
QUALITATIVEREASONING

32 0885-9000/97/$10 .00© 1997 IEEE IEEE EXPERT

Using Qualitative Physics ft
Create Articulate Educational
Software
Kenneth D. Forbus, The Institute for the Learning Sciences, Northwestern University

SEARCH IN QUALITATIVE PHYS-
ics has many motivations, ranging from
improving ourunderstanding ofhuman cog
nition to making new kinds of software sys-
tems for various applications . In particular,
creating new kinds of educational software
has been a motivation for qualitative physics
since its inception. 1,2 This goal is now begin-
ning to be realized, thanks to advances in
qualitative physics and computertechnology.
Qualitative physics provides a critical en-
abling technology for science and engineer-
ingeducation and makes possible a new type
of affordable, interactive educational soft-
ware-articulate software .
The Qualitative Reasoning Group atNorth-

western University's Institute for the Learn-
ing Sciences is developing architectures for
articulate software . One such architecture is
the articulate virtual laboratory, which helps
students learn by engaging them in concep-
tual design tasks. We've used this architec-
ture to create educational software for science
and engineering, which we've deployed
experimentally in several college courses .

Qualitative physics and
articulate software

Qualitative physics is particularly appro-
priate for application to science and engi-
neering education for two reasons:

QUALITATIVE PHYSICS CAPTURES THE KINDS OF

REPRESENTATIONSAND REASONING TECHNIQUES THAT PEOPLE

USEIN DEALING WITH THE PHYSICAL WORLD. USING

QUALITATIVE PHYSICS, DEVELOPERS CAN CREATE

EDUCATIONAL SOFTWARE THAT IS FLUENT SUPPORTIVE

GENERATIVE AND CUSTOMIZABLE.

First, qualitative physics represents the
right kinds ofknowledge. Much ofwhat stu-
dents learn about science in elementary, mid-
dle, and high school consists of causal theo-
ries ofphysical phenomena: analyzing what
happens, when it happens, what affects it,
and what it affects . The representational
issues that are the central concern of quali-
tative physics are exactly those that must be
addressed by domain content providers for
science education software. Asimulation of
a rain forest, for example, must take into
account evaporation, condensation, rainfall,
and other physical processes.

Today's simulations leave such factors
implicit in the structure of the simulation .
Typically, the conceptual understanding that
the simulation designer used to create the
software is not available to the software's
users except very indirectly, through the pro-

gram's documentation. This lack of a tight
couplingbetween concepts andtheir embodi-
mentin software makes it difficult for today's
educational software to explain itself. The
situation gets worse as you move away from
simulators to otherkinds ofeducational soft-
ware . Without the ability to formally repre-
sent the conceptual entities that a student
mustassimilate to understand a domain, and
the ability to reason about those entities in a
human-like way, educational software can-
not generate explanations on demand .

Second, qualitative physics represents the
right level ofknowledge. The prevailing atti-
tude is that engineering education must be
heavily mathematical . This attitude seems
counterproductive . The lament that students
memorize formulae without understanding
the broader principles being taught is famil-
iar to instructors . Indeed, cognitive scientists

have extensively documented the existence
of persistent misconceptions in domains
such as physics, even after a college physics
course . 3

	

Weconjecture that students should deeply
understand the qualitative principles that
govern a domain-including the mecha-
nisms, such as physical processes, and the
causal relationships-before they are im-
mersed in quantitative problems . The better
textbooks do introduce ideas in qualitative
terms before diving into quantitative details,
but even they do not linger at the qualitative
level, One reason for shortchanging the role
of qualitative understanding is that instruc-
tors do nothave a systematic, formal vocab-
ulary for qualitative knowledge, making it
harder to articulate than quantitative knowl-
edge . Qualitative physics provides the rep-
resentational ideas that enable the creation
of such systematic, formal vocabularies .
Consequently, a long-term outcome of qual-
itative physics research should be to help
domain experts achieve a formal under-
standing of those aspects of their expertise
that currently are described as "intuition"
and "art."
Whether or notyou believe that engineer-

ing education mustbe heavily mathematical,
such claims are impossible to make about
precollege science education . Students learn
calculus, at best, at the end of high school
and first encounter algebra only at the start
of high school . Making students memorize
differential equations in the guise of teach-
ing them science simply isn't an option. Even
formal algebraic models are not feasible for
elementary and middle-school students . On
the other hand, students are taught what para-
meters exist, partial information about rela-
tionships between them (for example, "this
goes up when that goes down"), and when
various relationships are relevant (that is,
what physical phenomena the parameters are
tied to). In otherwords, the qualitative math-
ematics developed in qualitative physics pro-
vides exactly the right level of language for
expressing relationships between continuous
properties, for precollege science students .

These two claims suggest that qualitative
physics is the key to creating much smarter
educational software: software whose mod-
els of the world have a better "conceptual
impedance match" with people's mental
models . Such software should be

"

	

Fluent . It should have some understand-
ing of the subject being taught and be

able to comprehensibly communicate to
students both its results and reasoning
processes .

"

	

Supportive . It should include a mentor-
ing component consisting ofcoaches and
tutors that scaffold students appropriately,
taking care ofroutine and unenlightening
subtasks, and helping students learn how
to approach and solve problems.

" Generative . Students and instructors
should be able to pose new questions and
problems, rather than just select from a
small prestored set of choices .

"

	

Customizable . Instructors should be able
to modify, update, and extend the soft-
ware's libraries of phenomena, designs,
and domain theories, without needing

WE CONJECTURE THAT

STUDENTS SHOULD DEEPLY

UNDERSTAND THE QUALI-

TATIVE PRINCIPLES THAT

GOVERN A DOMAIN BEFORE

THEYARE IMMERSED IN

QUANTITATIVE PROBLEMS.

sophisticated programming skills . This
would simplify maintenance and provide
scalability.

I call software with theseproperties artic-
ulate software .

CyclePad: an articulate virtual
laboratory
Design provides a meaningful context for

learning fundamental physical principles,
and design activities provide powerful moti-
vation . In designing a household refrigera-
tor, for instance, a student will quickly dis-
cover that water makes a poor working
fluid, because its saturation curve would
require very low operating pressures to
achieve vaporization at typical operating
conditions . Design requires that students
use knowledge in an integrated fashion
rather than memorize isolated facts . Getting
students to think in design terms leads nat-
urally to building a strong interest in under-

standing complex, real-world relationships:
you can ask "Why did they design it that
way?" about any artifact . Design environ-
ments that provide appropriate scaffolding
for students, so that they can focus on par-
ticular areas of interest, could prove invalu-
able for instruction in basic science as well
as engineering, and could better motivate
their interest in science.
Our articulate virtual-laboratory architec-

ture addresses this need .' Like existing vir-
tual laboratories (for example, Electronics
Workbench and Interactive Physics), it
includes a software environment forcreating
and analyzing designs without the expense
(and sometimes danger) ofcreating physical
artifacts . Unlike existing virtual laboratories,
it provides explanation facilities and coach-
ing, to help guide students . One example of
an articulate virtual laboratory is CyclePad,5
which we are developing for engineering
thermodynamics .

HowCyclePad helps. CyclePad is an intel-
ligent learning environment that scaffolds
students in the design of thermodynamic
cycles (see the sidebar, "The design of ther-
modynamic cycles") . It addresses several
problems that students have in learning about
thermodynamic cycles :

"

	

Students tend to get bogged down in the
mechanics ofsolving equations and car-
rying out routine calculations . This pre-
vents them from exploring multiple de-
sign alternatives and leads them to avoid
trade-off studies (for example, seeing
how efficiency varies as a function of tur-
bine efficiency versus how it varies as a
function of boiler outlet temperature) .
Yet without making such comparative
studies, students lose many opportuni-
ties for learning . CyclePad automates
routine calculations and provides tools
for visualization and sensitivity analy-
ses . (Sensitivity analysis determines how
a change in one parameter affects an-
other parameter-for example, how the
boiler pressure affects the cycle's ther-
mal efficiency .)

" Students often have trouble thinking
about what modeling assumptions they
need to make . For instance, unless you
know the pressure drop across a heater, it
is reasonable to assume that it operates
isobarically. If students don'tknow when
to make simplifying assumptions, they'll
get stuck when analyzing a design.

MAY/JUNE 1997 33

The design of thermodynamic cycles

The analysis and design ofthermodynamic cycles . is the majortask
that drives engineering thermodynamics, aside from applications to
chemistry . t A thermodynamic`cycle is a system in which a working
fluid (or fluids) undergoes a series of transformations to process
energy. Every powerplant . engine, refrigerator, andheat pump is a
thermodynamic cycle .
Thermodynamic cycles play much the same role for engineering

thermodynamics as electronic circuits do for electrical engineering : A
small library of parts (in this case; compressors, turbines, pumps, heat
exchangers, and so forth) are combined into networks, thus potentially
generating an unlimited set of designs for any given problem. (Practi-
cally, cycles range from four components, in the simplest cases, to net-
works consisting ofdozens of components.) One source of the com-
plexity of cycle analysis stems from the complex nature of liquids and
gases . To improve designs, subtle interactionsbetween their properties
must be harnessed . Cycle analysis answers questions such as what is a
system's overall efficiency, how much heat or work is consumed or
produced, and what operating parameters (for example, temperatures
and pressures) do its components require. As in many engineering
design problems, an important activity in designing cycles is perform-
ing sensitivity analyses . These analyses help designers understand how

Combined Gas Turbine and Rankine Cycle

Figure A. A typical thermodynamic cycle used to generate power,

CyclePad helps students keep track of
modeling assumptions .

" Students often don't challenge their
choices ofparameters to see if their design
is physically possible . Forinstance, a cycle
thatuses pumpsthat produce workinstead
of consuming it would certainly be effi-
cient but is not, alas, possible. CyclePad
detects physically impossible designs.

(These observations are based on the
experience of Peter Whalley, a collaborator
on CyclePad's design, who teaches engi-
neering thermodynamics to Oxford under-
graduates .)

CyclePad in action. When a student starts
up CyclePad, he or she finds apalette of com-
ponent types (for example, turbine, com-
pressor, pump, heater, cooler, heatexchanger,
throttle, splitter, and mixer) that can be used
in the design. Components are connected
together by stuffs, which represent the work-
ing fluid's properties at that point in the sys-
tem. (Stuffs play the same role as nodes in
electronic circuits .)
Once the student has put together the

cycle's structure, he or she can use CyclePad
to analyze the system. The student enters
assumptions such as the choice of working
fluid, the values of specific numerical para-

choices for the properties of the components and the operating points of
acycle affect the cycle's global properties.
To illustrate, consider the cycle in Figure A.Air from the atmosphere

iscompressed, whichraises its pressure andtemperature . The combus-
tion chamber adds more heat by injecting and igniting fuel . Energy is
extracted by expanding the gas through Turbine 1, and the gas is
reheated and then passed through Turbine 2 to extract yetmore energy.
One consequence of the Second Law ofThermodynamics is that a
cycle must reject some heat aswaste ; this cycle first rejects the heat to a
second cycle, via the heat exchanger. The waste gases are then
exhausted back to the atmosphere, which is represented by acooler so
that we take into account the heat lost in this transaction . Theheat
transferred from the gas cycle via the heat exchanger is sufficient to
vaporize the working fluid (in this case water) in the lowercycle into
superheated steam, which passes through Turbine 3 to extract yet more
work . Finally, the steam is condensedback into water, exhausting more
heat to the atmosphere, and is pumpedback into the heat exchanger to
complete the cycle . A thermodynamics expertwould recognize this as a
combined cycle, where a Brayton gas cycle with reheat drives a Rank-
ine vapor cycle.

In thermodynamics education for engineers, cycleanalysis and
design generally appear toward the end of their first semester or in a
second course, because understanding cycles requires abroad and deep

understanding ofthermodynamics fundamen-
tals . However, even the most introductory engi-
neering thermodynamics textbooks tend to
devote several chapters to cycle analysis, and in
more advanced books, the fraction devoted to
cycles rises sharply. Indeed, some textbooks
focus exclusively on cycle analysis . 2 Beside
the intrinsic interest of thermodynamic cycles,
their conceptual design provides a highly moti-
vating context for students to learn fundamen-
tal principles more deeply than they would
otherwise.

References

1 . P. Whalley, Basic Engineering Thermody-
namics, Oxford Univ. Press, Oxford; UK,
1992 .

2 . R.W. Haywood,Analysis ofEngineering
Cycles : Power, Refrigerating and Gus Liq-
uefaction Plant, Pergamon Press, Oxford,
UK, 1985 .

meters, and modeling assumptions about
components . (For example, a turbine can be
assumed to be either adiabatic, isothermal,
or isentropic . Such modeling assumptions
can introduce new constraints that might
extend an analysis and new parameters-for
example, the turbine's efficiency if it isn't
isentropic-that must be set.)

CyclePad accepts information incremen-
tally, deriving from each assumption as many
consequences as it can . At any point, the stu-
dent can ask questions by clicking on a dis-
played itemto obtain the set ofquestions (or
commands) that make sense for it . In addi-
tion to numerical parameters and structural

34 IEEE EXPERT

information, CyclePad displays all modeling
assumptions made about a component; click-
ing on a component shows those modeling
assumptions that are legitimate, given what
is known about the system . CyclePad dis-
plays the questions and answers in English,
and includes links back into the explanation
system, thus providing anincrementally gen-
erated hypertext (see Figure 1) .
When CyclePad uncovers a contradiction,

it provide tools to resolve the problem by
presenting the source of the contradiction
(for example, an impossible fact becoming
believed, or conflicting values for a numeri-
cal parameter) and the set of assumptions
underlying that contradiction . The student
can use the hypertext dialog facilities with
this display to figure out which assumptions
are dubious and change them accordingly.

Figure l . CyclePad provides generative hypertext explanations .

How CyclePad works. CyclePad was in-
spired in part by EL,6 which analyzed ana-
log electronic circuits . EL was one of the first
systems to use constraint propagation and
dependency networks to organize its reason-
ing, and introduced the idea of dependency-
directed backtracking . CyclePad relies on
several advances in the field since EL, includ-
ing qualitative physics and compositional
modeling.These AI techniques provide much
ofthe scaffolding students need to carry out
conceptual design tasks.

CyclePad uses compositional modeling7
to represent the domain knowledge. Figure
2 shows a few model fragments from Cycle-
Pad's domain theory. Overall, the domain
theory includes

"

	

Physical and conceptual entities : com-
ponents such as compressors, turbines,
pumps, and heat exchangers ; physical
processes such as compression, combus-
tion, and expansion; and the representa-
tions of the properties of the working
fluid between the components (for exam-
ple, S 1 in Figure A) . CyclePad's knowl-
edge base currently contains over 29
entity definitions .

"

	

Structural knowledge: the possible rela-
tionships between components, process
occurrences, and the descriptions of the
working fluids that connect the compo-
nents. CyclePad's knowledge base cur-
rently contains 34 structural facts .

"

	

Qualitative knowledge: the kinds ofphys-
ical processes that can occur inside com-
ponents or in the sequence of operationsin
an open cycle . The occurrence of physi-

cal processes places
constraints on the
situation's parame-
ters ; for instance,
the temperature ofa
stuff coming into a
heatercannot be hi-
gher than the tem-
perature ofthe stuff
leaving it . Cycle-
Pad's knowledge
base currently con-
tains definitions of
five physical pro-
cesses .

"

	

Quantitative knowl-
edge : equations that
define relationships
between the para-
meters of the con-
stituents of a cycle,
numerical constants
(for example,mole-
cular weights), and
tables of property
values for substan-
ces (for example,
saturation andsuper-
heat tables) . Cycle-
Pad also automati-
cally derives equa-
tions for global
properties . For ex-
ample, every time
the cycle's structure
changes, CyclePad
derives equations for
net work and heat

	

Figure 2. A sample of CyclePad's

?in
?out)

(thermodynamic-stuff ?in)
(thermodynamic-stuff ?out)
(total-fluid-flow ?in ?out)
(== (mass-flow ?in)

(mass-flow ?out))
(parameter (mass-flow ?self))
(parameter

(Q
?self))

(parameter (spec-Q ?self))
(heat-source (heat-source ?self))
((parts :cycle) has-member ?self)
(?self part-names (in out))
(?self IN ?in)(?in IN-OF ?self)
?self out ?out)(?out out-of ?self))

(defEntity (Abstract-hx ?self

(defAssumptionClass
((abstract-Hx ?hx ?in ?out))

(isobaric ?hx)
(:not (isobaric ?hx)))

(defEntity (Heater ?self ?in ?out)
(abstract-Hx ?self ?in ?out)
(?self instance-of heater)
(heat-flow (heat-source ?self)

(heat-source ?self)
?in ?out)

((heat-flows-in :cycle)
has-member (Q ?self))

(> (Q ?self) 0 .0))

(defEquation Hx-law
((Abstract-Hx ?hx ?in ?out))

(spec-h ?out)
(+ (spec-h ?in) (spec-Q ?hx))))

(defEquation spec-Q-definition
((Abstract-Hx ?hx ?in ?out))
(:= (spec-Q ?hx)

(/ (Q ?hx) (mass-flow ?hx))))

knowledge base .

Active illustrations

The power of illustrative examples is well-known in education. Tradi-
tional media offerhigh authenticity but low interactivity. Textbook illus-
trations and posterscan provide thought-provoking pictures, tables,
charts, and other depictions of complex information. Movies andvideo
can provide gripping' dynamical displays. Butnone of these media pro-
vide interaction . Students intrigued by apicture ofasteam engine ina
textbook (ora movie ofasteamengine) cannot vary the load orchange
the working fluidtoseewhat will happen . They cannot ask formore
details aboutexplanations that they don't understand . They cannot satisfy
their curiosity about how efficiency varies with operating temperatures
by testingthe engine over ranges of values .
The active illustrations architecture uses Al techniques to provide such

interaction . An active illustration is like a hands-on museum exhibit, con-
sisting of a virtual artifact or system and a guide who is knowledgeable
about the exhibit and enthusiastically helps you satisfy your curiosity
about it . Active illustrations support student explorations by letting stu-
dents change parameters and relationships to see what happens . They are
articulate, in that students can ask why some outcome occurred or some
value holds, and receive understandable explanations that ultimately
reveal fundamental physical principles and laws .
The principle component of active illustrations for dynamical systems

are self-explanatory simulators . 1-3 A self-explanatory simulator com-
bines qualitative and numerical representations to provide both accurate
quantitative descriptions of behavior andconceptual explanations of it. A
self-explanatory simulator can describe at every point in the simulation
exactly what is happening in the simulated system and why, ranging from
qualitative, causal explanations suitable for novices to sets of ordinary
differential equations for an expert audience . Most important, self-
explanatory simulators can be compiled automatically from domain theo-
ries in polynomial time. 4 Figure B illustrates the compilation process .
We are exploring this architecture for the domain ofmiddle-school

earth science, focusing on the processes that underlie the
weather. We are building a sequence of active illustra-
tions, starting with laboratories for exploring fundamen-
tal processes such as evaporation and phase changes,
and expanding to system-level models of the hydrologi-
cal cycle and the atmosphere .

The Evaporation Laboratory : a prototype active
illustration. Suppose a student is interested in how evap-
oration works . Because evaporation happens in everyday
circumstances that are neither dangerous nor expensive
to set up, it can easily be experimented with . The student
sets up different jars of water, varying in width and
amountof water, and measures their initial level . She
places these jars on the window ledge in the classroom
and looks for something else to do while waiting for the
experiment's outcome. Seeing an unused computer, she
starts up an active illustration on evaporation, to try to
gain some insights in minutes instead of days .
The student's interaction with the simulation labora-

tory starts with setting up a scenario . She selects, from an
Figure (. Using an active illustration to perform a water evaporation experiment : (1) the explanation

system's summary of behavior; (2) an analysis from the explanation system's hypertext facilities,

Figure B, Automatic compilation of self-explanatory simulators,

on-screen catalog, acup to use in an experiment. The cups are all the same
shape and size, but they are made from a variety of materials, ranging
from Styrofoam to tin to titanium and evendiamond . The student chooses
a Styrofoam cup because such cups are common. From another catalog ;
she selects an environment to place thecup in . Because it is hot outside,
she selects Chicago in the summer and`sets the simulator to run for four
hours of virtual time . A few moments later, the simulation is finished, The
student notices, byrequesting a plot ofhow the cup's water level changes
over time, a slow but measurable decline . Using the explanation system,	 `
she finds the summary of the behavior shown in Figure Cl . She follows up
by using the explanation system's hypertext facilities (see Figure (22) :
At this point, the student conjectures that higher temperature should'

flows into and out ofthecycle . CyclePad's
knowledge base currently contains 167
equations, and saturation and superheat
tables for 10 substances.
Modeling assumptions : simplifications that
can be made about a component orprocess
during an analysis . For instance, the pres-
sure drop across a boiler is typically
ignored in conceptual design because it is

negligible for analytical purposes . Rather
than stipulate a particular pressure drop, it
is simpler to assumethat the heater used to
model a boiler is isobaric-that is, has no
pressure drop. CyclePad's knowledge base
currently contains 10 types of modeling
assumptions,
Assumption classes : classes that organize
modeling assumptions into sets . When an

assumption class is active, a model of the
cycle must include one assumption from
it for that model to be complete . Cycle-
Pad's knowledge base currently contains
14 assumption classes,

To interactively and incrementally derive
the consequences of each student assump-
tion, CyclePad uses antecedent constraint

lead to more evaporation. To confirm this conjecture, she runs a second
simulation, using a diamond cup to increase the flow of heat from the
atmosphere, Qualitatively, the behavior is the same, but diamond's higher
thermal conductivity means that the diamond cup's temperature will
quickly become close to the ambient temperature, and indeed leads to
increased evaporation (see Figure D) .
The student might continue her explorations by deciding to see what

happens with the same cup on the top ofa mountain, where it would be
very cold, or in the tropics, where the temperature could be adjusted to be
the same as in the desert but with a much higher relative humidity. These
explorations can be accomplished in minutes, with reports produced for
furthercomparison and reflection .

(Morethan one teacher has suggested adding a "nerd switch" that would
provide access to the full explanation system, on the grounds that early
exposure to such information in the right circumstances could spark curios-
ity.) The kindsof queries allowed are thus very limited. For instance, the
only questions students can ask aboutaparameter are "Whatcan affect it?"
and "Whatcan it affect?"
We focus on the kind of causal information that students are supposed

to be learning . The answers to questions about parameters, for instance,
concern the existence ofinfluences-for example, "x can be af-
fected by..." in Figure Cl . Although the explanation system knows
the type andsign ofthe influence, the filter suppresses this information
because it is something that the student should be learning, along with the

From laboratory to classroom. Active illustrations wouldbe appropri-
ate in these settings :

"

	

Stand-alone systems. The student views the active illustration as a
separate tool . It couldbe a laboratory for running experiments, such
as the Evaporation Laboratory, or a training simulator.
Hypermedia component, Active illustrations could be a powerful new
type of media in hypermedia systems. A student might start using an
active illustration included to provide a concrete example ofsome
phenomena, andbranch to the rest ofthe network, based onthe con-
cepts in the illustration's explanation system.

"

	

Virtual artifacts in shared virtual environments. Many groups are
exploring MUDs (multiuser domains) and MOOS (MUD, object-
oriented) as environments for students to interact with each other and
instructors, in an arena designed to support learning . Because interac-
tion is computer-mediated, such spaces provide additional opportuni-
ties for software-based coaching and assessmentofstudent progress .

The need to explore these different settings in parallel raises interesting
software-engineering issues . Our solution is to produce self-explanatory
simulator runtime libraries that canbe combined with code produced for
particular simulators and hookedinto shells that support these different
settings . Forproducing small-footprint systems, we have createdaWin-
dows dynamic linked library that can be linked with DLLs for specific
simulators. For cross-platform portabilityand flexibility, we also support
aCommon Lisp runtime library, Our Simgen Mk3 compiler (see the Sim-
gen sidebar) produces CommonLisp simulators that canbe used directly

	

-
with the Lisp runtime library and produces C++ source code that can be
compiled to create asimulator DLL .4 So far, we have created two shells
for active illustrations. The first is a GUI-based shell, written in C++,
which provides a small-memory-footprint stand-alone system. The sec-
ond is a client-server shell, with transactions mediated via theMUD Com-
munications Protocol . The MCP allows student/simulator interactions to
be broadcast through a MUD, thus making the interactions visibleand
available for coaching, tutoring, and evaluation software . (The MCPis a
message protocol for software that needs to interoperate with MUDs. Its
specification has been published onthe Web.)
A target audience such as middle-school students raises a number of

design issues for an active illustration. First, as I noted in the main article,
middle-school students cannot be expected to understand ordinary differ-
ential equations, Consequently, we have put filters on the explanation sys-
tem to hide information that would beinappropriate for this audience.

level of water in Cup
Diamond cup in Chicago*
Styrofoam cup in Chicago*

temperature of water in Cup
Diamond cup in Chicago*
Styrofoam cup in Chicago*

Figure D. Comparison of evaporation from Styrofoam and diamond cups, summer-
time in Chicago: waterlevel (top); water temperature (bottom).

propagation, recording the derivations in a
logic-based truth-maintenance system .$
Upon request, CyclePad provides explana-
tions of derived values, the indirect con-
sequences of particular assumptions the
student made, the equations that might
be relevant to deriving a particular value,
and other similar information . These expla-
nation facilities exploit the dependency

network created in the LTMS .
CyclePad represents explanations as struc-

tured explanations, an abstraction layer be-
tween the reasoning system andthe interface .
The reason for this layer is that the reason-
ing system must be optimized for perfor-
mance, while the interface mustbe optimized
for clarity, and these goals are often in con-
flict. The structured-explanation layer pro-

vides summarization, hiding aspects ofhow
the reasoning system works that are irrele-
vant to the student . It also provides reifica-
tion, making dependencies explicit that
would otherwise be implicit, such as the var-
ious methods that could be used to derive a
desired parameter.

Automating the tedious calculations in-
volved in thermodynamic equations and

relative magnitudes of various effects . (By type of
influence, we mean whether the causal relationship
partially specifies a functional dependency or a
rate dependency. Qualitative Process theory pro-
vides formrepresentations for such casual rela-

tionships.5 Partial information about functional
dependencies is expressed via qualitativepro-
portionalities, andpartial information about rate
dependencies is expressed via direct influences .)
A second issue in creating simulators for

students is the problemof initialization . Providing
a large menuof numerical and logical parameters ;
even in the cleanest, well-organized GUL can eas-
ily lead to bewilderment . We simplify this process
by using a metaphor from drama-the idea of a
prop . Aprop on a stage represents something in the
imagined world . In our simulators, props represent
a coherent subset of the simulator's parameters that
naturally make sense to consider together.
Each simulator has a set of catalogs, each catalog

containing props thatimpose different constraints on
a particular subsetofthe simulator's parameters.
The Evaporation Laboratory, for instance, has two
catalogs: cups and environments (see Figure E) . The
choice ofcup constrains its shape and dimensions,
as well as its thermal conductivity (for example, the
thermal conductivity ofdiamond is orders of magni-
tude higher than most common materials) . The
choice ofenvironment constrains the atmosphere's
temperature, pressure, and vapor pressure, as well as

!

	

the limits overwhichthese parameters can vary. (Although LasVegas
could, in theory, get colder than the top ofMt. Everest, it would be very
surprising. Providing' constraints that prevent two props from being iden-
tical in the simulator helpsmaintain the suspension of disbelief.)

In addition to solving the technical problem of setting up a simulation,
props should also provide pedagogical benefits byhelping the student see
relationships between physical objects and circumstances and their prop-
erties. It also provides a simple path to customization . For example,
adding props representing familiar objects and situations (such as a stu-
dent's favorite cup or hometown) can make software more engaging .

Figure E.Two catalogs used in the EvaporationLaboratory:(1) cups (students can change the amount and
temperature of the water for whichever cup they choose) ; (2) environments.

Deploymentand other plans. We demonstrated the Evaporation Lab-
oratory at a CAETI meeting in March 1996 . We used a client-server
version of the software, with communications routed to a MUD so that
evaluation agents and other software could listen in . The stand-alone
version ofthe Evaporation Laboratory was delivered to the CAETI
testing facilities in April, as part of the process of migrating the soft-
ware to Dodea test schools . We are snaking the stand-alone version
available for experimental use in schools.
We are creating several new simulations, both for earth science and

for other domains . As with CyclePad, we are gathering feedback from
teachers that is driving the evolution of the interfaces for the shells . We
are collaborating with other members ofthe CAETI community to build
simulation coaches that can help students set up and interpret experi-
ments in aMUD-based environment.(Aclient/server MUD version
with coaching, using lightweight tutor agents6 to provide advice and
evaluative feedback onthe design ofsimulation experiments, was
demonstrated in November 1996 . We provided the client-server simula-
tion system, Mark Shirley and Daniel Bobrow ofXerox PARC de-
veloped the MUD communications system, and Ken Koedinger of
CMUdeveloped the tutor agent.)
The MUD environment provides some interesting challenges . MUDs

are almost entirely text-based. Limitations incommunications bandwidth
overmost of the planet, andlimited education budgets, mean that many
MUD-based learning spaces will continue tobe text-based for years to
come . Consequently, a text-based user interface for active'illustrations, in

theform of a MUD-based software robot, canopenup this technology to
an even broader audience. We also suspect that text-based bots couldpro-
vide some advantages thatcomplement those available with GUIs . First,
text that engages a student's imagination provides better imagery than
any graphics technology can. Second, the metaphors for interaction with
bots are different: the bot can act as an assistant, carrying out experi-
ments in a virtual environment, or as apurveyor ofphenomena, helping
to spark a students interest . We are creating such a softbot, using Sibun's
Salix natural-language-generation techniques to provide explanations.7 A
key issue in creating a useful softbot is handling discourse well enough in
a MUD-based environment to keep students engaged .

References

1 . F. Amador, A . Finkelstein, and D . Weld, "Real-Time Self-Explana-
tory Simulation," Proc . 11th Nat'l Conf. Artificial Intelligence,
AAAI Press/MIT Press, Cambridge, Mass ., 1993, pp . 562-567 .

2 . K . Forbus and B . Falkenhainer, "Self-Explanatory Simulations :
An Integration of Qualitative and Quantitative Knowledge," Proc.
Eighth Nat'l Conf, Artificial Intelligence, Vol. 1 . AAAI Press/MIT
Press, 1990, pp . 380-387 .

3 . Y. Iwasaki and C. Low, "Model Generation and Simulation of
Device Behavior with Continuous and Discrete Changes," Intelli-

gent Systems Eng., Vol. l, No . 2, 1993 .

4 . K . Forbus and B . Falkenhainer, "Scaling up Self-Explanatory Sim-
ulators : Polynomial-TimeCompilation," Proc. IJCAI-95, Morgan
Kaufmann, San Francisco, 1995 .

5 . K . Forbus, "Qualitative Process Theory." Artificial Intelligence,
Vol . 24, 1984, pp . 85-168 .

6 . S. Ritter and K.R . Koedinger, "Towards Lightweight Tutoring
Agents," Proc. Seventh World Conf. Artificial Intelligence in Edu-
cation, Assoc . for the Advancement ofComputing in Education,
Charlottesville. Va., 1995, pp . 91-98 .

7 . P. Sibun, "Generating Text without Trees," Computational Intelli-
gence, Vol. 8, No . 1, 1992, pp. 102-122 .

Cardboard

Pyrex

Boston(2)

(1)

Copper

Styrofoam

Chicago

Diamond

Titanium

Las Vegas Salt Lake City

Tin

Oak

explaining clearly how the student's assump-
tions were used provides substantial scaf-
folding . Students can focus on the thermo-
dynamic consequences oftheir assumptions,
rather than on using their calculators to solve
routine equations. The LTMS also provides
a useful mechanism for detecting and recov-
ering from contradictory assumptions . For
instance, if the parameters supplied by the
student imply a violation of physical laws
(for example, that a turbine consumes work
rather than generates it), the LTMS alerts the
student, also providing the subset of respon-
sible assumptions for correction .

CyclePad provides other analysis tools
besides constraint propagation. It automates
sensitivity analyses . Instructors view such
analyses as important for gaining a deeper
appreciation of the domain . To automate
these analyses, CyclePad uses the depen-
dency network in the LTMS to identify rele-
vant parameters and to automatically derive
the necessary equations, CyclePad provides
visualization tools that reveal how part of the
cycle contributes to its overall performance .
Graphical information about the bounds of
available property tables and, in some cases,
automatically generated T-S (temperature
versus entropy) diagrams are also available.
In addition, CyclePad includes an online help
system that describes the program's opera-
tion and knowledge.

Lessons learned. CyclePad incorporates
substantial domain knowledge and applies it
to a complex task under tight computational
constraints, so it provides interesting evi-
dence concerning the utility of various AI
techniques for educational software.

Compositional modeling can work wellwith
large, integrated qualitative/quantitative
domain theories. Although automatic model
formulation is unnecessary in this task, the
representations of assumption classes and
logical constraints between modeling as-
sumptions provide valuable leverage in orga-
nizing an analysis .

Qualitative representations canprovide use-
ful reality checks even in highly quantitative
tasks. Besides detecting physically incon-
sistent designs, qualitative descriptions of
physical processes provide grounds for
explanations .

Numerical constraint propagation is very
effective, An alternate approach would have

been to use one of the many commercial
symbolic mathematics packages, such as
MathCAD or Mathematica . Although such
packages have their uses, they are poor
choices as components in articulate software .
They do not provide explanation facilities,
they demand substantial computational re-
sources, and their cost would make experi-
mentation and deployment in schools diffi-
cult. "Rolling yourown" seems still to be the
best choice for educational software .

Logic-based truth maintenance systems pro-
vide the right mix of logical power and

effi-ciency. Theabilitytousearbitrary clauses
instead ofbeingrestricted to Horn clauses (as
in ajustification-based truth maintenance sys-
tem) facilitates the expression ofrelationships

QUALITATIVE PHYSICS CANBE

THE CORE TECHNOLOGY FOR

CREATING NEWKINDS OF

SMARTER EDUCATIONAL

SOFTWARE, BECAUSEIT CAP-

TURES THE KINDS OF REPRE-

SENTATIONS ANDREASONING

TECHNIQUES THAT PEOPLE

USEIN DEALING WITH THE

PHYSICAL WORLD.

between modeling assumptions . The linear-
time reasoning process ofan LTMS provides
freedom from the exponential blowups that
can happen with an assumption-based truth
maintenance system. However, the mono-
tonic growth ofmemory consumption in stan-
dard TMS algorithms proved unacceptable
for CyclePad, because retracting an assump-
tion can result in the retraction of hundreds
ofconsequences . Consequently, we invented
a garbage collector for facts and clauses for
the LTMS .9

Generative hypertextprovides a simple but
powerful explanation system . Ehud Reiter
and Chris Mellish have suggested that sophi-
sticated natural-language-generation tech-
niques are unnecessary in many applica-
tions. 10 So far, this has been the case with
CyclePad . The ability to automatically gen-

erate hypertext in response to a user's ques-
tions obviates the need for discourse plan-
ning . Also, the task's fixed nature means that
we can postpone issues such as selecting the
appropriate level of detail in an explanation.
Hypertext lets users select how much they
want to know about a topic. Because Cycle-
Pad generates the hypertext only on demand,
it avoids many navigation problems common
in fixed hypertexts .

Deployment and plans for CyclePad. To
date, we have used CyclePad on an experi-
mental basis with students from Northwest-
ern University, Oxford University, and the
US Naval Academy. These formative evalu-
ations have led to substantial changes in the
interface and a variety of new features that
make the software more useful . CyclePad is
now stable enough that it has been used in
required classroom assignments. (CyclePad
is written inAllegro Common Lisp for Win-
dows, exploiting the ability to produce roy-
alty-free runtime systems to produce a dis-
tribution that fits on two floppies . For an
HTML version of CyclePad's help system,
access http://Www.grg .ils.nwu.edu.) The
most extensive use has been at the Naval
Academy, where, for example, 17 students
have used it for class assignments and term
projects in an energy-conversion course
taught by C. Wu in the spring semester of
1996, We plan to use it extensively with both
introductory and advanced students at all
three universities in the 1996-1997 aca-
demic year in further studies . We also plan
to refine its design based on these experi-
ences and the suggestions of our thermody-
namics collaborators.
We are also adding coaching to the soft-

ware for further scaffolding . Students need
two kinds of advice in these design tasks.
First, they need help in analysis . We are using
a combination ofrules and special-case pro-
cedures for analysis coaching . For instance,
one common source of trouble for students
is selecting values outside the range of the
property tables . Such circumstances trigger
rules that display the offending assumptions
and a chart of the relevant property table .
The chart shows what information is avail-
able and where the student's choices are
with respect to what is known, so that the
student can revise his or her assumptions to
fit the available data.

Second, students need help improving
theirdesign to meet their project's goals. We
plan to use a case-based coach for design .

With our thermodynamics collaborators, we
will create the library ofcases . We'll imple-
ment the coach using analogical reasoning
tools that our group developed originally as
cognitive simulations, The retrieval compo-
nent will be MAC/FAC, t t a model of simi-
larity-based reminding . MAC/FAC's advan-
tage should be that we will not have to hand-
index the case library's elements-the rep-
resentations automatically computed by
CyclePad will provide the necessary infor-
mation . SME, 12,13 our simulation of analog-
ical mapping, will adapt a case to the
student's current problem . The candidate in-
ferences that SME produces as part of a
mapping should provide suggestions for
how the information in the case can help
improve the student's design .
We are also designing a second laboratory,

aimed at teaching intuitive notions of feed-
back control to high-school and college stu-
dents . This domain complements engineer-

ing thermodynamics well : In engineering
thermodynamics, the analyses are steady
state, and the complexity arises from the
complex nature of substances and the pro-
cesses they undergo . In feedback control, a
controller's components can be viewed func-
tionally (abstracting away from whatever
technology is used to implement them), and
the complexity arises from the dynamic
interaction of simple parts . Although the
analysis tools and methods will be very dif-
ferent for this domain, we believe that the
same articulate virtual laboratory architec-
ture will work for it, too .

FORCOUNTRIES TO REMAIN COM-
petitive in the world economy and have a
technologically literate population that can

governitself wisely, high-quality education-
particularly in science and engineering-is
essential . One way to improve education is
by improving educational software. Qualita-
tive physics can be the core technology for
creating new kinds of smarter educational
software, because it captures the kinds ofrep-
resentations and reasoning techniques that
people use in dealing with the physical
world . Using qualitative physics, we should
be able to create truly articulate educational
software. Although much research remains,
our experience with articulate virtual labo-
ratories and with active illustrations (see the
"Active illustrations" sidebar) indicates that
this approach is very promising .
What will it take for qualitative physics to

become widespread as a component in edu-
cational software? Three factors are essential :

"

	

Off-the-shelf domain theories . A good
domain theory provides material that can

` Simgen
The original motivationfor self-explanatory simulators was the

Steamer project, one part o£ which attempted to retrofit qualitative,
causal explanation systems to ahand-built Fortran simulation program .
Such training simulators are hard to build and, once built, are typically
opaque, making such retrofits difficult at best. But suppose the simulator
is written by a compiler that understands the domain in the same way that
an expert simulation author for thatdomainunderstands it. Then, simula-
tors become cheaper to build, and retrofitting is unnecessary because the
compiler's understanding can be embeddedinto the simulator itself.
The explanatory capabilities of self-explanatory simulators arise from

two components. The first is a structured explanation system: a concep-
tual, declarative model of the situation being simulated, expressed in
qualitative and quantitative terms . It is derived from, but is not identical
to, the compiler's qualitative understanding of the situation . For instance,
antecedents are simplified both to insulate the user from low-level details
ofhow the domain theory was formulated and to focus on critical infor-
mation . The second is a concise history, a recording ofhow important
qualitative properties vary during a simulation . The concise history, com-
bined with the structured explanation system, is sufficient to reconstruct
the complete causal account and mathematical model at every instant
during a simulation . Because the concise history is interval-based, the
storage cost of maintaining it depends on the behavior's qualitative com-
plexity, rather than whatever time step the simulation uses.

Evolution

The original self-explanatory simulator compiler (Simgen Mark 1)
used envisioning, a form of qualitative simulation, to do the necessary
qualitative reasoning. Because envisioning explicitly 'generates every
globally consistent state, this compiler produced simulators with very
stringent self-monitoring . If, for example, the simulation's numerical
parameters veered from the set oflegal qualitative states or suggested a

qualitatively impossible transition, the simulatorswould detect this and
complain . Unfortunately, the price for this useful capability was too
high : Envisioning is generally exponential, which led tolong compila-
tion times, so this compiler could only produce simulators for systems
containing approximately 10 state parameters. The second-generation
compiler (Simgen Mark 2) did not use qualitative simulation at all .
However, it still carried out transitivity calculations to create additional
self-monitoring, using an assumption-based truth maintenance system .
Although this compiler could produce simulators for systems contain-
ing a few hundred parameters, the exponential behavior oftheATMS
for larger systems made it impractical for large simulations . The
current-generation compiler (SimgenMark 3) uses a logic-based truth
maintenance system andsymbolic evaluation instead of an ATMS,
yielding polynomial-time performance, at the cost of some compile-
time error checking . SimgenMark 3 can generate simulators with thou-
sands of parameters, which is the scale of many interesting training
"simulators (for example, shipboard propulsion systems and power
plants) .

This evolution illustrates two important points . First, the tendency
has been to identify qualitative reasoning with one specific type of
qualitative reasoningnamely, qualitative simulation . This misconcep-
tion makes it easy to miss what might be some of the most interesting
applications of qualitative reasoning. In the task of simulator
generation, qualitative reasoning instill crucial . Qualitative reasoning
identifies what phenomena are relevant, suggests what qualitative and
mathematical models are appropriate, and provides the causal
orderings, relevance conditions, and consistency tests that structure the
simulator's numerical component. But qualitative simulation is unnec-
essary . Identifying the appropriate forms of qualitative reasoning for a
task can provide orders-of-magnitude improvement when scaling up .

The second point is that each step of Simgen's evolution was driven by
comparisons of the compiler's operation and the code it produced with
what human programmers seem to do and whattheir code looks like .
Informal cognitive' analyses of tasks can lead to substantial benefits,
even if the goal of anAI project is purely engineering .

be used to build an entire class of mod-
els, automatically or semiautomatically.
The ability to automatically build mod-
els and to deeply reason about them is
what makes articulate software genera-
tive . However, creating domain theories
is still difficult and something of an art.
It requires deep domain expertise, the
ability to be explicit about this expertise,
and experience in representing this know-
ledge formally. Libraries of domain the-
ories that require minimal customization
are a critical fuel for creating articulate
software .

"

	

Off-the-shelf reasoning and representa-
tion modules. Although several publicly
available qualitative-reasoning systems
exist, none is particularly suitable for
embedding in educational software . As
we learn more about how to create artic-
ulate software, we should be able to iden-
tify reusable modules that can help gen-
erate new systems more rapidly. One can-
didate module type is a structured-expla-
nation system, such as we used in both
CyclePad and the Evaporation Labora-
tory (see the "Active illustrations" side-
bar) . In addition, tools that help domain
experts build and test representations
would expand the community that could
contribute domain theories .
Authoring environmentsforspecific archi-
tectures . Assuming these architectures
prove their worth educationally, theprocess
ofcreating new software within eacharchi-
tecture must be streamlined so that re-
searchers are no longer in the loop, One
way is to create authoring environments
that enable curriculum developers and
experienced teachers to create new soft-
ware, using off-the-shelf domain theories .

The ability to automatically formulate
models, generate explanations, and generate
simulations provides new capabilities for
educational software, while improving the
economics of producing it . Ifwe collaborate
withteachers, curriculum designers, and edu-
cators, we could develop software thathelps
improve science and engineering education
substantially.

Acknowledgments
The Computer Science Division of the Office

ofNavalResearch supported the basic research on
self-explanatory simulators and compositional
modeling . The ONR's Cognitive Science Division

supported the basic research on analogical match-
ing and retrieval . CyclePad's initial development
was supported partly by a grant from the Science
and Engineering Research Council in the UK. The
AdvancedApplications ofTechnology program of
the EHRdirectorate of the National Science Foun-
dation supported research on articulate virtual lab-
oratories . The Defense Advanced Research Pro-
jects Agency of the US Department of Defense,
under the Computer Education and Training Ini-
tiative, supported research on educational appli-
cations of self-explanatory simulations .

CyclePad's knowledge base has been devel-
oped in collaboration with Peter Whalley, of
Oxford University, Other subject-matter collabo-
rators and instructors involved with CyclePad
include David Mintzer, Siavash Sohrab, and
Michael Brokowski (Northwestern University) ;
and C . Wu and Sheila Palmer (USNA). John
Everett andAndy Bachmann have provided sub-
stantial programming support forCyclePad . John
DeMastri, Aaron Thomason, and Mike Oltmans
created the C++ libraries for self-explanatory sim-
ulators and the C++ runtime system . Penelope
Sibun is responsible for natural-language expla-
nation generation and softbot design.

References
1 . J.S . Brown, R, Burton, and J . de Kleer, "Ped-

agogical, Natural Language, and Knowledge
Engineering Techniques inSOPHIE I, II, and
III," in Intelligent Tutoring Systems, D, Slee-
man and J .S . Brown, eds ., Academic Press,
San Diego, 1982, pp . 227-282 .

2 . J, Hollan, E . Hutchins, and L. Weitzman,
"STEAMER : AnInteractive Inspectable Sim-
ulation-Based Training System," AIMaga-
zine, Vol. 5, No . 2, 1984, pp . 15-27 .

3 . D. Gentner andA. Stevens, eds .,MentalMod-
els, Lawrence Erlbaum Associates, Mahwah,
NJ ., 1983 .

4 . K. Forbus, "Three Articulate Software Archi-
tectures for Science and Engineering Educa-
tion," to be published as an ILS tech, report,
Inst. for Learning Sciences, Northwestern
Univ ., Evanston, Ill .

5 . K . Forbus andP. Whalley, "Using Qualitative
Physics to Build Articulate Software for Ther-
modynamics Education," Proc. 12th Nat'l
Conf. Artificial Intelligence, Vol . 2, AAAI
Press/MIT Press, Cambridge, Mass ., 1994,
pp . 1175-1182.

6 . R.M. Stallman and G.J. Sussman, "Forward
Reasoning and Dependency-Directed Back-
tracking in aSystem forComputer-Aided Cir-
cuit Analysis,"Artificial Intelligence, Vol . 9,1977, pp.135-196.

7 . B . Falkenhainer and K. Forbus, "Composi-
tional Modeling: Finding the RightModel for
the Job," Artificial Intelligence, Vol . 51, Nos .
1-3, Oct. 1991, pp 95-143 .

8, K . Forbus and J, de Kleer, Building Problem
Solvers, MIT Press, 1993 .

9 . J . Everett and K . Forbus, "Scaling up Logic-
Based Truth Maintenance Systems via Fact
Garbage Collection," Proc . 13th Nat'l Conf.
Artificial Intelligence, Vol . 1, AAAI Press/MIT
Press, 1996, pp . 614-620,

10. E . Reiter and C . Mellish, "Optimizing the
Costs and Benefits of Natural Language Gen-
eration," Proc. IJCAI-93, Morgan Kaufmann,
San Francisco, 1993, pp.1164-1169.

11 . K, Forbus, D. Gentner, and K . Law,
"MAC/FAC : A Model of Similarity-Based
Retrieval," Cognitive Science, Vol . 19, No. 2,
Apr.-June, 1995, pp . 141-205 .

12 . B . Falkenhainer, K . Forbus, and D . Gentner,
"The Structure-Mapping Engine : Algorithm
and Examples," Artificial Intelligence, Vol .
41, 1989, pp. 1-63 .

13, K . Forbus, R . Ferguson, and D . Gentner,
"Incremental Structure-Mapping," Proc .
Cognitive Science Soc., Lawrence Erlbaum
Associates, 1994, pp . 313-318 .

Kenneth D. Forbus is a professor of computer
science and education at Northwestern University.
His research interests include qualitative physics,
analogy and similarity, cognitive simulation, rea-
soning system design, and educational software,
He received an SB and an SM incomputer science
and a PhD in artificial intelligence, all from MIT.
He is a Fellow ofthe AAAI and serves on the edi-
torial boards of Artifical Intelligence, the Journal
ofAIResearch, and the AAAI Press, Contact him
at the Inst. for the Leaming Sciences, 1890 Maple
Ave ., Evanston, IL 60201 ; Forbus@ils.nwu .edu ;
http://www.grg .ils.nwu .edu .

