VALUE-OF (D (HEAT (C-S WATER LIQUID F))) AFTER)
(VALUE-OF (A (HEAT-FLOW-RATE PIl)) BEFORE))))

(SETP (VALUE-OF (A (HEAT (C-S WATER LIQUID F))) AFTER)
(+ (VALUE-OP (A (HEAT (C-S WATER LIQUID P))) BEFORE)

(e DELTA-T
(VALUE-OP (D (HEAT (C-S WATERLIQUID F))) AFTER))))

of indirect influence update code
(COND ((EQ :GREATER-THAN

(COMPUTE-SIGN-PROM-FLOAT
(VALUE-OF (A (AMOUNT-OF-IN WATER LIQUID F)) BEFORE)))

(SETF (VALUE-OF (A (LEVEL (C-S WATER LIQUID F))) AFTER)
(/ (VALUE-OF (A (AMOUNT-OF (C-5 WATER LIQUID F))) AFTER)

(e 31 .153094 (VALUE-OF (A (DENSITY WATER)) AFTER)
(VALUE-OF (A (RADIUS F)) AFTER)
(VALUE-OP (A (RADIUS F)) AFTER))))

(SETF (VALUE-OF (D (LEVEL (C-S WATER LIQUID F))) AFTER)
(- (VALUE-OP (A (LEVEL (C-S WATER LIQUID F))) AFTER)
(VALUE-OP (A (LEVEL (C-S WATER LIQUID F))) BEFORE))))

(T (SET? (VALUE-OF (A (LEVEL (C-S WATER LIQUID F))) AFTER)
(VALUE-OF (A (LEVEL (C-S WATER LIQUID F))) BEFORE))

(SETF (VALUE-OF (D (LEVEL (C-S WATER LIQUID F))) AFTER)
0.0)))

(COMPUTE-INEQUALITY-FROM-FLOATS
(VALUE-OF (A (PRESSURE (C-S WATER LIQUID F))) AFTER)
(VALUE-OF (A (PRESSURE (C-5 WATER LIQUID G))) AFTER)))

(EQ (VALUE-OF (ALIGNED P1) AFTER) ' :TRUE))
':TRUE ':FALSE))

1 . Sort limit hypotheses into equivalence classes
based on what they compare . For instance, the hy-
pothesis that two pressures become unequal and the
hypothesis that they become equal both concern the
same pair of numbers and so are grouped together .
2 .

	

For each comparison, generate code to test for the
occurrence of the hypotheses and for transition skip
(see [10] for details) . To avoid numerical problems,
place tests for equality first whenever needed .

Explanations in MK 1 were cheap to compute because
the envisionment was part of the simulator . The value
of Q at any time provided a complete causal structure
and potential state transitions . In MK2 every self-
explanatory simulator now maintains instead a con-
cise history [18] for each boolean in B. The temporal
bounds of each interval are the time calculated for that

Individuals ((?sub :type Substance)
('.arc :type Container)
('.dst :type Container)
(?arc-cl :bind (C-S ?sub LIQUID ?src)) (SETP (VALUE-OF (ACTIVE PIO) AFTER)
('.dst .cl :bind (C-S ?sub LIQUID !dst)) (IF (AND
('.path :type Fluid-Path (EQ :GREATER-THAN

Table 1 : MK2 on small examples
All times in seconds . The envisioning time is included for
comparison purposes .

interval in the simulation . Elements of N can also be
selected for recording as well, but these are only neces-
sary to provide quantitative answers . A compact struc-
tured explanation system, which replicates the ontology
of the original QP model, is included in the simulator
to provide a physical interpretation for elements of B in
a dependency network optimized for explanation gen-
eration .

Surprisingly, almost no explanatory power is lost
in moving from envisionments to concise histories .
For instance, histories suffice to determine what in-
fluences and what mathematical models hold at any
time . What is lost is the ability to do cheap coun-
terfactuals : e .g ., asking "what might have happened
instead?" . Envisionments make such queries cheap be-
cause all alternate state transitions are precomputed .
Such queries might be supported in MK2's simulators
by incorporating qualitative reasoning algorithms that
operated over the structured explanation system.

Self-Monitoring
In MK1 clashes between qualitative and quantitative
models were detected by a simulator producing an in-
consistent state : i .e ., when N could not satisfy Q .
This stringent self-monitoring is impossible to achieve
without envisioning . To scale up we must find a good
compromise between stringency and performance . Our
compromise is to search the nogood database generated
by the ATMS during the qualitative analysis phase for
useful local consistency tests . These tests are then pro-
ceduralized into a nogood checker which becomes part
of the simulator . Empirically, few nogoods are use-
ful since they rule out combinations of beliefs which
cannot hold, given that B is computed from N . Thus
so far nogood checkers have tended to be small . How
much self-monitoring do we lose? At worst MK2 pro-
duces no extra internal consistency checks, making it
no worse than many hand-written simulators . This is
a small price to pay for the ability to produce code for
large artifacts .

Examples
These examples were run on an IBM RS/6000,

Model 530, with 128MB of RAM running Lucid Com-
mon Lisp . Table reports the MK2 runtimes on the
examples of [10] . Here, MK2 is much faster than hu-
man coders . To explore MK2's performance on large

problems we tested it on a model containing nine con-
tainers connected by twelve fluid paths (i.e ., a 3 x 3
grid) . The liquid in each container (if any) has two
independent variables (mass and internal energy) and
three dependent variables (level, pressure, and temper-
ature) . 24 liquid flow processes were instantiated, each
including rates for transfer of mass and energy . We es-
timate a total envisionment for this situation would
contain over 101= states, clearly beyond explicit gen-
eration . The qualitative analysis took 16,189 seconds
(over four hours), which is slow but not forever . Gen-
erating the code took only 97 .3 seconds (under two
minutes), which seems reasonably fast .

Analysis
The examples raise two interesting questions : (1) why
is code generation so fast and (2) can the qualitative
analysis be made even faster?
Code generation is fast for two reasons . First, in

programming framing the problem takes a substantial
fraction of the time . This job is done by the qualita-
tive analysis . Transforming the causal structure into a
procedure given mathematical models is easy, deriving
the causal structure to begin with is not . The second
reason is that our current implementation does not rea-
son about which mathematical model to use . So far our
examples included only one numerical model per com-
bination of qualitative proportionalities .' This will not
be unusual in practice, since typically each approxima-
tion has exactly one quantitative model (e.g ., laminar
flow versus turbulent flow) . Thus the choice of physical
model typically forces the choice of quantitative model .
On the other hand, we currently require the retrieved
model to be executable as is, and do not attempt to
optimize for speed or numerical accuracy (e .g . [2 ; 17]) .
The qualitative analysis for large examples could be

sped up in several ways. First, our current routines are
culled from QPE, hence are designed for envisioning,
not this task . Just rewriting them to minimize irrele-
vant dependency structure could result in substantial
speedups . Second, using an ATMS designed to avoid
internal exponential explosions could help [5] .
A more radical possibility is to not use an ATMS.

Some of the jobs performed using ATMS labels in Sec-
tion can be done without them. Consider the problem
of finding quantitative models for indirectly influenced
parameters, which requires combining labels for quali-
tative proportionalities . For some applications it might
be assumed that if no quantitative model is known for a
combination of qualitative proportionalities then that
combination cannot actually occur . Computing the la-
bels of influences is unnecessary in such cases . Some-
times ignoring labels might lead to producing code
which would never be executed (e.g ., boiling iron in
a steam plant) . At worst speed in qualitative analysis

4 1f there are multiple quantitative models the current
MK2 selects one at random

Forbus and Falkenhainer

	

689

Example Qualitative Code Envisioning
Analysis Generation

Two containers 19 .4 3.4 40 .2
Boiling water 21 .8 3.4 45 .6
Spring-Block 4 .9 1 .5 6.2

can be traded off against larger (and perhaps buggy)
simulation code ; At the best faster reasoning tech-
niques can be found to provide the same service as
an ATMS but with less overhead for this task .

SIMGEN .MK2 demonstrates that qualitative reason-
ing techniques can scale up . Building self-explanatory
simulators requires qualitative analysis, but does not
require calculating even a single global state . By avoid-
ing envisioning and other forms of qualitative simu-
lation, we can build simulators for artifacts that no
envisionment-based system would dare attempt. Al-
though our implementation is not yet optimized, al-
ready it outspeeds human programmers on small mod-
els and does reasonably well on models within the
range of utility for certain applications in instruction,
training, and design . Our next step is to build a ver-
sion of MK2 which can support conceptual design and
supply simulators for procedures trainers and integra-
tion into hypermedia systems .

Discussion

Abbott, K. "Robust operative diagnosis as problem-
solving in a hypothesis space", Proceedings of AAAI-
88, August, 1988 .
Abelson, H. and Sussman, G. J . The Dynamicist's
Workbench : I Automatic preparation of numerical ex-
periments MIT AI Lab Memo No . 955, May, 1987 .
Addanki, S ., Cremonini, R., and Penberthy, J.S .
"Graphs of Models", Artificial Intelligence, 51, 1991 .

[4] Collins, J . and Forbus, K . "Building qualitative
models of thermodynamic processes", unpublished
manuscript.
DeCoste, D . and Collins, J . "CATMS : An ATMS
which avoids label explosions", Proceedings of AAA1-
91, Anaheim, CA., 1991 .

(6] de Kleer, J . "An assumption-based truth maintenance
system", Artificial Intelligence, 28, 1986 .

(7] Falkenhainer, B and Forbus, K . D . Compositional
modeling : Finding the right model for the job . Ar-
tificial Intelligence, 51(1-3) :95-143, October 1991 .

(8] Forbus, K . D . Qualitative process theory . Artificial
Intelligence, 24:85-168, 1984 .
Forbus, K. The qualitative process engine, A study
in assumption-based truth maintenance. International
Journal for Artificial Intelligence in Engineering,
3(3):200-215,1988 .

[10] Forbus, K. D. and Falkenhainer, B. Self-Explanatory
Simulations : An integration of qualitative and quan-
titative knowledge . AAAI-90, July, 1990 .

[11] Franks, R.E . Modeling and simulation in chemical en-
gineering, John Wiley and Sons, New York, 1972 .

690

	

Representation and Reasoning : Qualitative

[12] Haug, E .J . Computer-Aided Kinematics and Dynam-
ics of Mechanical Systems Volume I: Basic Methods,
Allyn and Bacon, 1989 .

[13] Hayes, P. "The naive physics manifesto" in Expert sys-
tems in the micro-electronic age, D. Michie (Ed.), Ed-
inburgh University Press, 1979

[14] Kuipers, B . and Chiu, C . "Taming intractable branch-
ing in qualitative simulation", Proceedings of IJCAI-
87, Milan, Italy, 1987 .

[15] LeClair, S ., Abrams, F., and Matejka, R . "Qualita-
tive Process Automation: Self-directed manufacture
of composite materials", AI EDAM, 3(2), pp 125-138,
1989 .

(16] Sacks, E . "Automatic qualitative analysis of dynamic
systems using piecewise linear approximations", Arti-
ficial Intelligence, 41, 1990 .

(17] Weld, D. "Approximation reformulations", Proceed-
ings of AAAI-90, August, 1990 .

(18] Williams, B . "Doing time : putting qualitative rea-
soning on firmer ground" Proceedings of AAAI-86,
Philadelphia, Pa., 1986 .

(19] Yip, K . "Understanding complex dynamics by visual
and symbolic reasoning", Artificial Intelligence, 51,
1991 .
Zhao, F . "Extracting and representing qualitative be-
haviors of complex systems in phase spaces" Proceed-
ings of IJCAI-91, Sydney, Australia, 1991 .
Zippel, R. Symbolic/Numeric Techniques in Modeling
and Simulation . In Symbolic and Numerical Compu-
tations - Towards Integration. Academic Press, 1991 .

Acknowledgements
We thank Greg Siegle for intrepid CLIM programming . [20]
This work was supported by grants from NASA JSC,
NASA LRC, Xerox PARC, and IBM.

(21]References

