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We present a model of similarity-based retrieval that attempts to capture three
seemingly contradictory psychological phenomena: (a) structural commonalities
are weighed more heavily than surface commonalities in similarity judgments
for items in working memory; (b) in retrieval, superficial similarity is more impor-
tant than structural similarity ; and yet (c) purely structural (analogical) remindings
e sometimes experienced . Our model, MAC/FAC, explains these phenomena in
terms of a two-stage process . The first stage uses a computationally cheap, non-
structural matcher to filter candidate long-term memory items . It uses content
vectors, a redundant encoding of structured representations whose dot product
estimates how well the corresponding structural representations will match . The
second stage uses SME (structure-mapping engine) to compute structural matches
on the handful of items found by the first stage. We show the utility of the
MAC/FAC model through a series of computational experiments : (a) We demon-
strate that MAC/FAC can model patterns of access found in psychological data;
(b) we argue via sensitivity analyses that these simulation results rely on the
theory ; and (c) we compare the performance of MAC/FAC with ARCS, an alternate
model of similarity-based retrieval, and demonstrate that MAC/FAC explains the
data better than ARCS . Finally, we discuss limitations and possible extensions of
the model, relationships with other recent retrieval models, and place MAC/FAC
in the context of other recent work on the nature of similarity .

1 . INTRODUCTION

Similarity-based remindings range from the sublime to the stupid . At one
extreme, seeing the periodic table of elements reminds one of octaves in
music . At the other, a bicycle reminds one of a pair of eyeglasses . Often,
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remindings are neither brilliant nor superficial but simply mundane, as
when a bicycle reminds one of another bicycle. Theoretical attention is inevit-
ably drawn to spontaneous analogy : That is, to structural similarity unsup-
ported by surface similarity, as in the octave/periodic table comparison.
Such remindings seem clearly insightful and seem linked to the creative pro-
cess and should be included in any model of retrival . But, as we review
below, research on the psychology of memory retrieval points to a prepon-
derance of the latter two types of similarity : (mundane) literal similarity,
based on both structural and superficial commonalities ; and (dumb) super-
ficial similarity, based on surface commonalities. A major challenge for
research on similarity-based remindings is to devise a model that will pro-
duce chiefly literal similarity and superficial remindings, but still produce
occasional analogical remindings .
A further constraint on models of access comes from considering the role

of similarity in transfer and inference . The large number of superficial
remindings indicates that retrieval is not very sensitive to structural sound
ness . But appropriate transfer requires structural soundness, so that knowl-
edge can be exported from one description into another . And psychological
evidence (also discussed below) indicates tfiat the mapping process involved
in transfer is actually very sensitive to structural soundness . Hence our
memories often give us information we don't want, which at first seems
somewhat paradoxical. Any model of retrieval should explain this paradox.

This article presents MAC/FAC, a model of similarity-based reminding
that attempts to capture these phenomena. MAC/FAC models similarity-
based retrieval as a two-stage process . The first stage (MAC) uses a cheap,
nonstructural matcher to quickly filter potentially relevant items from a
pool of such items . These potential matches are then processed in the FAC
stage by a more powerful (but more sensitive) structural matcher, based on
the structure-mapping notion of literal similarity (Gentner, 1983) .

We begin in Section 2 by briefly reviewing psychological evidence on sim-
ilarity-based retrieval and mapping, thereby extracting some criteria which
retrieval models must satisfy. This section also outlines the computational
issues raised by similarity-based retrieval, drawing on the AI literature as
necessary . Section 3 describes the MAC/FAC model, showing how it satis-
fies the psychological and computational desiderata . Section 4 illustrates
the model's psychological plausibility by simulating the results of a psycho-
logical experiment . Section 5 explores the consequences of different design
decisions by sensitivity analyses at the level of algorithms, demonstrating
that the model's performance depends on the theoretically important param-
eters . Section 6 compares MAC/FAC with ARCS, the closest competing
model of similarity-based retrieval, demonstrating that MAC/FAC per-
forms well on databases designed by others (e .g., the ARCS data sets) and
that MAC/FAC's performance fits the psychology,-,'_ -vidence better than
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ARCS . Finally, Section 7 compares MAC/FAC to several other memory
models, analyzes some of its limitations, and discusses possible extensions .

2 . FRAMEWORK

Similarity-based transfer can be decomposed into subprocesses . Given that
a person has some current target situation in working memory, transfer
from prior knowledge requires at least

1 .

	

accessing a similar (base) situation in long-term memory,
2 .

	

creating a mapping from the base to the target, and
3 .

	

evaluating the mapping.

In this case, the base is an item from memory, and the target is the probe;
that is, we think of the retrieved memory items as mapped to the probe.
Other processes may also occur-verifying new inferences about the target
(Clement, 1986), elaborating the base and target (Falkenhainer, 1988 ; Ross,
1987), adapting or tweaking the domain representations to improve the
match (Falkenhainer, 1990a, b ; Holyoak, Novick, & Melz, 1994; Kass,
1986, 1989), and abstracting the common structure from base and target
(Gick & Holyoak, 1983; Skorstad, Gentner, & Medin, 1988 ; Winston, 1982)
-but our focus is on the first three processes .

2.1 Structure-Mapping and the Typology of Similarity
The process of mapping aligns two representations and uses this alignment
to generate analogical inferences (Gentner, 1983, 1988, 1989b) . Alignment
occurs via matching, which credtes correspondences between items in the
two representations . Analogical inferences are generated by using the corre-
spondences to import knowledge from the base representation into the target .
The mapping process is assumed to be governed by the constraints of struc-
tural consistency: one-to-one mapping and parallel connectivity . One-to-one
mapping means that an interpretation of a comparison cannot align (e .g .,
place into correspondence) the same item in the base with multiple items in
the target, or vice versa . Parallel connectivity means that if an interpreta-
tion of a comparison aligns two statements, their arguments must also be
placed into correspondence .' In this account, similarity is defined in terms
of correspondences between structured representations (Gentner, 1983 ;
Gentner & Markman, 1993, 1994a, 1994b; Goldstone & Medin, 1994a,
1994b; Goldstone, Medin, & Gentner, 1991 ; Markman & Gentner, 1990,
1993a, 1993b ; Medin, Goldstone, & Gentner, 1993). Matches can be distin-
guished according to the kinds of commonalities present . An analogy is a
match based on a common system of relations, especially involving higher-

' Previously we used the term structurally grounded for parallel connectivity .
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order relations .' A literal-similarity match includes both common relational
structure and common object descriptions . A surface similarity or mere-
appearance match is based primarily on common object descriptions, with
perhaps a few shared first-order relations .

There is considerable evidence that the mapping process is sensitive to
structural commonalities . People can readily align two situations, preserv-
ing structurally important commonalities, making the appropriate lower
order substitutions, and mapping additional predicates into the target as
candidate inferences . For example, Clement and Gentner (1991) showed
people analogies and asked which of two lower-order assertions, both shared
by base and target, was most important to the match. Subjects chose asser-
tions that were connected to matching causal antecedents : That is, their
choice was based not only on the goodness of the local match but also on
whether it was connected to a larger matching system . In a second study,
subjects were asked to make a new prediction about the target based on the
analogy with the base story . They again showed sensitivity to connectivity
and systematicity in choosing which predicates to map as candidate infer-
ences from base to target . Evidence for structural consistency in mapping
comes from a study by Spellman and Holyoak (1992) . They asked people to
explicate the analogy between the Gulf War and World War II, assuming
Saddam Hussein maps onto Hitler . Although people were divided in their
mappings, they were highly consistent . People who mapped Bush onto
Churchill mapped the current USA onto World War II Britain, and people
who mapped Bush onto F.D .R. mapped the USA today onto the USA during
World War II .

The degree of relational match is also important in determining people's
evaluations of comparisons. People rate metaphors as more apt when they
are based on relational commonalities than when they are based on common
object descriptions (Gentner, 1988 ; Gentner & Clement, 1988) . Gentner,
Rattermann, and Forbus (1993) asked subjects to rate the soundness and sim-
ilarity of story pairs that varied in which kinds of commonalities they shared.
Subjects' soundness and similarity ratings were substantially greater for
pairs that shared higher-order relational structure than for those that did
not (Gentner & Landers, 1985 ; Gentner, Rattermann, & Forbus, 1993 ;
Rattermann & Gentner, 1987) . Common relational structure also contributes
strongly to judgments of perceptual similarity (Goldstone et al ., 1991) as
well as to the way in which people align pairs of pictures in a mapping task
(Markman & Gentner, 1990, 1993b) and determine common and distinctive
features (Gentner & Markman, 1994a, b ; Markman & Gentner, 1993a) .

= We define the order of an item in a representation as follows : Objects and constants are
order 0; the order of a statement is 1 plus the maximum of the order of its arguments.
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Any model of human similarity and analogy must capture this sensitivity
to structural commonality. To do so, it must involve structural representa-
tions and processes that operate to align them (Barnden, 1994; Gentner &
Markman, 1994a, b ; Goldstone et al., 1991 ; Holyoak et al ., 1994 ; Keane,
1988a, 1988b; Markman & Gentner, 1993a, 1993b ; Medin et al ., 1993; Reed,
1987; Reeves & Weisberg, 1994) . This would seem to require abandoning
some highly influential models of similarity : for example, modeling similar-
ity as the intersection of independent feature sets or as the dot product of
feature vectors . However, we will show that a variant of these nonstructural
models can be useful in describing memory retrieval .

2 .1.1 Similarity-based Access from Long-term Memory
There is considerable evidence that access to long-term memory relies more
on surface commonalities and less on structural commonalities than does
mapping . For example, people often fail to access potentially useful analogs,
as in Gick and Holyoak's (1980, 1983) dramatic demonstration . When sub-
jects were told a story and then given an analogous problem to solve, about
30% solved the problem . However, if subjects were simply told to think
about the story they had heard, 80% to 90% solved the problem . We can
infer that most of the subjects retained representations of the prior story
sufficient to provide a useful analogy, but that hearing the structurally
analogous problem did not provide spontaneous access to the story repre-
sentation in memory . Other research has shown that, although people in a
problem-solving task are often reminded of prior problems, these remindings
are often based on surface similarity rather than on structural similarities
between the solution principles dIolyoak & Koh, 1987 ; Keane, 1987, 1988b ;
Novick, 1988a, b ; Reed, Ernst, & Banerji, 1974; Ross, 1984, 1987, 1989 ; see
also the comprehensive review by Reeves & Weisberg, 1994) .

The experiments we will model here investigated which kinds of similari-
ties led to the best retrieval from long-term memory (Gentner & Landers,
1985 ; Gentner, Rattermann, & Forbus, 1993 ; Rattermann & Gentner, 1987) .
Subjects were first given a relatively large memory set (the "Karla the Hawk"
stories). About a week later, they were given new stories that resembled the
original stories in various ways and were asked to write out any remindings
they experienced to the prior stories while reading the new stories . Finally,
they rated all the pairs for soundness-that is, how well inferences could be
carried from one story to the other . The results showed a marked disassoci-
ation between retrieval and subjective soundness and similarity. Surface
similarity was the best predictor of memory access, and structural similarity
was the best predictor of subjective soundness . This dissociation held not
only between subjects but also within subjects . That is, subjects given the
soundness task immediately after the cued retrieval task judged that the very
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matches that had come to their minds most easily (the surface matches) were
highly unsound (i .e ., unlikely to be useful in inference) . This suggests that
similarity-based access may be based on qualitatively distinct processes
from analogical inferencing .

It is not the case that higher-order relations contribute nothing to retrieval .
Adding higher-order relations led to nonsignificantly more retrieval in two
studies and to a small but significant benefit in the third. Other research has
shown positive effects of higher-order relational matches on retrieval,
especially in cases where subjects were brought to do intensive encoding
of the original materials (Faries & Reiser, 1988) or were expert in the domain
(Novick, 1988a, 1988b) . But higher-order commonalities have a much bigger
effect on mapping once the two analogs are present than they do on similar-
ity-based retrieval, and the reverse is true for surface commonalities .

These results place several constraints on a computational model similar-
ity-based retrieval. The first two criteria ensure that the model can provide
an account of mapping and inference :

Structured representation criterion: The model must be able to store struc-
tured representations.

	

r

Structured mappings criterion: The model must incorporate processes of
structural mapping (i .e ., alignment and transfer) over its representations.

The remaining four criteria summarize the pattern of retrieval results :

Primacy of the mundane criterion: The majority of retrievals should be
literal similarity matches: that is, matches high in both structural and surface
commonalities.
Surface superiority criterion: Retrievals based on surface similarity are frequent .
Rare insights criterion: Relational remindings must occur at least occasionally,
with lower frequency than literal similarity or surface remindings .
Scalability criterion: The model must be plausibly capable of being extended
to large memory sizes .

No current model of transfer succeeds in satisfying all six criteria . There
are two major approaches to memory models : indexing models, commonly
used in case-based reasoning work, and feature-vector models, commonly
used in mathematical modeling of human memory. We examine the trade-
offs of each in turn .

Most case-based reasoning models (Birnbaum & Collins, 1989; Branting,
in press; Kass, 1986, 1989 ; Kolodner, 1984, 1988, 1989, 1993 ; Schank, 1982)
use structured representations and focus on the process of adapting and
applying old cases to new situations . Such models satisfy the structured
representation and structured mappings criteria . However, such models
also typically presume a highly indexed memory in which the vocabulary
used for indexing captures significant higher-order abstractions such as
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themes and principles . Viewed as psychological accounts, these models would
predict that people should typically access the best structural match . That
prediction fails to match the pattern of psychological results summarized by
the primacy of the mundane and surface superiority criteria . Scalability is
also an open question at this time, because no one has yet accumulated and
indexed a large (say 103 to 106) corpus of structured representations .

The reverse set of advantages and disadvantages holds for approaches
that model similarity as the result of a dot product (or some other simple
operation) over feature vectors, as in many mathematical models of human
memory (e .g., Gillund & Shiffrin, 1984; Hintzman, 1986, 1988 ; Medin &
Schaffer, 1978 ; but see Murphy & Medin, 1985) as well as in many con-
nectionist models of learning (e .g ., Smolensky, 1988 ; see also reviews by
Humphreys, Bain, & Pike, 1989, and Ratcliff, 1990) . These models typically
use nonstructured knowledge representations and relatively simple match
processes and hence do not allow for structural matching and inference .
Such models also tend to use a unitary notion of similarity, an assumption
that is called into question by the dissociation described earlier (see also
Gentner & Markman, 1993 ; Medin et al ., 1993) . However, the use of feature
vectors has some advantages for modeling access to long-term memory . The
computations are simple enough to make it feasible to compute many matches
and choose the best, thus satisfying the scalability criterion . Furthermore,
because object features are included in the feature vectors, these models
should be able to capture the surface superiority criterion and in many cases
the primacy of the mundane criterion . (Failures on the latter will occur for
cross-mappings, when the objects and relations match but their bindings do
not.) It should be noted that some case-based reasoning work also restricts
itself to feature-vector representations and thus has the same strengths and
weaknesses (e .g ., Stanfill & Waltz, 1986) .

The MAC/FAC model seeks to combine the advantages of both ap-
proaches . We turn now to its description .

3. THE MAC/FAC MODEL

The complexity of the phenomena in similarity-based access suggests a two-
stage model . Consider the computational constraints on access . The large
number of cases in memory and the speed of human access suggests a com-
putationally cheap process . But the requirement of judging soundness,
essential to establishing whether a match can yield useful results, suggests
an expensive match process . A common computational solution to such
problems is to use a two-stage process, in which a cheap filter is used to pick
out a subset of likely candidates for more expensive processing (cf. King &
Bareiss, 1989 ; Waltz, 1989) . MAC/FAC uses this strategy . The disassocia-
tion noted previously can be understood in terms of the interactions of its
two stages .
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Figure 1 illustrates the components of the MAC/FAC model . The inputs
are a pool of memory items and aprobe, that is, a description for which a
match is to be found . The output is an item from memory (i .e ., a structured
description) and a comparison of this item with the probe . (Section 3 .1
describes exactly what a comparison is .) Internally there are two stages . The
MAC stage provides a cheap but nonstructural filter, which only passes on a
handful of items . The FAC stage uses a more expensive but more accurate
structural match to select the most similar item(s) from the MAC output,
producing a full structural alignment . Each stage consists of matchers,
which are applied to every input description, and a selector, which uses the
evaluation of the matchers to select which comparisons are produced as the
output of that stage. Conceptually, matchers are applied in parallel within
each stage .
We make minimal assumptions concerning the global structure of long-

term memory. We assume here only that there is a large pool of descriptions
from which we must select one or a few that are most similar to a probe . We
are uncommitted as to whether the pool is the whole of long-term memory or
a subset selected via some other method, fpr example, spreading activation .
We begin by describing the FAC stage . In doing so, we also describe the

computational framework which underlies MAC and FAC, including our
conventions for representation and. the information about the SME algorithm
that is required to fully understand MAC/FAC.

3.1 The FAC Stage and SME
The FAC stage takes as input the descriptions selected by the MAC stage
and computes a full structural match between each item and the probe.
We model the FAC stage by using SME, the structure-mapping engine
(Falkenhainer, Forbus, & Gentner, 1986, 1989) . Here we briefly summarize
SME's operation, both by way of describing the FAC stage and to provide
the vocabulary needed to motivate the design of the MAC stage.
SME is an analogical matcher designed as a simulation of structure-

mapping theory . It takes two inputs, a base description and a target descrip-
tion . (For simplicity we speak of these descriptions as being made up of
items, meaning both objects and statements about these objects .) It com-
putes a set of global interpretations of the comparison between base and
target . Each global interpretation includes the following .

"

	

Aset of correspondences which pair specific items in the base represen-
tation to specific items in the target .

"

	

Astructural evaluation reflecting the estimated soundness of the match .
In subsequent processing, the structural evaluation provides one source
of information about how seriously to take the match .

"

	

Aset of candidate inferences, potential new knowledge about the target
which is suggested by the correspondences between the base and target.
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Figure 1 . The MAC/FAC model.
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Candidate inferences are what give analogy its generative power, because
they represent the importation of new knowledge into the target descrip-
tion . However, they are only conjectures ; they must be tested and eval-
uated by other means .

We can illustrate these ideas with the Rutherford analogy, which describes
the structure of the atom in terms of that of the solar system . The solar sys-
tem is the base description and the atom is the target description.

"

	

Rutherford paired the Sun to the nucleus and the planets to the elec-
trons . These correspondences seem reasonable not because of intrinsic
object similarities but because they allow various relational statements
also to be placed in correspondence (i .e., aligned) : for example, the
relative masses of the objects and the fact that the planets/electrons
revolve around the Sun/nucleus.

"

	

This interpretation is a selection from among many common relations.
It focuses on the causal system of a central gravitational/electromagnetic
force, the relative mass of the two bodies within each system, and the
fact that the less massive body revolves around the heavier body. Other
common relations-such as the relative temperatures or differences in
color of the two objects-that do not belong to a common connected sys-
tem are not included in the interpretation . We refer to this preference for
connected systems of common predicates as the systematicity principle.

"

	

The preferred interpretation might also sanction new conjectures about
the atom, such as that the cause of the electrons revolving around the
nucleus is the existence of an attractive force .'

The interpretations produced by SME are structurally consistent, in that
they satisfy the constraints of one-to-one mapping and parallel connectivity,
as defined in Section 2.1 . These constraints are important because they
allow for the generation of coherent candidate inferences . The systematicity
constraint is important because it captures the human preference for aligning
connected systems of predicates (e .g ., logical arguments or causal sequences).
In addition, SME attempts to find maximal interpretations . An interpreta-
tion is maximal if adding any additional correspondences would render it
structurally inconsistent . Maximality is important both because it reduces
the number of possible interpretations and because it ensures that the full
structural implications of a set of correspondences will be considered .

Before describing the SME algorithm further, some conventions con-
cerning representation are in order . We use infix notation or Lisp prefix syn-
tax for statements as appropriate. We use the term functor of a statement

' Incorrect candidate inferences are also possible-for example, that the attractive force in
the atom is gravity . What counts as a candidate inference versus an alignable (or nonalignable)
structure depends on the reasoner's state of knowledge about the target .



as a general term for the relation or function or connective that takes the re-
maining parts of the statement as its arguments . For example,

1 .

	

In GREATER-THAN (HEIGHT (A), HEIGHT (B)), the functor is GREATER-THAN .
2.

	

In NOT (ABOVE (B, A)), the functor is NOT.
3 .

	

In HEIGHT (A), the functor is HEIGHT .
4.

	

In RED (A), the functor is RED .

Example #1 is an example of a relation . Relations range over truth values,
and their arguments can be entities or other statements. Relations always
have multiple arguments, with the exception of logical connectives (e.g .,
Example #2), which are always treated as relations regardless of the number
of arguments . For the purposes of structure-mapping, modal operators and
other higher-order predicates are classified as relations . Example #3 is an
example of a function, which maps one or more entities into another entity
or constant. In our psychological modeling, functions are often used to
represent known dimensions or components of structured objects (e .g .,
height, pressure, or color) . Example #4 is an example of an attribute, an
atomic description of some property of an entity . Attributes take only one
argument to capture the notion of a unitary description. This of course does
not mean that attributes cannot be decomposed . For instance, the following
forms are logically equivalent :

"

	

RED (A)
"

	

COLOR-OF (A, red)
"

	

COLOR (A) = red

MAC/FAC
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However, we use these three distinct forms to represent distinct psycho-
logical constructs . Roughly, tie first, an attribute, indicates that the subject
thinks of redness as a quality of the object . The second, a relation, indicates
that the subject has to some degree disengaged redness from the object and
sees color as a relationship between an object and a set of possible values . The
third, a function, indicates that the subject conceives a color as a dimension
of general application and thinks of the color of A as a value along this
dimension . We view this kind of dimensional representation as important
because dimensions may in the process of comparison be aligned with quite
different dimensions (e.g., HEIGHT and DARKNESS) . Thus, qualities that
are conceived as of dimensions are more likely to participate in systematic
cross-dimensional matches . (For the implications of this idea in analogical
development, see Gentner & Rattermann, 1991 ; Gentner, Rattermann,
Kotovsky, & Markman, in press ; Kotovsky & Gentner, 1990.)

With these conventions in mind, let us turn to the SME algorithm . SME
operates via a local-to-global process . Conceptually, its operation can be
divided into four phases . The first phase constructs a network of local
matches between items in the base and target . The second phase constructs
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global interpretations by coalescing structurally consistent combinations of
local matches . The third phase computes the structural evaluation, and the
fourth phase computes candidate inferences for each interpretation . We
examine each in turn .
SME begins by finding all possible local matches between statements in

the base and statements in the target . A local match is created between base
item Bi and target item Tj when either

1 . Bi and Tj are both statements whose functors are sufficiently alike
(typically identical, but see below), or

2.

	

Bi and Tj are corresponding arguments of other statements which are
connected by a local match and are both either objects or functions.

For instance, given the base item B1 and the target item T1 defined as

B1 : (CAUSE Event17 Event3l)
T1 : (CAUSE Event5 Event63),

a match would be hypothesized between B1 and T1 because their functors
(i .e., CAUSE) are identical . This local matck suggests in turn hypothesizing
that Eventl7 and Events match, and also that Event3l and Event63 match . Each
suggested match leads to the creation of new local matches involving the
arguments of the statement if either (a) both are entities (e .g ., objects or
constants), (b) both are terms involving functions, which are an indirect
means of referring to entities or dimensions, or (c) both are expressions whose
functors match . Here is an example of substitution involving functions :

B2: (PRESSURE Water32)
T2: (TEMPERATURE Brick45)

B2 and T2 could be placed into correspondence if they were the arguments
of some other matching pair of statements since PRESSURE and TEMPERATURE
are both functions (in this case referring to values on physical dimensions of
the respective objects) .

The idea that two statements can match only if their relational predicates
are "sufficiently alike" is based on the claim that some common relational
content is required in analogy . We disagree with Holyoak and Thagard's
(1989) claim that pure structural isomorphisms can qualify as analogies .
They have presented the following pair :

Bill is smart and tall .

	

Rover is hungry and friendly .
Steve is smart .

	

Fido is hungry.
Tom is timid and tall .

	

Blackie is frisky and friendly.

Holyoak and Thagard (1989, p . 343) noted that ACME (and five out of
the eight subjects tested) could match this pair and agree on the best attri-
bute correspondence . But the fact that it can be solved is not decisive: We
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would suggest that it is taken as a logical puzzle to be solved for the best cor-
respondences, not as an analogy . The trouble with accepting pure graph
matches is that it leads to the claim that pairs like (1) and (2) are analogies,
which seems patently untrue :

(1) Fred loves New York .

	

(2) General Motors sells cars .

Note that it is the relational meaning that must be shared; (2) and (3)
form an analogy but (2) and (4) do not :

(3) Fred peddles popsicles.

	

(4) General Motors heads the list .

The question is how to formalize this requirement of common relational
content . Structure-mapping uses the idea of tiered identicality . The default
criterion is "sufficiently alike" for predicates other than functions is that
the predicates are identical . We call this the simple identically criterion .
Simple identicality of conceptual relations is an excellent first-pass criterion
because it is computationally cheap . The notion of simple identicality might
suggest an inability to process any matches other than literal matches . This
is not the case . First, we assume that input representations are canonical
conceptual representations, not semi-verbal strings . Second, functions,
which represent domain dimensions, can be matched nonidentically if they
are embedded in matching relational structure. This ability to align non-
identical functions provides considerable flexibility. This is what allows
SME to make cross-dimensional matches, as when we interpret "Sally is
sharper than Bill" to mean that Sally is smarter than Bill . However, there
are circumstances where criteria requiring more processing are worthwhile
(e .g ., when placing two items in correspondence would allow a larger, or
very relevant, structure to be dapped, as in Falkenhainer's (1987, 1990a, b),
work) . In these circumstances weaker criteria (in that they allow more items
to match) that involve more processing are allowed . One such test is
minimal ascension (Falkenhainer, 1987, 1990a, b) which allows two items to
be placed into correspondence if their predicates have close common super-
ordinates . Another technique is decomposition: Two concepts that are simi-
lar but not identical (such as "bestow" and "bequeath") are decomposed
into a canonical representation language so that their similarity is expressed
as a partial identity (here, roughly, "give") . Decomposition is the simplest
form of re-representation (Gentner, 1989 ; Gentner & Rattermann, 1991),
where additional knowledge is used to reformulate a description in order to
achieve a better match. In this article, we only use SME with the first-level
identicality constraint . As Section 6 argues, this simple constraint seems to
provide a better psychological account than more complex constraints do .

The process of using matches to propose lower matches is recursive,
ending with entity matches . SME does not try matches between every pair
of objects in base and target : It only hypothesizes object matches when
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there is some aspect of the relational structure that suggests that the objects
might correspond . This leads to substantial efficiencies over purely bottom-
up matchers, such as Winston's (analogy program, 1992) .

The output of the first phase is a network of match hypotheses, each rep-
resenting a local match between an item of the base and target . At this stage,
the network is incoherent . The set of correspondences taken as a whole is
structurally inconsistent, often including N-to-one mappings . Furthermore,
this initial network may contain match hypotheses that are not grounded
and so can never be part of any global interpretation . A match hypothesis is
grounded if a recursive chain of correspondences from it through its argu-
ments exists all the way down to entities . Only grounded match hypotheses
can participate in global interpretations . Otherwise, global interpretations
might include statements whose arguments did not match, which would
violate the parallel connectivity constraint .

Looking at a simple example makes this process clearer . Figure 2 shows
two drawings used in psychological experiments concerning analogy," with
a propositional representation of these pictures suitable for simulation shown
in Figure 3 . The right-hand side of Figures 3 shows the propositions in stan-
dard logical format, whereas the left-hand side contains an equivalent graph-
ical representation which is useful for understanding the match process . Figure
4 illustrates the match hypotheses computed by SME for these descriptions .

Even though the initial network of match hypothesis is structurally in-
consistent, it contains every consistent interpretation of the match ; global
interpretations emerge out of the initial network. Thus, the maximum size
of any global interpretation, as measured in number of correspondences, is
limited by the size of this network . We exploit this fact in Section 3 .3 .

In the second phase, these local matches are coalesced into global inter-
pretations . The SME algorithm combines structurally consistent combina-
tions of match hypotheses (i .e ., sets with consistent object bindings and
consistent relational argument assignments) . For instance, in Figure 4 there
are two match hypotheses involving Grant, one which places him in cor-
respondence with Jack because PERSON is true of both of them, and another
match hypothesis which places Grant in correspondence with RobotJ, because
both are agents of the same kind of action, repairing . No interpretation of
this comparision can include both of these match hypotheses . Merging can
be done exhaustively, producing all possible interpretations (as in Faulken-
hainer et al ., 1986, 1989); however, we normally use a more psychologically
plausible greedy merge algorithm, which produceds only one or two inter-
pretations and operates in linear time (Forbus, Ferguson, & Gentner, 1994 ;
Forbus & Oblinger, 1990) .

We thank Arthur Markman for the drawings of Figure 2 and the corresponding representations .
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Figure 2. Two simple situations .

frff-.mII0Pi F.-V""" MUhP Mr rurtara

The third phase is structural evaluation . For simplicity, we describe this
stage as conceptually distinct from the previous stage, although it is actually
interleaved with building interpretations, because its results guide the greedy
merge algorithm . To capture human preferences, the structural evaluation
computation should favor interpretations with many matches over those
with few matches and deep interpretations over shallow interpretations . The
first step is to assign an initial score to every match hypothesis . This helps
enforce the size preference . The systematicity preference is implemented via



Figure 3. Sample descriptions . Here are two predictable calculus descriptions given to SME to illustrate the algorithm's operation .

Jack's Robot Repair description :

(REASON (REPAIRING ROBOT) CAR54)
(BROKEN CAR54))

(CAUSE (TYPING-AT JACK
(KEYBOARD ROBOT)))

(REPAIRING ROBOT) CAR54))
(CAUSE (REPAIRING ROBOT) CAR54)

(USING ROBOT) HANDTOOLSJ))
(DOOR DOOR))
(JOINTED ROBOT))
(METALLIC ROBOT))
(ROBOT ROBOT))
(PERSON JACK)



Grant's Robot Repair description :

(REASON (REPAIRING GRANT ROBOTG)
(BROKEN ROBOTG))

(CAUSE (REPAIRING GRANT ROBOTG)
(USING GRANT HANDTOOLSG))

(TOOL-SET HANDTOOLSG)
(DOOR DOORG)
(JOINTED ROBOTG)
(METALLIC ROBOTG)
(ROBOT ROBOTG)
(PERSON GRANT)
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Figure 4. A match hypothesis forest . This picture illustrates the match hypotheses
generated for a pair of simple descriptions . Match hypotheses are shown as triangles.
Dashed lines indicate the base and target items each match hypothesis places in correspon-
dence. The solid arrows leaving a match hypothesis indicates what others it relies upon to
be structurally consistent . Notice that the one of the match hypotheses involving the occur-
rence of CAUSE in the target is structurally inconsistent, because its arguments cannot be
aligned .

a trickle-down method: Match hypothesis scores are passed down to incre-
ment the scores of matching arguments .' That is, ifW (MH,) is the score
associated with a match hypothesis MH1 , MH 2 is a match hypothesis that
applies to one of MH1 's arguments, and S is the trickle-down factor, then
W (MH2) is incremented as follows :

W (MH2) - max {W (MH2) +

	

6W (MHO) ; 1 .0}
This local computation causes scores to cascade downwards, providing

higher values to those object correspondences which support the alignment

' The systematicity preference could have been implemented by differentially weighting
matches at different levels . This method would seem to require a computationally implausible
"bird's-eye" view of the representations . In a comparison of the two methods, the trickle
down method accounted for human soundness ratings better than treating weights directly as a
function of order (Forbus & Gentner, 1989).
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GM1 : 10 correspondences, SES = 4 .66
Object mappings :
DOORG <-> DOORJ
ROBOTG <-> CAR54
GRANT <-> ROBOTJ
HANDTOOLSG <-> HANDTOOLSJ

No candidate inferences .

Figure s. Global interpretations for the example. Here is a summary of the best interpreta-
tions for this match found by SME. SES refers to the structural evaluation of the interpretation .

of large relational structures . The structural evaluation of a global interpre-
tation is simply the sum of the scores of the match hypotheses which com-
prise its correspondences .

The final phase is the computation of candidate inferences . Computing
candidate inferences requires knowing the set of correspondences, so this
takes place after the merge operation . Candidate inferences are generated
by finding noncorresponding relational structure in the base which can be
conjectured to hold the target . The global interpretations built for the com-
parison of Figure 3 are shown in Figure 5 . In this simple example, there are
no candidate inferences .

It is important to note that the literal similarity computation can produce
purely relational interpretations as well as overal similarity interpretations,
and that it can produce purely surface interpretations as well . It is simply a
question of which collection of local matches wins . This reflects the human
ability to process a novel comparison and discover only after the fact that it
is an analogy . We assume that tohis all-purpose literal similarity mode is the
normal mode of similarity processing in the absence of specific instructions .
Consequently, SME creates initial local matches for attribute statements as
well as for relational statements .

For SME to play a major role in a model of similarity-based retrieval, it
should be consistent with psychological evidence . We have tested the psycho-
logical validity of SME as a simulation of analogical processing in several
ways . For instance, we compared SME's structural evaluation scores with
human soundness ratings for the "Karla the Hawk" stories discussed later
(Gentner & Landers, 1985 ; Rattermann & Gentner, 1987) . Like humans,
SME rated analogical matches higher than surface matches (Skorstad,
Falkenhainer, & Gentner, 1987) . The patterns of preference were similar
across story sets: There was a significant positive correlation between the
difference scores for SME and those for human subjects, where the dif-
ference score is the rating for analogy minus the rating for surface match
within a given story set (Gentner, Rattermann, & Forbus, 1993) .

Because retrievals occur frequently, components in model of retrieval
must be efficient . SME is quite efficient . The generation of match hypotheses
is O(n2) on a serial machine, where n is the number of items in base or target
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and should typically be better than O(log(n)) on data-parallel machines . 6
The generation of global interpretations is roughly O(log(n)) on a serial
machine, using the greedy merge algorithm of Forbus and Oblinger (1990),'
and even faster parallel merge algorithms seem feasible .

3.2 The FAC Stage
The FAC stage is essentially a bank of SME matchers, all running in parallel
in literal similarity mode." These take as input the memory descriptions that
are passed forward by the MAC stage and compute a structural alignment
between each of these descriptions and the probe . The other component of
the FAC stage is a selector-currently a numerical threshold-which chooses
some subset of these comparisons to be available as the output of the retrieval
system (see Figure 1) .

The FAC stage acts as a structural filter . It captures the human sensitivity
to structural alignment and inferential potential (subject to the limited and
possibly surface-heavy set of candidates provided by the MAC stage, as
described later) . Several remarks on this algorithm's role in retrieval are in
order . We use the literal similarity algorithm, on the grounds that in remind-
ing situations people can respond to and identify different kinds of similarity .
(Recall that the literal similarity computation can compute relational simi-
larity or object similarity as well as overall similarity) . This choice seems
ecologically sound because mundane matches are often reasonable guides to
action; riding a new bicycle, for instance, is like riding other bicycles (Forbus
& Gentner, 1986 ; Gentner, 1989; Medin & Ortony, 1989 ; Medin & Ross,
1989) . Finally, this choice is necessary to model the high observed frequency
of surface remindings . These surface remindings would mostly be rejected if
FAC were strictly an analogy matcher . The selector for the FAC stage must
choose a small set of matches for subsequent processing . Currently we select
as output the best match, based on its structural evaluation, and any others
within 10010 of it . We settled on the 10 01o criteria because it generally returns
a single result, only producing multiple results when there are two extremely
close candidates . However, other criteria are possible, and we have experi-
mented with broadening the percentage, selecting a fixed number, selecting
a maximum number (if capacity limits were assumed), and so forth . (One
class of these experiments is described in Section 5 .) We have also con-
sidered adding a threshold to the selector, so that if the best outcome is too
weak, the retrieval system returns nothing .

6 The worst-case parallel time would be O(n), in degenerate cases where all but one of the
local matches is proposed by matching arguments .

' The original exhaustive merge algorithm was worst-case factorial in the number of
"clumps" of match hypotheses but, in practice was often quite efficient . See Falkenhainer et
al . (1989) for details .

In our current implementation, SME is run sequentially on each candidate item in turn,
but this is an artifact of the implementation .
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3.3 The MAC Stage
The MAC stage collects the initial set of matches between the probe and
memory. Like the FAC stage, the MAC stage conceptually consists of a set
of matchers and a selector that simply returns all items whose MAC score is
within 10°70 of the best score given that probe . The challenge of the MAC
stage is in the design of its matcher . It must allow quickly comparing, in
parallel, the probe to a large pool of descriptions and passing only a few on
to the more expensive FAC stage . The rest of this section describes the
design and implementation of the MAC matcher .

Let us start by examining in more detail the design criteria the MAC
matcher must satisfy . Ideally, we would like the most similar or apt memory
item for the given probe . Clearly, running SME on the probe and every item
in memory would prove the most accurate result . Unfortunately, even though
SME is very efficient, it isn't efficient enough . SME operates by building in-
termediate structure, in the form of the network of local matches . The idea
of building such networks for a pair of items, or a small number of pairs of
items, is psychologically plausible, because the size of the match hypothesis
network is polynomial in the size of the descriptions being matched . This
means, depending on one's implementation assumptions, that a fixed-size
piece of hardware could be built which could be dynamically reconfigured
to represent any local match network for input descriptions of some bounded
size. What is not plausible is that such networks could be built between a
probe and every item in a large memory pool, and especially that this could
happen quickly enough in neural architectures to account for observed
retrieval times (cf . Minsky, 1981 ; Waltz, 1989) .

This architectural argumenttuggests that, while SME in literal similarity
mode is fine for FAC, MAC must be made of simpler stuff. To escape having
to suffer the complexity of the most accurate matcher in the "innermost
loop" of retrieval, we must trade accuracy for efficiency . The MAC matcher
must provide a crude, computationally cheap match process to pare down
the vast set of memory items into a small set of candidates for more expensive
processing. Ideally, MAC's computations should be simple enough to admit
plausible parallel and/or connectionist implementations for large-scale
memory pools .

What is the appropriate crude estimator of similarity? The most straight-
forward method would be to count the number of match hypotheses that
FAC would generate in comparing a probe to a memory item. Let us call
this number the numerosity of a comparison . Numerosity bears a rough
relation to the potential size of the global interpretation, because the more
local matches there are, the larger the global interpretation could potentially
be . However, a large number of match hypotheses does not guarantee a
large global interpretation, for two reasons . First, many match hypotheses
might be ungrounded (recall Section 3 .1) and hence cannot be part of any
global interpretation . Second, often many combinations of match hypotheses
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are ruled out by the 1 :1 constraint, working against the formation of large
global interpretations . Both reasons follow directly from the fact that
numerosity is not structurally sensitive . However, something like numerosity
is at least a crude estimate of similarity .

One straightforward way to implement a rough similarity estimator
would be to calculate numerosity by building the actual match hypothesis
network (e .g., to carry out the first part of a full analogy process) for the
probe and each memory item and then count the match hypotheses . This is
what our original version of MAC/FAC did (Gentner, 1989a) . It also is
roughly what ARCS (Thagard, Holyoak, Nelson, & Gochfeld, 1990) does .
ARCS models retrieval by building a network of connections similar to
SME's match hypothesis network between the probe and each item in the
memory pool that shares a semantically similar predicate with it . 9 As just
discussed, we view these solutions as psychologically and computationally
implausible. Even with parallel and/or neural hardware, it is hard to see
how to generate match hypothesis networks between a probe and everything
in a large pool of memory, while still providing realistic response times . A
cheaper method is required .
We have developed a novel technique for estimating the degree of match

in which structured representations are encoded as content vectors . Content
vectors are flat summaries of the knowledge contained in complex relational
structures . The content vector for a given description specifies which functors
(i .e ., relations, connectives, object attributes, functions, etc .) were used in
that description and the number of times they occurred . Content vectors are
assumed to arise automatically from structured representations and to remain
associated with them. Content vectors are a special form of feature vectors .

More precisely, let II be the set of functors used in the descriptions that
constitute memory items and probes . We define the content vector of a
structured description as follows . A content vector is an n-tuple of numbers,
each component corresponding to a particular element of II. Given a descrip-
tion 0, the value of each component of its content vector indicates how many
times the corresponding element of II occurs in 0 . Components corresponding
to elements of II which do not appear in statements of 0 have the value zero .
One simple algorithm for computing content vectors is to count the number
of occurrences of each functor in the description . Thus, if there were four
occurrences of IMPIES in a story, the value for the IMPLIES component of
its content vector would be 4 . (Figure 6 illustrates .) Thus, content vectors
are easy to compute from a structured representation and can be stored
economically (using sparse encoding, for instance, on serial machines) .

9 ARCS is based on Holyoak and Thagard's (1989) ACME, an analogy matcher which uses
a localist connectionist network similar to SME's match hypothesis network to construct a
single interpretation of a comparison via constraint satisfaction .



Solar System : Structured representation

(CAUSE
(GRAVITY (MASS SUN) (MASS PLANET))
(ATTRACTS SUN PLANET))

(GREATER (TEMPERATURE SUN)
(TEMPERATURE PLANET))

(CAUSE (AND (GREATER (MASS SUN)
(MASS PLANET))

(ATTRACTS SUN PLANET))
(REVOLVE-AROUND PLANET SUN))

Solar System : Content Vector

(AND . 1)
(ATTRACTS . 1)
(CAUSE . 2)
(GRAVITY . 1)
(GREATER . 2)
(MASS . 2)
(OBJECTS . 2)
(REVOLVE-AROUND .
(TEMPERATURE . 2)
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Rutherford Atom: Structured representation

(CAUSE (OPPOSITE-SIGN (CHARGE NUCLEUS)
(CHARGE ELECTRON))

(ATTRACTS NUCLEUS ELECTRON))
(REVOLVE-AROUND ELECTRON

NUCLEUS)
(GREATER (MASS NUCLEUS)

(MASS ELECTRON))

Rutherford Atom: Content Vector

(ATTRACTS . 1)
(CAUSE . 1)
(CHARGE . 2)
(GREATER . 1)
(MASS . 2)
(OBJECTS . 2)
(OPPOSITE-SIGN
(REVOLVE-AROUND

Figure 6. Sample representations with content vectors . Here are some simple predicate
calculus representations and the corresponding content vectors . A simple counting algo-
rithm is used here, in the simulation these are normalized to unit vectors .

How good an approximation is the content vector dot product to what
SME would produce? Suppose content vectors were generated using the
simple counting algorithm described above. Then the product of each cor
responding component is an overestimate of the number of match hypotheses
that would be created between functors of that type, because it does not
take into account the cases when the arguments to the match hypotheses
could not be aligned . There is a;so a possibility of underestimation, because
the dot product does not take into account matches between nonidentical
functions and entities, because discovering those matches requires tracing
predicate bindings . However, in practice, the number of entity and non-
identical function matches tends to be smaller than the number of ungrounded
matches, so overall, the dot product tends to overestimate numerosity and
hence will tend to be an overestimate of what SME would produce .

The dot product of content vectors provides exactly the computational
basis the MAC stage needs. It could be implemented efficiently for large
memories using a variety of massively parallel computation schemes . For
instance, connectionist memories can be built which find the closest feature
vector to a probe (Hinton & Anderson, 1989) . Therefore, the MAC stage
can scale up .

To summarize, the MAC matcher works as follows : Each memory item
has a content vector stored with it . '° When a probe enters, its content vector

'° We normalize content vectors to unit vectors, both to reduce the sensitivity to overall size
of the descriptions and because we assume that psychologically plausible implementation sub-
strate for MAC/FAC (e.g ., neural systems) will involve processing units of limited dynamic range.
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TABLE 1
Types of Stories Used in the "Karla the Hawk" Experiments

Note. LS=literal similarity ; SF=surface similarity ; AN=
analogy ; FOR=first-order relations .

is computed . A score is computed for each item in the memory pool by taking
the dot product of its content vector with the probe's content vector . The
MAC selector then produces as output the best match and everything within
10% of it, as described previously. (As for the FAC stage, variants that
could be considered include adding a bound on the number of items returned
(to model capacity limitations) and implementing a threshold on the MAC
selector so that if every match is too low MAC returns nothing.)

Like other feature-vector schemes, the dot product of content vectors
does not take the actual relational structure into account . It only calculates
a numerical score and hence doesn't produce the correspondences and candi
date inferences that provide the power of analogical reasoning and learning .
But the output of MAC feeds to the FAC stage, which operates on structured
representations . Thus, it is the FAC stage that both filters out structurally
unsound remindings and produces the desired correspondences and candi-
date inferences . We claim that the interplay of the cheap but dumb compu-
tations of the MAC stage and the more expensive but structurally sensitive
computations of the FAC stage explains the psychological phenomena of
Section 2 . As the first step in supporting this claim, we next demonstrate that
MAC/FAC's behavior provides a good approximation of psychological data.

4. COGNITIVE SIMULATION EXPERIMENTS
In this section ; we compare the performance of MAC/FAC with that of
humans, using the "Karla the Hawk" stories (Gentner, Rattermann, &
Forbus, 1993 ; Rattermann & Gentner, 1987, Experiment 2) . For these
studies, we wrote sets of stories consisting of base stories plus four variants,
created by systematically varying the kind of commonalities . All stories
shared first-order relations (primarily events) but varied in which other
commonalities were present, as shown in Table 1 . The LS (literal similarity)
stories shared both higher-order relational structure and object attributes .
The AN (analogy) stories shared higher-order relational structure but con-
tained different attributes, whereas the SF (surface similarity) stories shared

Common Common Common
First-Order Higher-Order Object
Relations Relations Attributes

LS Yes Yes Yes
SF Yes No Yes
AN Yes Yes No
FOR Yes No No



TABLE 2
Proportion of Remindings for Different Match Types :

Human Participants

Condition

	

Proportion

LS

	

.56
SF

	

.53
AN

	

.12
FOR

	

.09

Note. LS=literal similarity ; SF=surface similarity ; AN=
analogy ; FOR=first-order relations .

attributes but contained different higher-order relational structure . The
FOR (first-order relations) stories differed both in attributes and higher-
order relational structure .

In this study, the subjects were first given 32 -stories to remember, of
which 20 were base stories and 12 were distractors . They were later pre-
sented with 20 probe stories which matched the base stories as follows : 5 LS
matches, 5 AN matches, 5 SF matches, and 5 FOR matches . They were told
to write down any prior stories of which they were reminded . (Which stories
were in each similarity condition was varied across subjects .) As shown in
Table 2, the proportions of remindings for different match types were .56
for LS, .53 for SF, .12 for AN, and .09 for FOR. Table 2 also shows that
this retrievability order has been stable across three variations of this study :
LS >_ SF > AN >_ FOR."

As discussed above, this retrievability order differs strikingly from the
soundness ordering . When subjects were asked to rate how sound the matches
were-how well the inferences from one story would apply to the other
they rated analogy (AN) and literal similarity (LS) as significantly more
sound than surface similarity (SF) and FOR matches (matches based only
on common first-order relations, primarily events) . SME running in analogy
mode on SF and AN matches correctlyreflected human soundness rankings
(Forbus & Gentner, 1989 ; Gentner et al., in press ; Skorstad et al., 1988) .
Here we seek to capture human retrieval patterns : Does MAC/FAC dupli-
cate the human propensity for retrieving SF and LS matches rather than AN
and FOR matches? The idea is to give MAC/FAC a memory set of stories,
then probe with various new stories . To count as a retrieval, a story must
make it through both MAC and FAC . We use replication of the ordering
found in the psychological data, rather than the exact percentages, as our
criterion for success because this measure is more robust, being less sensitive
to the detailed properties of the databases.

" LS and SF did not differ significantly in retrievability . In Experiment 2, AN andFOR did
not differ significantly, although in Experiment 1, AN matches were better retrieved than
FOR matches .



(ATTACK MANI KARLA))
F))

Figure 7. A representation from the Karla the Hawk story set.

For the computational experiments, we encoded predicate calculus rep-
resentations for 9 of the 20 story sets (45 stories) . Figure 7 shows one of
the story representations . These stories are used in all three of the following
experiments .

4.1 Cognitive Simulation Experiment 1
In our first study, we put the nine basic stories in memory, along with the
nine FOR stories which served as distractors . We then used each of the
variants-LS, SF, and AN-as probes . This roughly resembles the original
task, but MAC/FAC's job is easier in that (a) it has only 18 stories in
memory, whereas participants had 32, in addition to their vast background
knowledge ; and (b) participants were tested after a week's delay, so that
there could have been some degradation of the memory representations .

Table 3 shows the proportion of times the base story made it through the
MAC and (then) through FAC. The FAC output is what corresponds to

166 FORBUS, GENTNER, AND LAW

(FOLLOW (FOLLOW
(PROMISE MANI KARLA (SEE KARLA MANI)

(NOT (ATTACK MANI KARLA))) (ATTACK MANI KARLA))
(ATTACK MANI DEER)) (HAPPEN (SEE KARLA MANI))

(CAUSE (LIVES KARLA LOCI)
(EQUALS (HAPPINESS MANI) HIGH) (POSSESS MANI CROSS-BOW)
(PROMISE MANI KARLA (POSSESS KARLA FEATHERS)

(NOT (ATTACK MANI KARLA)))) (RUMINANT DEER)
(CAUSE (ANTLERED DEER)
(OBTAIN MANI FEATHERS) (HOOFED DEER)
(EQUALS (HAPPINESS MANI) HIGH)) (QUADRIPED DEER)

(FOLLOW (MAMMAL DEER)
(OFFER KARLA FEATHERS MANI) (THIN CROSS-BOW)
(OBTAIN MANI FEATHERS)) (LARGE CROSS-BOW)

(CAUSE (MEDIEVAL CROSS-BOW)
(REALIZE KARLA (WOODEN CROSS-BOW)

(DESIRE MANI FEATHERS)) (WEAPON CROSS-BOW)
(OFFER KARLA FEATHERS MANI)) (BLACK FEATHERS)
(FOLLOW (COVERING FEATHERS)
(EQUALS (LONG FEATHERS)
(SUCCESS (SOFT FEATHERS)

(ATTACK MANI KARLA)) F) (ASSET FEATHERS)
(REALIZE KARLA (VOCAL MANI)

(DESIRE MANI FEATHERS))) (BIPED MANI)
(CAUSE t (HUNTER MANI)
(NOT (USED-FOR (WARLIKE MANI)

FEATHERS CROSS-BOW)) (HUMAN MANI)
(EQUALS (SUCCESS (MALE MANI)

ATTACK MANI KARLA)) (PREDATORY KARLA)
F)) (BLACK KARLA)

(FOLLOW (POWERFUL KARLA)
(ATTACK MANI KARLA) (LARGE KARLA)
(EQUALS (SUCCESS (HAWK KARLA)
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TABLE 3
Proportion of Correct Retrievals
Given Different Kinds of Probes

Note . LS=literal similarity ; SF=surface similarity ; AN=
analogy ; FOR=first-order relations . Memory contains 9 base
stories and 9 FOR matches ; probes were the 9 LS, 9 SF, and 9
AN stories . The rows show proportion of times the correct
base story was retrieved for different probe types .

TABLE 4
Mean Numbers of Different Match Types Retrieved
Per Probe When Base Stories are Used as Probes

Memory contains 36 base stories (LS, SF, AN, and FOR for
9 story sets) ; the 9 base stories used as probes . Other=any
retrieval from a story set different from the one to which the
base belongs .
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human retrievals . MAC/FAC's performance is much better than that of the
human participants, perhaps partly because of the differences noted above .
However, the key point is that its results show the same ordering as those of
humans : LS > SF > AN.

4.2 Cognitive Simulation Experiment 2
To give MAC/FAC a harder challenge, we put the four variants of each
base story into memory. This made a larger memory set (36 stories) and also
one with many competing similar choices . Each base story in turn was used
as a probe . This is almost the reverse of the task participants faced and is
more difficult .

Table 4 shows the mean number of matches of different similarity types
that succeed in getting through MAC and (then) through FAC. There are
several interesting points to note here . First, the retrieval results (i .e., the
number that make it through both stages) ordinally match the results for
human participants: LS > SF > AN > FOR. This degree of fit is encour-
aging, given the difference in task . Second, as expected, MAC produces

Retrievals MAC FAC

LS 0.78 0 .78
SF 0.78 0.44
TA 0.33 0.22
FOR 0 .22 0.0
Other 1 .33 0.22

Probes MAC FAC

LS 1 .0 1 .0
SF 0.89 0.89
AN 0.67 0.67
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TABLE 5
Mean Numbers of Different Match Types Retrieved Per Probe
With Base Stories as Probes and No LS Stories in Memory

Memory contains 27 stories (9 SF, 9 AN, 9 FOR) ; 9 base
stores used as probes .

some matches that are rejected by FAC. This number depends partly on the
criteria for the two stages . Here, with MAC and FAC both set at 10%, the
mean number of memory items produced by MAC is 3 .4, and the mean
number accepted by FAC is 1 .6 . Third, as expected, FAC succeeds in acting
as a structural filter on the MAC matches . It accepts all of the LS matches
MAC proposes and some of the partial matches (i .e., SF and AN), while
rejecting most of the inappropriate matches (i .e ., FOR and matches with
stories from other sets) .

4.3 Cognitive Simulation Experiment 3
In the prior simulations, LS matches were the resounding winner . Although
this is reassuring, it is also interesting to know which matches would be
retrieved if there were no perfect overall matches . Therefore, we removed
the LS variants from memory and repeated the second simulation experi-
ment, again probing with the base stories . AS Table 5 shows, SF matches
are now the clear winners in both the MAC and FAC stages . Again, the
ordinal results match well with those of subjects: SF > AN > FOR .

4 .4 Summary of Cognitive Simulation Experiments
The results are encouraging . First, MAC/FAC's retrieval results (i .e ., the
number that make it through both stages) ordinally match the results for
human subjects : LS > SF > AN > FOR . Second, as expected, MAC pro-
duces some matches that are rejected by FAC . The mean number of memory
items produced by MAC is 3 .4, and the mean number accepted by FAC is
1 .6 . Third, FAC succeeds in its job as a structural filter on the MAC matches .
It accepts all of the LS matches proposed by MAC and some of the partial
matches (the SF, AN, and FOR matches) and rejects most of the inappro-
priate matches (the "other" matches from different story sets) . It might
seem puzzling that FAC accepts more SF matches than AN matches, when
it normally would prefer AN over SF. The reason is that it is not generally
being offered this choice . Rather, it must choose the best from thematches
passed on by MAC for a given probe (which might be AN and LS, or SF
and LS, for example) .

Retrievals MAC FAC

SF 0 .88 0.78
AN 0 .56 0.56
FOR 0 .22 0.11
Other 1 .11 0.11
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It is useful to compare MAC/FAC's performance with that of Thagard
et al .'s (1990) ARCS model of similarity-based retrieval, the most comparable
alternate model. Thagard et al. gave ARCS the "Karla the Hawk" story in
memory along with 100 fables as distractors . When given the four similarity
variants as probes, ARCS produced asymptotic activations as follows : LS
( .67), FOR (- .11), SF (- .17), AN (- .27). ARCS thus exhibits at least two
violations of the LS >_ SF > AN >_ FOR order found for human remindings .
First, SF remindings, which should be about as likely as LS remindings, are
quite infrequent in ARCS-less frequent than even the FOR matches . Second,
AN matches are less frequent than FOR matches in ARCS, whereas for
humans, AN was always ordinally greater than FOR and (in Experiment 1)
significantly so . Thus, MAC/FAC explains the data better than ARCS .
This is especially interesting because Thagard et al . argued that a complex
localist connectionist network which integrates semantic, structural, and
pragmatic constraints is required to model similarity-based remindings .
Although such models are intriguing, MAC/FAC shows that a simpler
model can provide a better account of the data . We compare MAC/FAC
with ARCS in more detail in Section 6 .

Finally, and most importantly, MAC/FAC's overall pattern of behavior
captures the motivating phenomena . It allows for structured representations
and for processes of structural alignment and mapping over these represen
tations, thus satisfying the structural representation and structured map-
pings criteria . It produces fewer analogical matches than literal similarity or
surface matches, thus satifying the existence of rare insights criterion . The
majority of its retrievals are LS matches, thus satisfying the primacy of the
mundane criterion . It also produces a fairly large number of SF matches,
thus satisfying the surface superiority criterion . Finally, its algorithms are
simple enough to apply over large-scale memories, thus satisfying the scal-
ability criterion .

5 . SENSITIVITY ANALYSES

The experiments of the previous section show that the MAC/FAC model
can account for psychological retrieval data . This section looks more closely
into why it does, by seeing how sensitive the results are to different factors
in the model . These analyses are similar in spirit to those carried out by Van
Lehn (1989) in his SIERRA project . Van Lehn used his model to generate
different possible learning sequences to see if these variations covered the
space of observed mistakes made by human learners in subtraction pro-
blems . Thus, variations in the model were used to generate hypotheses
about the space of individual differences . Our methodology is quite similar,
in that we vary aspects of our model in order to better understand how it
accounts for data. The key difference is that we are not attempting to model
individual differences but instead are investigating how our results depend
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on different aspects of the theory. Such sensitivity analyses are routinely
used in other areas of science and engineering ; we believe they are also an
important tool for cognitive modeling .

Sensitivity analyses can provide insight into why a simulation works .
Any working cognitive simulation rests on a large number of design choices .
Examples of design choices include the setting of parameters, the kinds of
data provided as input, and even the particular algorithms used. Some of
these design choices are forced by the theory being tested, some choices are
only weakly constrained by the theory, and others are irrelevant to the theory
being tested but are necessary to create a working artifact. Sensitivity analyses
can help verify that the source of a simulation's performance rests with the
theoretically important design choices . Varying theoretically forced choices
should lead to a degradation of the simulation's ability to replicate human
performance . Otherwise, the source of the performance lies elsewhere . On
the other hand, varying theoretically irrelevant choices should not affect the
results, and if it does, it suggests that something other than the motivating
theory is responsible for the simulator's performance. Finally, seeing how
the ability to match human performance varies with parameters that are only
weakly constrained by theory can lead toinsights about why the model works.

In the rest of this section, we describe a series of sensitivity experiments
on MAC/FAC . These experiments demonstrate that its ability to replicate
human performance is robust, and that this ability depends crucially on the
theoretically important design choices . We first describe the methodology
used in these experiments in detail and then describe three sensitivity analyses .

5 .1 Method for Sensitivity Analyses
A sensitivity analysis requires a standard of comparision, a baseline against
which to judge the results of variations . We use as our baseline the simula-
tion experiments described in Section 4 . We say that a particular set of design
choices satisfies the data if re-running the simulation experiments with that
set of design choices yields results that match the human data . That is, the
frequency of retrievals must follow the pattern LS > SF > AN > FOR.

There are many design choices which could be explored via sensitivity
analyses . Conceptually, one can think of sets of design choices as points in a
high dimensional space . In essence, the simulation studies of Section 4 pro
vide information about one point in the design space . This metaphor is
excellent for choices of numerical parameters, because these dimensions can
be viewed as continuous . This metaphor is not as useful for other kinds of
design choices, for example, algorithmic choices, because systematically
enumerating the set of plausible algorithms for a task is quite difficult . To
best visualize the results, choosing two numerical dimensions to vary allows
patterns of satisfaction to be displayed as a table, whose entries represent
measurements of the ability of the model to satisfy the data at sampled
points in the design space .
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The two most interesting numerical parameters with respect to sensitivity
analyses on MAC/FAC are the selector widths for the MAC and FAC stages,
because these are only weakly constrained by the theory . They should be
narrow, in order to reject inappropriate remindings, but we currently see no
theoretically motivated method to calculate precise predictions for these
parameters . Therefore, in these analyses we use an empirical approach . We
vary the selector widths, using these variations as the axes of a subset of the
design space . Recall that a selector of width W accepts all matches within
W% of the largest input. That is, a selector with width 10% outputs the best
match plus any other matches that are within 10% of the score of the best
match, while a selector of width 100% will simply pass through all of its in-
puts . In the experiments below, selector widths for both MAC and FAC are
varied from 1 to 100%, in 10% increments . Each entry in the table indicates
whether that pair of width settings, combined with the other design choices,
satisfied the data. When the pattern of retrieval is violated, the table entry
contains information about the particular kind of violation.

Viewed as a map, the table of results from the sensitivity analysis can be
divided into viable regions, subspaces of design choices which allow the
model to satisfy the data, and nonviable regions, where they do not . The
existence of viable regions is of course critical for a successful simulation .
However, the nature of the nonviable regions is also interesting, because
they provide a source of insight into why the model works . Seeing how a
bridge collapses after replacing a particular strut with a weaker material
(preferably via simulation) supports the conclusion that the strength of that
strut was a factor in preventing collapse .

It should be noted that the fomputational costs of these experiments is
large but not horrendous . Essentially, the cognitive simulation experiments
of Sections 4.1 and 4.2 were replicated for each pair of selector widths, that
is, 121 times . Each repetition required running the MACmatcher 810 times, 'z
for a total of 98,010 times . The number of FAC executions varies with the
size of the set output from MAC, of course, and varies substantially accord-
ing to the particular design choices made (as shown later) . A reasonably
accurate estimate for the lower bound of FAC executions for each experiment
is 900, and a reasonable upper bound is 1,600 . The MAC matcher takes
roughly 0.002 s for each pair of content vectors, and the FAC matcher (i.e .,
SME) takes between 1 .0 and 11 s for each pair of structured representations,
with an average time of roughly 4 s." Thus, the time to run MAC/FAC for
each probe typically ranges from 3 to 10 s . A naive system for doing sensitivity

" The first experiment involves 486 MAC executions because there are 18 stories in memory
and 27 probes . The second experiment involves 324 MAC executions because there are 36
stories in memory and 9 probes.

" These times are for an IBM RS/6000 Model 350, SME3b, which was used in all experi-
ments in this section . An earlier version of SME was used in Forbus and Gentner (1989) and in
the experiments in Section 6 .
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Rows : MAC widths . Columns : FAC widths .

Legend
Y = Satisfies the data
4 = No analogies
64=SF<_AN
80 = LS :5 AN, SF <_ AN
112= LS 5AN, SFSAN, LS<_FOR
368 = LS S AN, SF :5 AN, LS 5 FOR, LS _< DT

Rows are the width of the MAC selector, Columns correspond to the width of the FAC selector . The
codes describe whether that combination of selector widths allows MAC/FAC to account for the human
data, and if not, what criteria were violated .

Table 6. Sensitivity to selector width, normalizerd content vectors .

analyses could use as much as 5 h per analysis (14,000 s for MAC, 4,000 s for
FAC) . However, we found that by caching the results of matches in a simple
database, we could cut the CPU requirements for these analyses considerably .

5.2 Sensitivity Analysis One : Robustness
In this experiment, we tested the robustness of MAC/FAC's ability to satisfy
the data by varying the selector widths. Table 6 shows the results . Notice
that there is one region that satisfies the data : When the MAC width is
between 10% and 20% and FAC is at least 10% . The moderately large viable
subspace indicates that MAC/FAC's performance is robust and not hostage
to a particular choice of selector width settings .

As discussed previously, it is important to show that there are parameter
settings that do not fit the human data, to establish that the theoretical vari-
ables actually matter . When either MAC or FAC is too narrow (i .e ., MAC
of 1 % or FAC of 1 076), analogies are never retrieved . This violates the rare
insights criterion . When MAC is broad (30% or larger), making FAC too
broad leads first to too many analogies, and then to junk remindings . The
shape of the region of viability suggests that although FAC is necessary to
provide structural matching and candidate inferences, MAC provides most
of the filtering . Because that is MAC's intended purpose, this provides fur-
ther evidence that the simulation works according to the principles of its
design, rather than some unknown factor .

196 1096 2096 3096 4096 5096 60% 70% 8090 90% 100%
1% 4 4 4 4 4 4 4 4 4 4 4
10% 4 Y Y Y Y Y Y Y Y Y Y
20% 4 Y Y Y Y Y Y Y Y Y Y
30% 4 64 64 80 80 80 112 112 112 112 112
40% 4 64 64 80 80 80 112 112 368 368 368
50% 4 64 64 80 80 80 112 368 368 368 368
60% 4 64 64 80 80 80 112 368 368 368 368
70% 4 64 64 80 80 80 112 368 368 368 368
80% 4 64 64 80 80 80 112 368 368 368 368
90% 4 64 64 80 80 80 112_ 368 368 368 368
100% 4 64 i 64 80 J 80 80 112 368 368 368 368
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The evidence that the results are not very sensitive to the particular choice
of selector widths in the original experiments (i .e., 10% for both MAC and
FAC) is reassuring . The next two sensitivity analyses explore other design
choices, using the same methodology as this experiment.

5.3 Sensitivity Analysis Two: Irrelevance of Normalization Details
In other sensitivity experiments on analogical processing algorithms (Forbus
& Gentner, 1989), we demonstrated that the choice of normalization algorithm
could affect outcomes in simulations of structural evaluation in compari-
sons . The purpose of this analysis is to determine if our design choice of using
unit content vectors (see Section 3 .3) was a significant factor in our results .

To explore this question, we consider two variations on the content vector
representation . The first variation is simply not to use any kind of normali-
zation at all . That is, we simply use as the strength of each component of the
content vector the number of statements and terms that contained the cor-
responding predicate . (The computation of normalized content vectors
involves an additional step-dividing each component by the total number
of predicates in the description .) The results of this manipulation are illus-
trated in Table 7 . The key point to notice about this table is that the viable
region is roughly the same size and shape as the viable region for normalized
content vectors . This lends support to the claim that the outcome of the sim-
ulation experiments is not heavily determined by the particular normaliza-
tion algorithm chosen .

The second variation we consider is to change what aspect of the overlap
content vectors measure . Recall that the idea of content vectors is to com-
pare the pattern of functors which appear in two structured descriptions .
There are several ways to characterize such patterns . The MAC/FAC design
choice, normalized content vectors, estimates the overlap in terms of the
relative frequency of functors in the two descriptions, independent of their
sizes . The unnormalized content vectors just examined estimate the total
size of the overlap . But is it the pattern of overlap that is relevant, or just
how many functors two descriptions have in common? We can investigate
this question by changing the structure of content vectors so that they rep-
resent only the set of predicates that are used in the structured representa-
tion, without regard to number of occurrences . We call this variation binary
content vectors because each component is essentially a 1 bit answer to the
question of whether the structured representation contains or does not con-
tain a particular predicate . Thus, the dot product of two binary content vec-
tors is a measure of the overlap in number of shared predicates . (Again, we
normalize to unit vectors, both to avoid size biases and because we assume
that psychologically plausible implementation substrates (e .g ., neural sys-
tems) will have limited dynamic range.) The results of this manipulation are
shown in Table 8 .
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Rows : MAC widths . Columns : FAC widths.

Legend
4 = No analogies
64=SFSAN
80= LS SAN, SF SAN
88=LSSSF,LSSAN,SF5AN
112=LS5AN,LSSFA,SFSAN
120=LS5SF,LSSAN,LSSFA,SF5AN
256 = LS :5 DT
336=LSSAN,SFSAN,LS5DT
368=LS5AN, LSSFA,SFSAN,LSSDT
376=LSSSF,LSSAN, LSSFA,SFSAN,LSSDT
Rows are the width of the MAC selector, Columns correspond to the width of the FAC selector. The
codes describe whether that combination of selector widths allows MAC/FAC to account for the human
data, and if not, what criteria were violated.

Table 7. Sensitivity analysis, unnormalized content vectors .

Again, the overall pattern of results is the same: With selector widths
that are too narrow, no analogies are retrieved, and with selector widths
that are too broad, too many analogies are retrieved, followed as widths in
crease by too many "junk" retrievals . The interesting difference is that the
region for the selector widths has changed : The viable wide-FAC range lies
with MAC between 30% and 50%, whereas it was between 10% and 20%
for the original content vectors . Comparing the average number of repre-
sentations output by MAC for these ranges provides some insight as to why
this should be so: For binary content vectors, the average output size was 2 ;
for standard content vectors, the average was 1 .5. In both cases, the next
step of MAC selector width allows, on the average, another representation
to make it through the FAC . Yet one more step in MAC selector width

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

1% 4 4 4 4 4 4 4 4 4 4 4
10% 4 Y Y Y Y Y Y Y Y 256 256
20% 4 64 Y Y Y Y Y 256 256 256 256
30% 4 64 64 336 336 336 336 336 336 336 336
40% 4 64 Y 80 88 88 120 376 376 376 376
50% 4 64 64 80 80 80 112 368 368 368 368
60% 4 64 64 80 80 80 112 368 368 368 368
70% 4 64 64 80 80 80 112 368 368 368 368
80% 4 64 64 80 80 80 112 368 368 368 368
90% 4 64 64 80 80 80 112 368 368 368 368
100 4 64 64 80 80 80 112 368 368 368 368
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Rows: MAC widths . Columns: FAC widths .

Legend
Y = Syslit predictions satisfied
4 = No analogies
64=SFSAN
80 = LS 5 AN, SF :5 AN
112 = LS :5 AN, LS 5 FA, SF :5 AN
368 = LS 5 AN, LS 5 FA, SF :5 AN, LS :5 DT

Binary content vectors measure the size of overlap in predicates . As before, rows are the width of the
MAC selector, Columns correspond to the width of the FAC selector . The codes describe whether that
combination of selector widths allows MAC/FAC to account for the human data, and if not, what criteria
were violated .

Table 8. Sensitivity analysis for binary content vectors .

allows many more representations to get through to FAC. Thus, measuring
only the number of shared predicates shifts the viable region but does not
substantially change its charactdr.

From these two analyses, we conclude that the choice of normalization
algorithm does not substantively affect the results . Because the normalization
algorithm is not a theoretically determined choice, these analyses support
the conclusion that the simulation works according to the theoretical account .

5 .4 Sensitivity Analysis Three : Attributes Versus Relations
Content vectors homogenize structured representations . They unify infor-
mation about attributes of objects, relationships between objects, and argu-
ment structure . Is including every kind of information in content vectors
necessary? Given the frequency of literal-similarity and surface feature
matches, both of which share many attributes, a possible hypothesis is that
content vectors could be built using attributes alone . On the other extreme,
the approaches used in case-based reasoning tend to ignore attributes and
use only relational information. To mimic these approaches in MAC/FAC,
we could use content vectors, which leave out attributes and include only
relational predicates . This analysis explores both of these extreme hypotheses.

1% 10% 2096 3096 4096 5096 60% 70% 80% 90% 100%
1% 4 4 4 4 4 4 4 4 4 4 4
10% 4 4 4 4 4 4 4 4 4 4 4
20% 4 4 4 4 4 4 4 4 4 4 4
30% 4 Y Y Y Y Y Y Y Y Y Y
40% 4 Y Y 64 Y Y Y Y Y Y Y
50% 4 64 Y 64 Y Y Y Y Y Y Y
60% 4 64 64 80 80 80 112 112' 112 112 112
70% 4 64 64 80 80 80 112 112 368 368 368
80% 4 64 64 80 80 80 112 368 368 368 368
90% 4 64 64 80 80 80 112 368 368 368 368
100% 4 64 64 80 80 80 112 368 368 368 368
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Rows: MAC widths . Columns : FAC widths .

Legend
Y = Syslit predictions satisfied
4 = No analogies
64=SFSAN
80 = LS 5 AN, SF 5 AN
88 = LS <_ SF, LS 5 AN, SF <_ AN
112 = LS :5 AN, LS 5 FA, SF <_ AN
120 = LS :5 SF, LS S AN, LS <_ FA, SF 5 AN
60 = No analogies, LS :5 DT 320 = SF :5 AN, LS :5 DT
322 = No surface matches, SF :5 AN, LS 5 DT
326 = No surface matches, no analogies, SF :5 AN, LS 5 DT
336 = LS :5 AN, SF <_ AN, LS <_ DT
344 = LS 5 SF, LS :5 AN, SF <_ AN, LS 5 DT
368 = LS <_ AN, LS :5 FA, SF :5 AN, LS :5 DT
376 = LS :5 SF, LS <_ AN, LS 5 FA, SF 5 AN, LS 5 DT

These results obtained are using content vectors which only included attributes, leaving out relations and
logical connectives . As before, rows are the width of the MAC selector, Columns correspond to the width
of the FAC selector. The codes describe whether that pair of selector widths allows MAC/FAC to account
for the human data, and if not, what criteria were violated .

Table 9. Sensitivity analysis of attribute-only content vectors.

To explore the degree to which using attribute information only in con-
tent vectors would allow MAC/FAC to satisfy the data, we modified the
algorithm which computes content vectors to ignore anything other than
attributes . The results of the sensitivity analysis are shown in Table 9. The
pattern of results is dramatically different than in previous experiments .
There is no viable region at all . This experiment provides strong evidence
that using attribute information alone in content vectors cannot satisfy
the data .

The failure of attributes alone to provide adequate filtering may not be
surprising . Is relational information alone enough? To explore this question
we again modified the algorithm that computes content vectors, this time to
not include attributes . These new content vectors, therefore, only contained
relationships between objects and higher-order relations, such as logical
connectives . The same methodology for the sensitivity analysis was followed.

1 % 10% 20% 309(0 40% 50% 60% 70% 80% 90% 100%
1% 326 322 322 322 322 322 322 322 322 322 322
10% 326 336 336 336 336 336 336 336 336 336 336
20% 260 320 320 336 336 336 336 336 336 336 336
30% 4 64 320 336 344 344 344 344 344 344 344
40% 4 64 64 336 336 336 368 368 368 368 368
50% 4 64 64 80 88 88 120 376 376 376 376
60% 4 64 64 80 80 80 112 368 368 368 368
70% 4 64 64 80 80 80 112 368 368 368 368
80% 4 64 64 80 80 80 112 368 368 368 368
90% 4 64 64 80 80 80 112 368 368 368 368
100% 4 64 64 80 1 80 80 112 368 368 368 368 -
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Rows: MAC widths . Columns : FAC widths .

Legend
Y = Satisfies the psychological data
4 = No analogies
64=SFSAN
80=LS SAN, SFSAN
112=LSSAN, SF SAN, LSSFOR
256 = LS !5 DT (260) = No analogies, LS 5 DT, LS :5 DT
262 = No surface matches, no analogies, LS 5 DT, LS 5 DT
264 = LS 5 SF, LS 5 DT, LS 5 DT
268 = No analogies, LS :5 SF, LS :5 DT, LS 5 DT
270 = No surface matches, no analogies, LS :5 SF, LS 5 DT, LS :5 DT 3
36 = LS :5 AN, SF 5 AN, LS 5 DT, LS :5 DT
368=LSSAN, SFSAN, LS _5 FOR, LS :5 DT
384 = AN :5 FOR, LS 5 DT

These results are obtained using content vectors which only included relations and logical connectives,
leaving out attributes . As before, rows are the width of the MAC selector, Columns correspond to the
width of the FAC selector . The codes describe whether that pair of selector widths allows MACFAC to
account for the human data, and if not, what Ateria were violated.

Table 10. Manipulation : Relation-only vectors .

The results of the sensitivity analysis are shown in Table 10 . Like the
attribute-only content vectors, the relation-only content vectors also fail to
satisfy the data in a pyschologically plausible manner, but for different
reasons . Almost uniformly, that is, when either the MAC width is less than
40010 or when the FAC width is greater than 70%, more "junk" matches
come through-stories from other sets, and FOR stories (i .e ., those which
match only in terms of first-order relations and not attributes or causal
structure) . The region where the data is not satisfied and the MAC width
ranges between 20 010 and 70010 is very much like the failures that occur for
the attribute-only vectors (e.g., more analogies retrieved with narrow FAC
than psychologically plausible) . There is in fact a region in Table 10 where
the pattern of results matches the human data, when the MAC width is
between 40010 and 50010 and the FAC width ranges from 20010 to either 60010
or 70 010 . However, the size of the MAC output in this range is roughly one

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1% 260 260 260 268 268 268 268 268 268 268 268
10% 270 268 268 268 268 268 268 268 268 268 268
20% 262 320 256 256 384 384 384 384 384 384 384
30% 260 256 256 256 264 264 264 264 264 264 264
40% 4 64 Y Y Y Y Y 256 256 256 256
50% 4 64 Y Y Y Y Y Y 256 256 256
60% 4 64 Y 64 80 80 80 336 336 336 336
70% 4 64 64 80 80 80 112 368 368 368 368
80% 4 64 64 80 80 80 112 368 368 368 368
90% 4 64 64 80 80 80 112 368 368 368 368
100% J 4 64 64 80 80 F8_0_1 112 368 368 368 368
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Given a pool of memory items I l An and a probe P:
1 .

	

For each item Ii, include it in a matching network if there are any predicates in Ii that are
semantically similar to a predicate in P . The matching network implements semantic and structural
constraints .

2 .

	

Create inhibitory links between units representing competing retrieval hypotheses, to ensure
competitive retrieval .

3 .

	

Install pragmatic constraints by creating excitatory links between a special pragmatic node and every
predicate marked by the user as important.

4 .

	

Run the network until it settles .

Figure 8. The ARCS algorithm

half of the total size of the memory pool . Consequently, this is not a viable
region, because it demands far too much of FAC.

These experiments provide evidence that neither attribute information
nor relational structure, by themselves, provide the right kind of information
to allow the MAC/FAC model to plausibly satisfy the psychological data .
Although such generalizations must be viewed with caution, the analysis of
why these alternatives fail may be applied to any retrieval model, not just
MAC/FAC. Using attribute information alone does not allow a retrieval
system to satisfy the rare insights criterion, because the relational informa-
tion is not used as a cue in retrieval . Using relational information alone
tends to violate the scalability criterion, because large fractions of memory
must be searched when the discrimination provided by the relational vocab-
ulary is inadequate .

6 . COMPARING MAC/FAC AND ARCS ON ARCS DATA SETS

As mentioned earlier, the model of similarity-based retrieval that is closest
to MAC/FAC is ARCS (Thagard et al ., 1990) . The ARCS algorithm is
shown in Figure 8 . ARCS uses a localist connectionist network to apply
semantic, structural, and pragmatic constraints to selecting items from
memory . Most of the work in ARCS is carried out by the constraint satis-
faction network, which provides an elegant mechanism for integrating the
disparate constraints that Thagard et al . postulated as important to retrieval .
The use of competition in retrieval is designed to reduce the number of can-
didates retrieved. Using pragmatic information provides a means for the
system's goals to affect the retrieval process .

After the network settles, an ordering can be placed on nodes representing
retrieval hypotheses based on their activation . Unfortunately, no formal
criterion was ever specified by which a subset of these retrieval hypotheses is
selected to be considered as what is retrieved by ARCS . Consequently, in
the following experiments, we mainly focus on the subset of retrieval nodes
mentioned by Thagard et al . (1990) in their article.
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6.1 Theoretical Trade-Offs
Both models have their appeals and drawbacks . Here we briefly examine
several of each .

"

	

Pragmatic effects : In MAC/FAC, it is assumed that pragmatics and
context affect retrieval according to what is encoded in the probe . That
is, we assume that plans and goals are important enough to be explicitly
represented and hence will affect retrieval . In ARCS, additional influ-
ence can be placed on particular subsets of such information by the user
marking it as important . The trade-off between these alternatives will
best be explored by embedding them in larger, task-oriented simulations,
so we do not consider effects of pragmatics further in this article .

"

	

Utility of results: Because MAC/FAC uses SME in the FAC stage, the
result of retrieval can include novel candidate inferences . Because the
purpose of retrieval is to find new knowledge to apply to the probe, this
is a substantial advantage . ARCS could close this gap somewhat by
using ACME (Holyoak & Thagard, 1989) as a postprocessor .

"

	

Initial filtering: MAC/FAC's content vectors represent the overall pat-
tern of predicates occurring in a structured description, so that the dot
product cheaply estimates overlap . ARCS' commitment to creating a
network if there is any predicate overlap places more of the retrieval
burden on the expensive process of setting up networks . The inclusive
rather than exclusive nature of ARCS' initial stage leads to the para-
doxical fact that a system in which pragmatic constraints are central
must ignore CAUSE, IF, and other inferentially important predicates
to be tractable .

"

	

Modeling inter-item effects : Wharton et al . (1994) have shown that
ARCS can model effects of competition between memory items in
heightening the relative effect of structural similarity to the probe .

Perhaps the most important issue is the notion of semantic similarity .
A key issue in analogical processing is what criterion should be used to
decide if two elements can be placed into correspondence . The FAC stage of
MAC/FAC follows the standard structure-mapping position that analogy is
concerned with discovering identical relational systems . Thus, other elements
can be matched flexibly in service of relational matching : Any two entities
can be placed in correspondence, and functions can be matched nonidenti-
cally if doing so enables a larger structure to match . But relations have only
three choices : They can match identically, as in (a) ; they can fail to match,
as in (b); if the surrounding structural match warrants it, they can be re-
represented in such a way that part of their representation now matches
identically, as in the shift from (c) to (d) .

(a) HEAVIER [camel, cow]-HEAVIER [giraffe, donkey]
(b) HEAVIER [camel, cow]-BITE [dromedary, calf]
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(c) HEAVIER [camel, cow]-TALLER [giraffe, donkey]
(d) GREATER [WEIGHT(camel), WEIGHT(cow)]-

GREATER [HEIGHT(camel), HEIGHT(cow)] .

ACME and ARCS also share the intuition that analogy is a kind of com-
promise between similarity of larger structures and similarity of individual
elements-semantic similarity, in Holyoak and Thagard's (1989) terms.
But the total similarity metric is different . These systems use graded similar-
ity at all levels and for all kinds of predicates; relations have no special
status. Thus, ARCS and ACME might find pair (b) above more similar than
pair (a), because of the object similarity. This would not be true for SME
and MAC/FAC.

In ACME, semantic similarity was operationalized using similarity
tables . For any potential matching term, a similarity table was used to assign
a similarity rating, which was then combined with other evidence to decide
whether the two predicates could match . Thus, in the examples above, both
pair (b) and pair (c) stand a good chance of being matched, depending on
the stored similarities between TALLER, HEAVIER, and BITE, camel,
dromedary and giraffe, and so on.

In ARCS, an augmented subset of WordNet (Miller, Fellbaum, Kegl, &
Miller, 1988) was used to make semantic similarity decisions . WordNet is a
psycholinguistic database describing relationships between words . Two
predicates in ARCS are considered semantically similar if their correspond-
ing lexical concepts in WordNet are connected via links that denote partic-
ular relationships . The use of WordNet as a database for simple lexical
inferences is an appealing idea. The lexical connections found in this way
should have well-founded motivations. Nevertheless, it is important to re-
member that WordNet was intended as a lexicon, not a language of thought.
Using the lexical concepts of WordNet as a predicate vocabulary requires
assuming that there exist conceptual representations that correspond to
these lexical concepts . That does not seem an implausible assumption.
However, assuming that relationships between words, such as synonym or
antonym, are used in the cognitive processing of internal representations
seems implausible .
We prefer our tiered identicality account, which uses inexpensive inference

techniques to suggest ways to re-represent nonidentical relations into a
canonical representation language . Such canonicalization has many advan
tages for complex, rich knowledge systems, where meaning arises from the
axioms in which predicates participate . When mismatches occur in a context
where it is desirable to make the match, we assume that people make use of
techniques of re-representation . An example of an inexpensive inference
technique to suggest re-representation is Falkenhainer's (1987, 1990a) mini-
mal ascension method, which looks for common superordinates when con-
text suggests that two predicates should match . The use of pure identicality
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augmented by minimal ascension allowed Falkenhainer's PHINEAS system
to model the discovery of a variety of physical theories by analogy . We
believe that WordNet could be used in a similar fashion, because it has
superordinate information .

Holyoak and Thagard (1989) have argued that broader (i .e ., weaker) no-
tions of semantic similarity are crucial in retrieval, for otherwise we would
suffer from too many missed retrivals . Although this at first sounds
reasonable, there is a counterargument based on memory size . Human
memories are far larger than any cognitive simulation yet constructed. In
such a case, the problem of false positives (i .e., too many irrelevant retrievals)
becomes critical . False negatives are of course a problem, but they can be
overcome to some extent by reformulating and re-representing the probe,
treating memory access as an iterative process interleaved with other forms of
reasoning (as in Lange & Warton's, 1992, 1993, REMIND model). Thus, it
could be argued that strong semantic similarity constraints, combined with
re-representation, are crucial in retrieval as well as in mapping.
How do these different accounts of semantic similarity fare in predicting

patterns of retrival? In the rest of this section, we tackle this question by com-
paring the performance of MAC/FAC and ARCS on a variety of examples .

6.2 Computational Experiments Comparing MAC/FAC and ARCS

6 .2.1 Methods
Each experiment below has a similar structure . First, each simulation is
given a memory, consisting of one or more database drawn from the ARCS
representations ."' Then retrieval is tested with probes drawn from a small
predefined set of stories, replicating Thagard et al .'s (1990) experiments.
The memory a simulation operates over consists of one or more databases .
In some cases, the memory is augmented by a particular story : for example,
when probing with variant Hawk stories, the Thagard et al . encoding of the
"Karla the Hawk" story is added to memory . (This is done to see if the
retrieval system is able to find the base story amidst the distractors, given
variations on the story as probes.)

For brevity, we specify the probe set and memory contents symbolically,
using "/" to distingush probe set from memory and " + " to indicate set
union. Thus, HAWK/(PLAYS + Karla Base) indicates an experiment where
the database of plays was probed with the Hawk stories . A description of
the data sets is used and these conventions is summarized in Figure 9.

Both MAC/FAC and ARCS take propositional representations as inputs,
but their representation conventions are quite different . The most crucial

" To date we have been unsuccessful in getting ARCS to run on many of the representa-
tions we used in Sections 4 and 5 . In some cases, ARCS' network does not settle after, even
1,000 iterations, and run times of up to 12 h have been required .
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Databases :
FABLES = 100 encodings of Aesop's fables, encoded by Thagard et.al .
PLAYS = 25 encodings of Shakespeare's plays, encoded by Thagard et.al .
Story sets used as probes and memory items:
HAWK = Thagard et .al.'s encoding of the "Karla the Hawk" story set, i.e., original story, analog,
appearance match, false analogy, and literal similarity versions . Databases using these probes have"the
original story added to memory, except when the original story itself is used as a probe.
SG = Thagard et .al.'s encoding of the Sour Grapes fable plus variations, i.e ., original story, analog,
appearance, and literal similarity versions . Databases using these probes have the original story added to
memory, except when the original story itself is used as a probe.
H&WSS = Thagard et.al's encoding of Hamlet and West Side Story . When Hamlet is used as a probe it is
removed from memory. West Side Story is never placed in memory.
Convention : For convenience, we refer to an experimental setup by the probe stories followed by the
database used, e.g ., SG/(FABLES+PLAYS) means that the Sour Grapes fables were used as probes with a
memory consisting of both plays and fables . When a story is used as a probe, it is removed from memory
first.
Figure 9. Databases and experimental stories used in the experiments

difference is that structure-mapping treats attributes, relations, and func-
tions differently, whereas ARCS does not distinguish them . We used the
following rules in translation : (a) One-place predicates were classified as
attributes, (b) multi-argument predicates were classified as relations, and (c)
because the arguments to CAUSE could be either events or modal proposi-
tions, we treated predicates used as arguments to a CAUSE statement either
as modal relations (e .g ., BECOMING-TRUE) or functions (e .g., MARRIED,
KILLED) . Because functions can be substituted under structure-mapping's
identicality criterion, we ran these experiments on representations
translated both with and without rule (c), that is, with and without func-
tions . With one exception, noted later, the results were essentially identical
with either translation scheme .

All run times are measured according to the Lucid Common Lisp inter-
nal clock . A single computer's was used for both simulations, so that run
times would be comparable .

Replication of computational experiments is still something of a novelty,
and standards for ensuring that reported simulation results are repeatable
have not yet been established in cognitive science . Nevertheless, we have
taken many precautions to ensure that we have run ARCS correctly . Where
numerical information was available, for instance, we matched numerical
results reported by them to several decimal places . One concern was what
should count as a retrival ill ARCS. Neither the original ARCS paper nor
the code defines a criterion for distinguishing when an item is actually re-
trieved (indeed, stories with negative activations were sometimes considered
retrievals) . In reporting ARCS results, we cut off the list of retrieved results
where Thagard et al . (1990) did . In some cases (e .g ., fables), this repre-
sented a sharp boundary, in other cases (e .g ., plays), it did not .

" An IBM RS/6000 Model 530, with 128MB of RAM using Lucid Common Lisp 4 .01 .
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ARCS results . Numbers in parantheses represent the level of activation
computed by ARCS

MAC/FAC Results . Numbers in parentheses represent the scores for that story .

Table 11 . Results for SG/Fables experiment .

6 .3 Experiment 1 :
Sour Qrapes Comparison

In the first study, the memory set consists of the fables, including the Sour
Grapes fable, and the probes are variants of Sour Grapes. Table 11 shows
the results . The results for ARCS match those reported for the simulation
by Thagard et al . (1990) . The MAC/FAC results are quite similar . Thus,
both systems successfully retrieve Sour Grapes from a database of fables
when given variations of it . However, MAC/FAC is substantially faster .
The run-time difference is fairly typical ; MAC/FAC tends to be two orders
of magnitude faster than ARCS when tested with identical data on the same
computer .

6 .4 Experiment 2 :
Effects of Additional Memory Items on Retrieval (Soup Grapes)

To check the stability of results under changes in memory contents, we
reran Experiment 1, adding the database of 25 Shakespeare plays encoded
by Thagard et al . (1990) to the fables database. We then tested the simula-
tions to see if they would retrieve Sour Grapes from the database of 125
fables and plays when probed with variations of Sour Grapes . The results
are shown in Table 12. MAC/FAC's results remain unchanged, except for a
small increase in processing time . ARCS, on the other hand, is distracted by

Probe Results Seconds
Sour Grapes appearance Sour Grapes (0 .28) 120
Sour Grapes, analog Sour Grapes (0 .21) 81
Sour Grapes, literal
sirrulari

Sour Grapes (0.25) 123

Probe Results Seconds
Sour Grapes appearance FAC: Sour Grapes (0.53) 0.3

MAC : Sour Grapes (0.56)
Sour Grapes analog FAC : Sour Grapes (2 .03) 0.2

MAC : Sour Gra es (0.62)
Sour Grapes literal FAC : Sour Grapes (2.03) 0 .2
similarity MAC : Sour Grapes (0 .62)
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ARCS Results

MAC/FAC Results

Table 12. Results of SG probes, database= Fables+Plays .r

the plays in one of the probe conditions . Increasing the memory by 25 076 has
led to different results with ARCS . The results also hint at a possible size
bias in ARCS : It appears to prefer larger descriptions in retrieval, at the cost
of correct matches .

6.5 Experiment 3:
Larger Probe Sizes

The results for MAC/FAC in Experiment 2 are satisfactory, however,
ARCS' seemingly poor performance requires further investigation . Does
the relative size of the probe matter in the memory swamping effect? To find
this out, we again ran both simulations, first with the plays' database as
memory, then with the 25 plays and 100 fables as memory, this time using as
probes the Hamlet and West Side Story encodings, as represented by
Thagard et al . (1990) . Given Hamlet as a probe, the question is whether the
systems can retrieve a tragedy, or at least another Shakespeare play. Given
West Side Story as a probe, the challenge is more specific : to retrieve Romeo
& Juliet, the analogous play.

Table 13 shows the results for plays only in memory, and Table 14 shows
the results with both plays and fables in memory. The good news for ARCS
is that the fables have only minimally intruded on the activation for the top
ranked retrieved plays . A Midsummer Night's Dream is ARCS' top-ranked
retrieval for West Side Story, but it did also, as stated by Thagard et al .
(1990), retrieve Romeo & Juliet.
MAC/FAC, on the other hand, only retrieves Romeo & Juliet with either

probe . For West Side Story this is indeed the expected result (and we believe

Probe Results Seconds
Sour Grapes a . " arance Sour Grapes 0.28 327
Sour Grapes, analog The Taming of the Shrew (0.22), Merry Wives 251

(0.18),
11 stories], Sour Grapes -0.19

Sour Grapes, literal Sour Grapes (0.25) 373
similarity

Probe Results Seconds
Sour Grapes appearance FAC : Sour Grapes (0.53) 0.4

MAC: Sour Grapes 0.56
Sour Grapes analog FAC: Sour Grapes (2.03) 0.3

MAC: Sour Grapes (0.62)
Sour Grapes, literal FAC: Sour Grapes (2.03) 0.3
similarity MAC: Sour Grapes (0.62
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ARCS results. Numbers in parentheses represent levels of activation for that item.

MAC/FAC results. Numbers in parentheses represent scores for that item .

Table 13. Results for Hamlet, West Side Story as probes, Plays database .

ARCS Results.

MAC/FAC Results
i

Table 14. Results for Hamlet, West Side Story as probes, Plays+Fables database.

more intuitive than ARCS' result), but what is happening with Hamlet?
Examining the structural evaluation scores (e .g ., the FAC scores) reveals
that FAC considers the match between West Side Story and Romeo& Juliet
to be excellent (16 .51), which makes sense because the encodings of West
Side Story and Romeo & Juliet have almost isomorphic structure . When
Hamlet is the probe, FAC is relatively indifferent; the FAC scores were :
Romeo & Juliet (6.79), Julius Caesar (5 .49), Macbeth (3 .72), Othello (2 .67) .
The drop-off from Romeo & Juliet is 20%, which is below MAC/FAC's
default cutoff of 10076 .

Probe Results Seconds
Hamlet Romeo & Juliet (0.54), King Lear (0.53), Othello 1843

(0.46),
C mbeline (0.42), Macbeth 0.41), Julius Caesar (0.38)

West Side Story Midsummer Night's Dream (0.58), Romeo & Juliet 2539
0.57)

Probe Results Seconds
Hamlet FAC: Romeo & Juliet (6.79) 22

MAC: Othello (0.86), Macbeth (0.85), Romeo & Juliet (0.83),
Julius Caesar 0.81)

West Side FAC: Romeo & Juliet (16.5 1) 13
Story MAC: Romeo & Juliet (0.88)

Probe Results Seconds
Hamlet Romeo & Juliet (0.53 1), King Lear (0.528), Othello 4112

(0.45),
C mbeline 0.41), Macbeth 0.40), Julius Caesar (0.37)

West Side Story 1 Midsummer Night's Dream (0.58), Romeo & Juliet (0.57) 5133

Probe Results Seconds
Hamlet FAC: Romeo & Juliet (6.79) 26

MAC: Othello (0.86), Macbeth (0.85), Romeo & Juliet
(0.83),
Julius Caesar 0.81), Fable52 (0.80)

West Side Story FAC: Romeo & Juliet (16.5 1) 8
MAC: Romeo & Juliet 0.88)
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ARCS Results

MAC/FAC Results.

Table 15. Results for HAWK probes, database =Fables+"Karla" base story.

6 .6 Experiment 4 :
Hawk Stories

The goal of encoding the Hawk stories was to replicate the results of Karla
the Hawk studies described in Section 2 .1 .1 . Thagard et al . (1990) encoded
one story set and used the relative activation levels of the stories computed
by ARCS as relative retrieval probabilities for human subjects . As Section
4 .4 pointed out, ARCS' order of retrieval was as follows : literal similarity,
first-order overlap, appearance, analogy, which is not a close match to the
observed human ordering of literal similarity, appearance, analogy, first-
order overlap . By contrast, MAC/FAC matched the human ordinal results
in our simulation of this experiment .

However, our purpose in this experiment was to pursue the question of
stability of results under different distractors . We asked two questions : (a)
Does MAC/FAC, using Thagard et al .'s (1990) encodings, perform appro
priately, and (b) does changing the database used as ARCS' memory change
its predicted outcomes? Both simulations were run with the Hawk stories as
probes, with the fables (plus Karla story) as memory and with both fables
and plays (plus the Karla story) as memory. The results are shown in Table
15 and Table 16, respectively .

Probe Results Seconds
Karl, literal similarity "Karla" base 0.67) 315
Karla appearance Fable55 (0.4), 7 fables], "Karla" base (-0.17) 176
Karla, analogy Fable23 (0.33), [7 fables], "Karla" base (-0.27) 127
Karla, first-order
overlap

Fable23 (0.0907), Fable55 (0.0903), [13 fables],
"Karla" base (-0.11)

17

Probe Results Seconds
Karla, Literal Similarity FAC: "Karla" (16.07) 6

MAC: "Karla" (0.81), Fable7l (0.74)
Karla, apperance FAC: "Karla" (7 .92) 7

MAC: "Karla" (0.71), Fable52 (0.71),
Fable7l (0.66),
Fable27(0 .65), Fable5(0.64)

Karla, analog FAC : "Karla" (8.57) 14
MAC : "Karla"(0.81), Fable52 (0.77), Fable5 (0.77),
Fable7l(0 .76), Fable4,.(0.75), Fable59(0 .75),
Fable27(0.75)

Karla, First-order FAC: "Karla" (5.33), Fable5 (5 .33) 7
overlap MAC: "Karla" (0.73), Fable7l (0.71),

Fable52(0 .71),
Fable5(0.71), Fable45(0.69),
Fable59(0.68),Fable27(0.68)
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ARCS Results.

MAC/FAC Results.

Table 16. Results for HAWK probes, with database= Fables+Plays+"Karla" base story.

No matter which database is used, MAC/FAC always retrieves the Karla
story, irrespective of which variant story is used as a probe . The MAC
scores explain why : In each case, the Karla story is at the top of the ranking,
indicating that the pattern of identical predicates overlapping is greater for
Karla and variant than for any other story . The fact that the Karla base
story is retrieved for the literal similarity and appearance variants is ex-
pected . Its retrieval when the analogy is used as a probe is also reasonable
(although if ARCS always retrieved analogs successfully it would be an im-
plausible model) . Retrieving the base story when the first-order overlap
story is used as a probe is not so reasonable . We believe this occurs because
the Thagard et al . (1990) representations are rather sparse and include
almost no surface information and, thus, are less natural than might be
desired (cf . the specificity conjecture of Forbus & Gentner, 1989) .

Probe Results Seconds
"Karla", literal
similarity

"Karla" base (0.67) 614

"Karla", appearance Fable55 (0.40),[16 stories], "Karla" base (-
0.018)

408

"Karla", analogy (0.60), [17 stories], "Karla" base (-0.32) 244
"Karla", false analogy Pericles (0.58), [22 stories], "Karla"base (-0.38) 45

Probe Results Seconds
Karla, Literal FAC: "Karla"(16.07) 7
Similarity MAC : "Karla"(0.81), Fable7l (0.74)
Karla, apperance FAC: "Karla" (7 .92), 21

MAC : "Karla" (0.71), Fable52(0.71), Julius Caesar
(0.69),
Othello (0.68), Macbeth (0.67), Fable7l (0.66),
Two Gentlemen of Verona (0.65), Fable27(0 .65),
Hamlet (0.65), Fable5(0.64)

Karla, analog FAC:"Karla"(8.57) 37
MAC: "Karla" (0.81), Julius Caesar (0.78),
Two Gentlemen of Verona (0.78), Fable52(0.77),
Fable5(0.77), Macbeth (0.76),As You Like It(0.76),
Fable7l(0 .76), Fable45(0.75), Fable59(0.75),
Fable27(0 .75), Othello(0.75)

Karla, First-order FAC: "Karla"(5.33), Fable5(5 .33) 23
overlap MAC: "Karla"(0.73), Juilius Caesar(0.72),

Two Gentlemen of Verona (0.72), Fable7l(0.71),
Fable52(0 .71), Fable5 (0.71), Macbeth(0.70),
As You Like It (0.70), Othello (0.69), Fable45
(0.69), Hamlet(0.68)
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Interestingly, this experiment marks the only place where the decision to
use functions in encoding made any real difference in the results . If no func-
tions were used in translating the ARCS representations, the MAC results
remained the same (because content vectors are based strictly on identical
predicates), but the Karla base story would be knocked out of the FAC out-
put by other stories that had more overlapping structure, because the causal
structure in the Karla story could not be consistently mapped due to non-
identical relations. The fact that this problem only shows up with this one
probe set, out of all the representations made by Thagard et al . (1990), sug-
gests that this is not a serious problem .

As was suggested by Experiments 1 and 2, the ARCS results vary consider-
ably with different distractor sets . This means that the use of relative activa-
tions to estimate relative frequencies is not a stable measure . Specifically,
the relative ordering of first-order overlap and analogy reverses when the
database of fables is augmented with the plays . The position of the Karla
story in the activation rankings is also alarming. The appearance story,
which should retrieve the base almost as often as the literal similarity story,
has dropped from the 9th in the ranking to 18th . Depending on where the
retrieval cutoff is placed, the conclusion might be that ARCS fails to
retrieve the Karla story given the very close surface match .

6 .7 Experiment 5 :
ARCS Using Simple Identicality

The results so far indicate that MAC/FAC is far more immune to false posi-
tives than ARCS . What is responsible for this difference? Is it MAC/FAC's
use of a separate stage that performs structural filtering? The use of content
vectors versus parallel constraint satisfaction to generate an initial set of
retrieval candidates? MAC/FAC's identicality constraint versus ARCS'
weaker semantic constraint? A complete answer to this question will require
much more empirical and theoretical work, but we can gain some insight by
a simple experiment . We ran ARCS again, but without the WordNet-inspired
similarity network . Under such conditions, ARCS only creates local matches
between identical predicates, and the initial candidate set is much smaller,
because the semantic similarity constraint has been greatly tightened .

The results of this experiment are shown in Tables 17 through 19. Table
17 shows that the results on Sour Grapes have improved substantially ;
ARCS is no longer tempted by plays . Table 18 shows that, although a Mid
summer Night's Dream is high on ARCS' list, it no longer prefers it to
Romeo & Juliet when West Side Story is used as a probe . The Hawk results
show the least improvement ; the estimated retrieval order again does not
match that of human participants, and there are still many fables and plays
ahead of what should be very close matches to the Karla base story .



MAC/FAC

	

189

ARCS wridenticality, SG/FABLES

ARCS w/identicality, SG/(FABLES+PLAYS)

Table 17. ARCS w/identicality on Sour Grapes with Fables and Fables+Plays .

ARCS widenticality, database = plays

ARCS w/identicality, database = plays+Fables

Table 18. ARCS w/identicality, probed with Plays .

6 .8 Conclusions from Computational Comparison Experiments
The results of cognitive simulation experiments must always be interpreted
with care . In this case, we believe our experiments provide evidence that
MAC/FAC, using structure-mapping's identicality constraint, better models
retrieval than ARCS, which uses Thagard et al.'s (1990) notion of semantic

Probe Results Seconds
Sour Grapes literal
similarity

Sour Grapes(0.18) 1 .3

Sour Grapes a "pearance Sour Grapes (0.28) 23
Sour Grapes analogy Sour Grapes (0.18) 1 .1

Probe Results Seconds
Sour Grapes literal
similarity

Sour Grapes (0.19) 4

Sour Grapes a s#earan Sour Grapes (0.28) 34
Sour Grapes analogy 77d Sour Grapes (0.19) 4

Probe Result Second
s

Hamlet King Lear (0.56), Romeo & Juliet (0.52), Othello (0.47), 489
C mbeline (0.41), Macbeth (0.40), Julius Caesar 0.38)

West Side Romeo & Juliet (0.59),,Iidsummer Night's Dream (0.52) 1671
Story

Probe Result Second
s

Hamlet King Lear (0.55), Romeo & Juliet (0.5 1), Othello (0.46), 1108
C mbeline 0.49), Macbeth 0.39), Julius Caesar (0.37)

West Side Romeo & Juliet (0.59), Midsummer Night's Dream (0.52) 3014
Story
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ARCS wridenticality, HAWK/FABLES

ARCS w/identicality, HAWK/(FABLF.S+PLAYS)

Table 19. ARCS w/identicality, HAWK probes .

similarity . In retrieval, the special demands of large memories argue for
simpler algorithms, simply because the cost of false positives is much
higher . If retrieval were a one-shot, all-or-nothing operation, the cost of
false negatives would be higher . But that is not the case . In normal situa-
tions, retrieval is an iterative process, interleaved with the construction of
the representations being used. Thus, the cost of false negatives is reduced
by the chance that reformulation of the probe, due to re-representation and
inference, will substantially catch a relevant memory that slipped by once.

Overall, although both MAC/FAC and ACME are designed to allow
parallel implementations, MAC/FAC's speed advantage (roughly two
orders of magnitude) would suggest that it is the more practical choice for
cognitive simulation experiments . Finally, we note that although ARCS' use
of a localist connectionist network to implement constrain satisfaction is in
many ways intuitively appealing, it is by no means clear that such implemen-
tations are neurally plausible . On the other hand, we believe the evidence

	

'
suggests that MAC/FAC captures similarity-based retrieval phenomena
better than ARCS does .

7 . DISCUSSION

To understand the role of similarity in transfer requires making fine
distinctions both about similarity and about transfer . The psychological
evidence indicates that the accessibility of matches from memory is strongly

Probe Results Seconds
Karla, Literal Similarity Fable23(0.261 ,Fable55(0.258),Karla story (-0.1) 73
Karla, Appearance Fable55 0.4), 8 fables ,Karla story (-0.23) 114
Karla, True Analogy Fable23(0.26),Fable55(0.26),[5 fables], Karla story

-0.23
12

Karla, First-Order
overlap

Fable23(0.087),Fable55(0.087) 5

Probe Results Seconds
Karla, Literal Fable23(0.26),Fable55(0.26),Karla story(-0.014) 74
Similarity
Karla, Appearance Fable55(0.25),Hamlet(0.17),Fable23(0.067),[17 plays & 154

fables],Karla sto (-0.22)
Karla, True Pericles(0.55),[3 plays],Fable23(-0.13),Fable55(-0.13), 29
Analogy [8 plays & fables],Karla story (-0.30)
Karla, First-Order Pericles(0.59),[6 fables & plays],Fable23(-0 .25), 18
overlap Fable55(-0.25) 41 1
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influenced by surface commonalities and weakly influenced by structural
commonalities, whereas the rated inferential soundness of comparisons is
strongly influenced by structural commonalities and is little, if at all, in-
fluenced by surface commonalities . An account of similarity in transfer
must deal with the dissociation between retrieval and structural alignment :
between the matches people get from memory and the matches they want.

The MAC/FAC model of similarity-based retrieval captures both the
fact that humans successfully store and retrieve intricate relational structures
and the fact that access to these stored structures is heavily (though not
entirely) surface driven . The first stage is attentive to content and blind to
structure, and the second stage is attentive to both content and structure .
The MAC stage uses content vectors, a novel summary of structured repre-
sentations, to provide an inexpensive "wide net" search of memory, whose
results are pruned by the more expensive literal similarity matcher of the
FAC stage to arrive at useful, structurally sound matches .

The simulation results presented here demonstrate that MAC/FAC can
simulate the patterns of access exhibited by humans. It displays the appro-
priate preponderance of literal similarity and surface matches, and it occa
sionally retrieves purely relational matches (Section 4) . Our sensitivity
studies suggest that these results are a consequence of our theory and are
not hostage to nontheoretically motivated parameters or algorithmic choices
(Section 5) . Our computational experiments comparing MAC/FAC and
ARCS (Section 6) suggests that MAC/FAC accounts for the psychological
results more accurately and more robustly than ARCS. In addition to the
experiments reported here, we have tested MAC/FAC on a variety of other
data sets, including relational metaphors (30 descriptions, average of 12
propositions each) and attribute-rich descriptions of physical situations as
might be found in commonsense reasoning (12 descriptions, averaging 42
propositions each) . We have also tried various combinations of these data-
bases with the Karla the Hawk data set (45 descriptions, averaging 67 prop-
ositions each) . In all cases to date, MAC/FAC's performance has been
satisfactory and consistent with the overall pattern of findings regarding
human retrieval . We conclude that MAC/FAC's two-stage retrieval process
is a promising model of human retrieval .

7.1 Limitations and Open Questions

7.1 .1 Retrieval Failure
Sometimes a probe reminds us of nothing . Currently the only way this can
happen in the MAC/FAC model is for FAC to reject every candidate pro-
vided by MAC . This can happen if no structurally sound match hypotheses
can be generated between the probe and the descriptions output by MAC .
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(Without any local correspondences there can be no interpretation of the
comparison.) This can happen, albeit rarely . A variant of MAC/FAC with
thresholds on the output of either or both MAC or FAC stages-so that the
system would return nothing if the best match were below criterion-would
show more nonremindings .

7 .1.2 Focused Remindings and Penetrability
Many Al retrieval programs and cognitive simulations elevate the reasoner's
current goals to a central role in their theoretical accounts (e .g ., Burstein,
1989; Hammond, 1986; 1989 ; Keane, 1988a, 1989b ; Kolodner, 1984, 1989;
Riesbeck & Shank, 1989 ; Thagard et al ., 1990) . Although we agree with the
claim that goal structures are important, MAC/FAC does not give goals a
separate status in retrieval . Rather, we assume that the person's current
goals are represented as part of the higher-order structure of the probe. The
assumption is that goals are embedded in a relational structure linking them
to the rest of the situation ; they play a role in retrieval, but the rest of the
situational factors must participate as well. When one is hungry, for in-
stance, presumably the ways of getting food that come to mind are different
if one is standing in a restaurant, a supermarket, or in the middle of a
forest . The inclusion of current goals as part of the representation of the
probe is consistent with the finding of Read and Cesa (1991) that asking
subjects for explanations of current scenarios leads to a relatively high rate
of analogical reminding . However, we see no reason to elevate goals above
other kinds of higher-order structure . By treating goals as just one of many
kinds of higher-order structures, we escape making the erroneous prediction
of many case-based reasoning systems : that retrieval requires common goals .
People can retrieve information that was originally stored under different
goal structures . (See Goldstein, Kedar, & Bareiss, 1993, for a discussion of
this point .)
A related question concerns the degree to which the results of each stage

are inspectable and tunable . We assume that the results of the FAC stage are
inspectable, but that explicit awareness of the results of the MAC stage is
lacking . We conjecture that one can get a sense that there are possible matches
in the MAC output, and perhaps some impression of how strong the matches
are, but not what those items are. The feeling of being reminded without
being able to remember the actual item might correspond to having candi-
dates generated by MAC that are all either too weak to pass on or are rejected
by the FAC stage . Some support for this two-stage account comes from
Metcalfe's (1993) findings on feeling-of-knowing . She found that subjects
report a general sense of feeling-of-knowing before they can report a partic-
ular retrieval . Reder (1988) suggests that this preretrieval sense of feeling-
of-knowing might provide the basis for deciding whether to pursue and
expect retrieval .
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This raises the question of how much MAC and FAC can be affected by
the subject? There is psychological evidence that people cannot directly con-
trol the kinds of matches they retrieve . Schumacher and Gentner (in press)
investigated this by varying the test instructions given to subjects . They gave
subjects lists of proverbs to read, followed by test proverbs which were
either structurally similar or surface-similar to proverbs studied previously .
Subjects who were told to write any prior proverbs that they were reminded
of while reading the test proverbs recalled about twice as many surface
matches as analogies . Another group of subjects was told to write only
structural remindings and to strive for as many of these as possible . Al-
though these subjects indeed wrote many fewer surface matches than the
first group, they recalled only the same low number of analogies . The goal
to seek relational matches apparently led people to filter nonrelational
matches, but not to find more relational matches . This suggests that the
FAC matcher may be tunable (in that subjects were able to filter out the sur-
face matches) but not the MAC matcher (in that subjects were not able to
produce more analogies on demand) .

The idea that FAC, though not MAC, is tunable is consistent with evi-
dence that people can be selective in similarity matching once both members
of a pair are present . For example, in a triads task, matching XX to 00 or
XO, subjects can readily choose either only relational matches (XX-00)
or only surface matches (XX-XO) (Gentner & Markman, 19994a, 1994b ;
Goldstone et al ., 1991 ; Medin et al ., 1993) . This kind of structural selectiv-
ity in the similarity processor is readily modeled in SME (by assuming that
we select the interpretation that tits the task constraints), but not in ACME
(Holyoak & Thagard, 1989) . ACME produces one best output that is its
best compromise among the current constraints . It can be induced to pro-
duce different preferred mappings by inputting different pragmatic activa-
tions, but not by inviting different structural preferences (Spellman &
Holyoak, 1992) .

7.1 .3 Size of Content Vectors
One potential problem with scaling up with MAC/FAC is the potential
growth in the size of content vectors . Our current descriptions use a vocabu-
lary of only a few hundred distinct predicates . We implement content vectors
via sparse encoding techniques, analogous to those used in computational
matrix algebra, for efficiency . However, a psychologically plausible repre-
sentation vocabulary may have hundreds of thousands of predicates . It is
not obvious that our sparse encoding techniques will suffice for
vocabularies that large, nor does this implementation address the question
of how systems with limited "hardware bandwidth," such as connectionist
implementations, could serve as a substrate for this model .
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This scale problem is mitigated partly by MAC/FAC's basic architecture
with its cheap initial filter . However, there are at least two further possible
ways to address the potential scale problem in the size of content vectors .
The first is abstraction . In symbolic knowledge representations, predicates
and functions are often arranged in hierarchies . For example, a complex
concept such as bequeath might be stored as a specialization of the concept
of giving, which might in turn be a specialization of the concept of transfer.
Let us view the set of specializations between predicates as a lattice. Any set
of predicates that partitions the lattice can be used to formulate a seman-
tically compressed content vector as follows : The weight of a component of
the compressed content vector is a function of the number of occurrences of
that predicate-and all predicates below it in the partition-in the descrip-
tion . In effect, predicates below the selected subsets are replaced with more
abstract versions . Another possible solution for the scale problem is fac-
torization: The predicates could be partitioned into subsets that are tightly
interrelated, and separate content vectors could be computed for each
subset . This organization presumes that there is some fixed size bound on
processing modules, but that several processing modules can be synchronized
well enough to accumulate results across them .

7 .1 .4 Combining Similarity Effects Across Items
MAC/FAC is currently a purely exemplar-based memory system . The
memory items can be highly situation-specific encodings of perceptual
stimuli, abstract mathematical descriptions, causal scenarios, and so forth.
MAC/FAC lacks the capacity to model inter-item effects . For example,
MAC/FAC does not capture competition among items . Wharton, Holyoak,
Downing, Lange, and Wickens (1991, 1992) and Wharton et al . (1994) have
shown an intriguing effect where competition between exemplars heightens
the relative effect of structural similarity in retrieval . MAC/FAC also does
not average across several items at retrieval (Medin & Schaffer, 1978) or
derive a global sense of familarity by combining the activations of multiple
retrievals (Gillund & Shiffrin, 1984; Hintzman, 1986, 1988) . An interesting
extension of MAC/FAC would be to include this kind of between-item pro-
cessing upon retrieval .

If such inter-item averaging occurs, it could provide a route to the in-
cremental construction of abstractions and indexing information in memory.
We see three plausible ways to do this . First, as above, the descriptions out
put by the MAC stage could be compared . Second, the access system might
incrementally build up something like Minsky's (1981) similarity network,
using the history of retrievals to encode difference descriptions to simplify
future access . Third, the descriptions output by the FAC stage could be
compared : SME could be used to carry out structural abstraction across
several descriptions (as in Skorstad et al ., 1988) to produce a combined



description as the FAC output. The first and third models are both forms of
"late averaging" accounts, and it would be interesting to compare these
techniques with other models that account for prototype effects by combin-
ing exemplars at retrieval (Hintzman, 1986, 1988; Medin & Shaffer, 1978) .

7 .1 .5 Iterative Access
Keane (1988c, 1991 ; Keane & Brayshaw, 1988) and Burstein (1983a, 1983b)
have proposed incremental mapping processes . We suggest that similarity-
based retrieval may also be an iterative process . In particular, in active
retrieval (as opposed to spontaneous remindings), we conjecture that MAC/
FAC may be used iteratively, each time modifying the probe in response to
the previous match (cf. Falkenhainer, 1987, 1990a; Gentner, 1989) . Sup-
pose, for example, a probe yielded several partial remindings . The system of
matches could provide clues as to which aspects of the probe are more or
less relevant and, thus, should be highlighted or suppressed on the next
iteration . MAC should respond to this altered vector by returning more
relevant items, and FAC can then select the best of these .

Another advantage of such incremental reminding is that it might help
explain how we derive new relational categories . Barsalou's (1982, 1987) ad
hoc categories, such as "things to take on a picnic" and Glucksberg and
Keysar's (1990) metaphorically based categories, such as "jail" as a proto-
typical confining institution, are examples of the kinds of abstract relational
commonalities that might be highlighted during a process of incremental
retrieval and mapping .

7.1.6 Embedding in Performance-Oriented Models
MAC/FAC is not itself a complete analogical processing system . For exam-
ple, both constructing a model from multiple analogs (e.g., Burstein, 1983a,
1983b) and learning a domain theory by analogy (e .g ., Falkenhainer, 1987,
1988, 1990b) require multiple iterations of accessing, mapping, and evaluat-
ing descriptions . Several psychological questions about access cannot be
studied without embedding MAC/FAC in a more comprehensive model of
analogical processing (Forbus & Gentner, 1991) . First, as discussed pre-
viously, there is ample evidence that subjects can choose to focus on different
kinds of similarity when the items being compared are both already in work-
ing memory . Embedding MAC/FAC in a larger system should help make
clear whether this penetrability should be modeled as applying to the FAC
system or to a separate similarity engine . (Order effects in analogical problem
solving [Keane, 1990] suggest the latter .)
A second issue that requires a larger, performance-oriented model to

explore via simulation is when and how pragmatic constraints should be in-
corporated (cf . Holyoak & Thagard, 1989; Thagard & Holyoak, 1989, 1990) .
Because we assume that goals, plans, and similar control knowledge is expli-
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citly represented in working memory, the MAC stage will include such pred-
icates in the content vector for the probe and hence will be influenced by
pragmatic concerns . There are two ways to model the effects of pragmatics
on the FAC stage. The first is to use the SMEpragmatic marking algorithm
(Forbus & Oblinger, 1990) as a relevance filter . The second is to use incre-
mental mapping, as in Keane and Brayshaw's (1988) Incremental Analogy
Machine (IAM). This technique permits the selection and grouping of sets
of correspondences to be influenced by the task at hand (Forbus et al ., 1994) .
A recent simulation by Lange and Wharton (1992, 1993), REMIND,

models retrieval in the context of natural language processing, using spread-
ing activation in a connectionist network both to construct a conceptual
representation from textual input and to find the most similar story in its
episodic memory. REMIND is an intriguing model, and the attempt to inte-
grate multiple cognitive processes into larger models is an important activity .
However, it is difficult to compare this model with MAC/FAC and other
retrieval models . First, REMIND only models a specific retrieval task,
namely retrieval in the service of understanding stories, and thus does not
attempt to cover as wide a span of phenomena as MAC/FAC. Second,
when REMIND retrieves a story, it does not appear to create correspondences
between the understanding of its input and the previous story, nor does it
generate novel candidate inferences, and thus does not satisfy the structured
mappings criterion for retrieval . Third, REMIND has only been tested on a
corpus involving a handful of short (i .e ., two sentence) stories . To our
knowledge, it has never been tested either on a corpus as large as those used
with MAC/FAC and ARCS or on a corpus that includes examples as large
as those used with MAC/FAC. Even their current small databases stretch
the limits of a Connection Machine," which makes it difficult to evaluate
their model thoroughly.

7 .1 .7 Expertise and Relational Access
Despite the gloomy picture painted in this research and in most of the
problem-solving research, there is evidence of considerable relational access
(a) for experts in a domain and (b) when intial encoding of the study set is
relatively intensive . Novick (1988a, 1988b) studied remindings for mathe-
matics problems using novice and expert mathematics students . She found
that experts were more likely than novices to retrieve a structurally similar
prior problem, and when they did retrieve a surface-similar problem, they
were quicker to reject it than were novices . Faries and Reiser (1988) taught
participants LISP in a series of intensive training sessions and then gave
them target problems that were superfically similar to one prior problem
and structurally similar to another . Given this intensive training, Faries and

'b Trent Lange, personal communication, IJCAI-93 .
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Reiser's subjects were able to access structurally similar problems despite
the competing superficial similarities .

The second contributor to relational retrieval, almost certainly related to
the first, is intensive encoding . Gick and Holyoak (1983) and Catrambone
and Holyoak (1987, 1989) found that subjects exhibited increased rela
tional retrieval when they were required to compare two prior analogs, but
not when they were simply given two prior analogs to read . Schumacher and
Gentner (1987) found increased relational retrieval of proverbs when sub-
jects wrote out the meaning of each proverb on the study list, as opposed
to simply reading it or rating its cleverness . Seifert, McKoon, Abelson, and
Ratcliff (1986) investigated priming effects in a sentence verification task
between thematically similar (analogical) stories. They obtained priming
when subjects first studied a list of themes and then judged the thematic
similarity of pairs of stories, but not when subjects simply read the stories .

The increase of relational reminding with expertise and with intensive
encoding can be accommodated in the MAC/FAC model . First, we assume
that experts have richer and better structured representations of the rela
tions in the content domain than do novices (Carey, 1985 ; Chi, 1978 ; Reed,
Ackinclose, & Voss, 1990) . This fits with developmental evidence that as chil-
dren come to notice and encode higher-order relations such as symmetry and
monotonicity, their appreciation of abstract similarity increases (Gentner
& Rattermann, 1991 ; Kotovsky & Gentner, 1990) . Second, in particular we
speculate that experts may have a more uniform internal relational vocabu-
lary within the domain of expertise than do novices (Clement, Mawby, &
Giles, 1994; Gentner & Rattermann, 1991 ; Gentner, Rattermann, Kotovsky,
et al ., in press) . The idea is that experts tend to have relatively comprehen-
sive theories in a domain and that this promotes canonical relational encod-
ings within the domain .

To the extent that a given higher-order relational pattern is used to en-
code a given situation, it will of course be automatically incorporated into
MAC/FAC's content vector . This means that any higher-order relational
concept that is widely used in a domain will tend to increase the uniformity
of the representations in memory. This increased uniformity should increase
the mutual accessibility of situations within the domains . Thus, as experts
come to encode a domain according to a uniform set of principles, the
likelihood of appropriate relational remindings increases . That is, under the
MAC/FAC model, the differences in retrieval patterns for novices and ex-
perts are explained in terms of differences in knowledge, rather than by the
construction of explicit indices .

Bossok has made an interesting argument that indirectly supports this
claim of greater relational uniformity for experts than for novices (Bossok
& Wu, in press) . Noting prior findings that in forming representations of
novel texts people's interpretations of verbs depend on the nouns attached
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to them (Gentner, 1981 ; Gentner & France, 1988), Bassok suggests that par-
ticular representations of the relational structure may thus be idiosyncrat-
ically related to the surface content, and that this is one contributor to the
poor relational access. If this is true, and if we are correct in our supposition
that experts tend to have a relatively uniform relational vocabulary, then an
advantage for experts in relational access would be predicted .

As domain expertise increases, MAC/FAC's activity may come to
resemble a multigoal case-based reasoning model with complex indices (e .g .,
Birnbaum & Collins, 1989 ; King & Bareiss, 1989; Martin, 1989; Pazzani,
1989; Porter, 1989) . We can think of its content vectors as indices with the
property that they change automatically with any change in the representa-
tion of domain exemplars . Thus, as domain knowledge-particularly the
higher-order relational vocabulary-increases, MAC/FAC may come to
have sufficiently elaborated representations to permit a fairly high propor-
tion of relational remindings . The case-based reasoning emphasis on
retrieving prior examples and generalizations that are inferentially useful
may thus be a reasonable approximation to the way experts retrieve
knowledge.

Although MAC/FAC's two-stage operation is not generally shared by
case-based models, it is shared by one case-based reasoning system that
uses a two-stage model, the CaPER system (Kettler, Hendler, & Anderson,
1992) . CaPER is designed to retrieve all sufficiently similar plans from an
unindexed case base, beginning with a massively parallel stage which does a
simple, nonstructural match between a query and the contents of memory.
It would be very interesting to see how well the parallel techniques used in
CaPER could be applied to MAC/FAC .

7 .2 The Decomposition of Similarity
The dissociation between surface similarity and structural similarity across
different processes has broader implications for cognition and is related to
several recent discussions . Medin et al . (1993) and Gentner (1989) have
argued that similarity is pluralistic, in the sense that there are multiple
subclasses of similarity and multiple influences on how it is computed. Rips
(1989) demonstrated a dissociation between similarity, typicality, and
categorization . Murphy and Medin (1985) and Keil (1989) have commented
on the limited usefulness of simple similarity and pointed out that physical
resemblance does not provide a sufficient basis for determining conceptual
groupings . As discussed above, there is a relational shift in development
(Gentner & Rattermann, 1991 ; Halford, 1992) . Finally, local object matches
appear to be processed faster by adults than structural commonalities .
Goldstone and Medin (1994a, 1994b) found that local similarities have their
effects on mapping earlier than global relational similarities in a timed
mapping task, and Ratcliff and McKoon (1989) found convergent results in
a sentence-matching task : Subjects could discriminate new from old
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sentences faster if the the new sentences contained all new words (e.g .,
"Helen attracted Jeff." vs. "Andrew accosted Mary .") than if the
sentences differed only in relational structure (e .g ., "Helen attracted Jeff."
vs . "Jeff attracted Helen .") . In pilot experiments using perceptual stimuli,
in which subjects were timed under different kinds of mapping instructions,
Markman and Gentner (in press) found that subjects are faster to choose on
the basis of similar objects than on the basis of similar relations, even when
the two rules dictate the same response .

These kinds of results render less plausible the notion of a unitary
similarity that governs retrieval, evaluation, and inference. Instead, they
suggest a more complex, pluralistic view of similarity. MAC/FAC provides
an architecture that demonstrates how such a pluralistic notion of similarity
can be organized to account for psychological data on retrieval .
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