
nuWar: A prototype sketch-based strategy game  

Greg Dunham, Ken Forbus, Jeffrey Usher 
 

Qualitative Reasoning Group 
Northwestern University 

1890 Maple Avenue 
Evanston, IL 60201 USA 

{gdunham, forbus, usher}@northwestern.edu 
 
 
 

Abstract 
 
Today’s military strategy games provide unrealistic 
interfaces for players to interact with their units: 
Commanders don’t use mice and menus, they sketch.  
Developing strategy games currently involves grafting AI 
capabilities on top of a separate simulation engine, with 
new hand-crafted strategies for each game.  We are 
experimenting with a novel approach for solving both 
problems.  We started with nuSketch Battlespace, a 
knowledge-rich sketch understanding system developed for 
military users, and built a game engine, nuWar, on top of it.  
nuWar is a prototype two-player tactical war game which 
can be played either hot-seat or over a network.  nuWar 
uses sketching as the primary way for players to express 
their intent to their subordinate commanders.  The 
underlying ontology used by nuSketch Battlespace is used 
in both the simulation engine and in the bots which serve as 
subordinate commanders.  We describe the architecture of 
nuWar, focusing on how it uses sketching, how the 
simulation engine is built upon the rich representational 
facilities of nuSketch Battlespace, and how the bots work.  
We discuss the tradeoffs we have found in this approach so 
far, and describe our plans for future work.   
 

Introduction   
Spatial reasoning is an essential tool for players of today’s 
strategy games. To succeed, a good player must be able to 
think about the game world more abstractly than as a 
simple set of tiles. A human player can carve the space up 
into a variety of qualitative spatial features, devising a plan 
of action with respect to these features [4]. Today’s games 
provide players with unrealistic interfaces for 
communicating such a plan to their units. Keypads, mice, 
and menus are often poor substitutes for a sketch when 
describing a spatial plan. In fact, military commanders 
have been doing this for years, sketching out battlefield 
plans, also known as courses of action (COAs) [5]. Yet it 
would be difficult or impossible for a general to 
                                                 
Copyright © 2005, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

communicate a spatially rich COA using the interface 
provided in most strategy games.  
 The lack of qualitative spatial representations in strategy 
games also hinders the creation of game AIs [4]. Currently, 
AI infrastructure is typically built on top of a separate 
game engine, with strategies tailored to the engine’s 
internal workings [10]. After months of hard work, 
developers may be left with an AI architecture that is only 
useful for that one game engine implementation. The entire 
process must begin anew for the next game. 
 This paper describes nuWar, a prototype two-player 
tactical war game that attempts to solve these two 
problems. nuWar uses sketching as the primary means of 
user interaction with the game. It is built on top of 
nuSketch Battlespace [5], a system for creating COAs, 
which has a rich underlying ontology. After introducing 
nuWar, we illustrate the sketching interface that we believe 
makes player interaction more natural than traditional war 
game interfaces. We then describe the advantages and 

Figure 1: The Blue-side player sketches orders for a direct frontal 
assault on the city of Dullsville. 



tradeoffs of the game’s deep ontological grounding. Next 
we explain our use of SADL, a declarative action 
language, to control the actions of subordinate commander 
AI bots. Finally, we discuss the current state of nuWar and 
our plans for future work. 

nuWar Overview 
nuWar is a head-to-head (Red vs. Blue) war game, which 
can be played either as a network game or in “hotseat” 
mode. The interface mechanic is similar to that used by 
commercial games such as Combat Mission. There is an 
initial scenario, either drawn from a library of scenarios or 
sketched by one of the participants. Each player 
simultaneously looks over the situation from their side’s 
point of view, and formulates a plan using the nuSketch 
Battlespace sketching interface. For example, the Blue-side 
player, whose sketch is seen in Figure 1, may see the pass 
between the mountains as the most direct path to seize the 
city of Dullsville. He sketches out his plan for a frontal 
assault on the seemingly unguarded city. The Red-side 
player, whose sketch is seen in Figure 2, cannot yet see 
any Blue units, but suspects that the enemy may try to 
seize the city by approaching through the pass. He 
sketches his orders for an ambush, laying in wait from 

well-concealed positions behind the mountains. Their 
plans complete, each player clicks a button indicating they 
are ready to execute the turn. 
 When both players are ready, the simulator engine runs 
for a predetermined amount of game-time (Figure 3), and 
both players get to see what happened in the form of an 
animated movie that uses the same graphical elements 
from the battlespace sketch. Figure 4 shows the end-state 
of the turn-movie generated from the execution of the turns 
described above. The underlying physics model and task 
execution details used to generate the turn results are 
described below. After the movie has been viewed, players 
can modify their plan, if desired, and initiate another round 
of game simulation. 
 The motivation for developing nuWar was to provide a 
game-based environment for knowledge capture from 
military experts.  That is, by “watching” two experienced 
officers play each other in the game, we plan on building 

up a library of strategies and tactics.  This means that the 
constraints on realism in the current version are tighter 
than might otherwise be desirable for mass-market 
gameplay, e.g., the large number of units, kinds of units, 
and their capabilities. 
 Sketching is a player’s sole means of affecting the state 
of a nuWar game. A key consideration while designing the 
sketching interface was balancing the tension that arises 

Sketch 

KB 

Simulation Engine 

Bot 
AI 

Physics 
Engine

Figure 3: Architecture diagram illustrating the process used to 
generate each discrete "tick" of a turn movie. 

Figure 2: The Red-side player describes an ambush by sketching 
a course of action. 

Figure 4:  The results of the turn illustrated in Figure 1 and Figure 
2. The Red ambush succesfully prevented Blue from seizing the 
city of Dullsville. Shaded areas represent regions that are not 
visible to Red. 



between minimizing the player’s input friction and 
maximizing the system’s understanding of the player’s 
intent so the bots can attempt to carry out what the user 
wanted. The next section describes how the sketching 
interface addresses these concerns. 

Sketching as a Game Interface 
Many game genres require the player to engage in spatial 
reasoning. Sketching can provide a more natural 
expression of user intent with respect to spatial concepts 
[6]. Sketching is a particularly good interface match for a 
war game because it simulates how real military 
commanders communicate plans, thus providing another 
source of immersion.  For example, the graphical language 
of tasks that nuWar uses comes from US Army training 
manuals, and many of the representations and interface 
decisions were made in collaboration with military officers 
as part of the research which developed nuSketch 
Battlespace.  While this is not a system they are using 
today, it may be the ancestor of what they use in the future 
[8]. 
 In nuWar, the current game state is presented as a sketch 
of the current scenario’s terrain. The locations of friendly 
and visible enemy units are displayed on top of the terrain 
layer, as are sketched graphical representations of standing 
military orders (tasks). The player may not modify terrain 
or unit locations, but may modify the tasks to suit their 
preferred strategy. 

The nuSketch Approach To Sketching 
Many sketching interfaces focus on recognition [5]. This is 
clearly an important approach, and has been demonstrated 
to provide more natural and usable interfaces to existing 
computer systems.  Unfortunately, such systems are 
hampered by the poor performance of today’s statistical 
recognition systems.  Techniques like combining results 
across modalities (e.g., gesture and speech [2]) help, but 
reliable results are only obtained by carefully crafting the 
environment, lots of user training, and tightly 
circumscribing the domain of discourse.  All work against 
immersion in a gaming environment.   
 The nuSketch approach is very different.  We avoid 
recognition issues by engineering around them, providing 
reasonably natural, but 100% reliable, alternatives.  Instead 
we focus on visual and conceptual understanding of the 
user’s input, to support communication with AI systems 
that will reason with it. 

The nuSketch Battlespace Interface 
The nuSketch Battlespace (nSB) interface can be seen in 
overview in Figure 1 and Figure 2. Many of the elements 
are standard for drawing systems (e.g., widgets for pen 
operations, fonts, etc.) and need no further comment. The 
crucial aspects that make the basic interface work are 
layers to provide a functional decomposition of the 
elements of a sketch, glyph bars for specifying complex 

entities, gestures that enable glyphs to easily and robustly 
be drawn, and intent dialogs and timelines to express 
narrative information in a COA that is not easily captured 
by a sketch.  We describe each in turn.  
Layers 
COA sketches are often very complex, and involve a wide 
range of types of entities. The use of layers in the nuSketch 
interface provides a means of managing this complexity.  
The metaphor derives from the use of acetate overlays on 
top of paper maps that are commonly used by military 
personnel. Each layer contains a specific type of 
information: Friendly COA describes the friendly units and 
their tasks, Sitemp describes the enemy (Red) units and 
their tasks, Terrain Features describe the geography of the 
situation, and the other layers describe the results of 
particular spatial analyses. Only one layer can be active at 
a time, and the glyph bar is updated to only include the 
types of entities which that layer is concerned with. Sketch 
clutter can be reduced by toggling the visibility of a layer, 
making it either invisible or graying it out, so that spatial 
boundaries are apparent but not too distracting.  
Glyphs 
Glyphs in nuSketch systems have two parts, ink and 
content. The ink is the time-stamped collection of ink 
strokes that comprise the base-level visual representation 
of the glyph. The content of the 
glyph is an entity in the 
underlying knowledge 
representation system that denotes 
the conceptual entity which the 
glyph refers to. Our interface uses 
this distinction to simplify 
entering glyphs by using different 
mechanisms for specifying the 
content and specifying the spatial 
aspects. Specifying the conceptual 
content of a glyph is handled via 
the glyph bar, while the spatial 
aspects are specified via gestures. 
We describe each in turn. 
Glyph bars 
Glyph bars (Figure 5) are a 
standard interface metaphor, but 
we use a system of modifiers to 
keep it tractable even with a very 
large vocabulary of symbols. The 
idea is to decompose symbol 
vocabularies into a set of distinct 
dimensions, which can then be 
dynamically composed as needed. 
For example, in nSB there are 
(conceptually) 294 distinct 
friendly unit symbols and 273 
distinct enemy unit symbols. 
However, these decompose into 
three dimensions: the type of unit 
(e.g., armor, infantry, etc., 14 friendly and 13 enemy), the 
echelon (e.g., corps to squad, 7 in all), and strength 

Figure 5: Glyph bar 



(regular, plus, minus, or a percentage). Our glyph bar 
specifies these dimensions separately.  Templates stored in 
the knowledge base for each dimension are retrieved and 
dynamically combined to form whatever unit symbol is 
needed. 
 Modifiers are also used to specify the parts of complex 
entities. Tasks, for example, have a number of roles such 
as the actor, the location, and so on. Widgets are added to 
the glyph bar whenever a glyph with parts is chosen. They 
include combo boxes and type-in boxes for simple choices 
(e.g., echelon), with drag and drop supported for richer 
choices also (e.g., the actor of a task). This simple system 
enables users to quickly and unambiguously specify roles. 
Gestures 
Sketching interfaces often use pen-up or time-out 
constraints to mark the end of a glyph, because they have 
to decide when to pass strokes on to a recognizer. This can 
be a good interface design choice for stereotyped graphical 
symbols. Unfortunately, many visual symbols are not 
stereotyped; their spatial positions and extent are a crucial 
part of their meaning. Examples include the position of a 
road, a ridgeline, or a path to be taken through complex 
terrain. Such glyphs are extremely common in map-based 
applications. Our solution is to rely instead on manual 
segmentation. That is, we use a Draw button that lets users 
indicate when they are starting to draw a glyph. There are 
two categories of glyphs where pen-up constraints are used 
to end glyphs, but in general we require the user to press 
the Draw button (relabeled dynamically as Finish) again to 
indicate when to stop considering strokes as part of the 
glyph. 
Types of glyphs 
For purposes of drawing, glyphs can be categorized 
according to the visual implications of their ink. There are 
five types of glyphs, each with a specific type of gesture 
needed to draw them, in nSB: location, line, region, path, 
and symbol. We describe each in turn. Some types of 
glyphs (e.g. location glyphs and line glyphs) are only 
available to nuWar players during scenario design, since 
users are restricted to giving orders once a game has 
started. 
 Location glyphs: Military units are an example of 
location glyphs. Their position matters, but the size at 
which they are drawn says nothing about their strength, 
real footprint on the ground, etc. Instead, this information 
is inferred using the knowledge base (KB).  
 Line glyphs: Roads and rivers are examples of line 
glyphs. While their width is significant, on most sketches it 
would be demanding too much of the user to draw their 
width explicitly. The gesture for drawing line glyphs is to 
simply draw the line.  
 Region glyphs: Both location and boundary are 
significant for region glyphs. Examples of region glyphs 
include terrain types (e.g., mountains, lakes, desert) and 
designated areas (e.g., objective areas, battle positions, 
engagement areas). The gesture for drawing a region glyph 
is to draw the outline, working around the outline in 
sequence.  

 Path glyphs: Paths differ from line glyphs in that their 
width is considered to be significant, and they have a 
designated start and end. Path glyphs are drawn with two 
strokes. The first stroke is the medial axis–it can be as 
convoluted as necessary, and even self-intersecting, but it 
must be drawn as one stroke. The second stroke is the 
transverse axis, specifying the width of the path. Based on 
this information, nSB uses a constraint-based drawing 
routine to generate the appropriate path symbol, according 
to the type of path.  
 Symbolic glyphs: Symbolic glyphs do not have any 
particular spatial consequences deriving from their ink. 
Military tasks are an example. In some cases there are 
spatial implications intended by the person drawing it that 
would be missed with this interpretation, i.e., a defend task 
is often drawn around the place being defended. 
Unfortunately, these implications are not understood by the 
system. Instead, players use the glyph bar to specify 
participants in a task.  Players do slightly more work this 
way, but the payoff is no misunderstandings. 
Entering Other Kinds Of COA Information  
In the military, courses of action are generally specified 
through a combination of a sketch and a COA statement, a 
structured natural language narrative that expresses the 
intent for each task, sequencing, and other aspects which 
are hard to convey in the sketch. The intent dialog enables 
the purpose of each task to be expressed. Intent is 
important in military tasks because it tells those doing it 
why you want it done. If the prescribed task’s execution 
goes awry, subordinate commanders are empowered with 
the information to adapt their actions in line with the 
original purpose.    
The intent dialog contains a template for each task.  A task 
is basically an order (i.e., “seize Dullsville”), specified by 
the mechanisms outlined earlier.   The purpose is conveyed 
by filling out a template: <task> in order to <modal> 
<agent> from/to <action> <object>.  <modal> is one of 
enable, prevent, or maintain.  Agent is a unit, multiple 
units, or a side.  <action> is drawn from a set of actions or 
states (e.g., “controlling”) and <object> is the thing that 
<action> would affect.  Thus “1st Platoon seize Dullsville 
in order to prevent Red from controlling Dullsville” is an 
example of the kind of statement that can be generated, by 
using pulldowns or drag and drop with the intent dialog.  
The output from the dialog is a formal representation of 
this intent that can be understood by the rest of the system. 
 Timelines are Gantt-chart dialogues that enable temporal 
constraints to be stated between tasks.  Constraints that 
cross sides cannot be stated, since typically one is not 
privy to the other side’s planned tasks.  One task can be 
constrained to start or end relative to the start or end of 
another task, or at some absolute point in time. Estimates 
of durations can also be expressed. 
 Common to each of these sketching interface elements is 
an underlying entity in the knowledge representation 
system. The next section describes the ontology, and the 
architectural benefits that arise from employing it as a 
cornerstone of the system. 



(every Seize-MilitaryTask has 
  (sub-events 
   (a Assume-Offensive-Posture called "assume-offensive-posture" with 
     (next-event (((the sub-events of Self) called "move-along-path")))) 
   (a Move-Along-Path called "move-along-path" with 
     (next-event 
       (if (lisp (distance-to-end-of-path (nuwar-unit Bot))) 
         then ((the sub-events of Self) called "move-along-path"))         
       (if (lisp (not (distance-to-end-of-path (nuwar-unit Bot)))) 
         then ((the sub-events of Self) called "occupy-position")))) 
   (a Occupy-Region-Center called "occupy-position" with 
     (next-event 
       (if (lisp (distance-to-target-region (nuwar-unit Bot))) 
         then ((the sub-events of Self) called "occupy-position")) 
       (((the sub-events of Self) called "attack-target")) 
         (if (lisp (not (distance-to-target-region (nuwar-unit Bot)))) 
           then ((the sub-events of Self) called "wait-for-new-orders"))))
  ... 

Figure 6:  A partial SADL description of the "seize" task, which calls for a unit to clear a 
designated area and obtain control of it. 

Grounding a game engine in a rich ontology 
The nuWar physics engine, the subordinate bot AI, and the 
nuSketch Battlespace sketching application all exploit a 
large, common, knowledge base to support their core 
functionality. This arrangement simplified game engine 
development because the framework for representing 
specific knowledge about units, weapons, and terrain 
already existed in the KB. Changing fundamental game 
properties is also simplified. For example, adding a new 
type of unit or weapon does not require changes to the 
game code. Instead, a change to the KB makes the same 
information immediately available to the interface and the 
bots. 
 The knowledge base used by nuWar is a subset of the 
contents of Cycorp’s Cyc KB [7] with some limited 
custom extensions. The KB contains specialized military 
concepts as well as a wide variety of more general 
common sense facts.  
 The architecture of the nuWar simulation engine is, in 
many ways, not novel. The system performs a standard 
incremental-time simulation, using Lanchester equations 
[9] to calculate weapon effects. Ammunition and fuel 
consumption are modeled, along with attrition. What is 
different about the nuWar approach is (a) how the entities 
and their properties are specified, and (b) how the spatial 
components of the calculations are done.  
 The entities in a nuWar sketch are two-dimensional 
spatial representations associated with conceptual facts in 
the underlying ontology. Because scenarios are composed 
of sketched input, spatial entities are coarse representations 
of terrain properties rather than tiles. Ink is used to provide 
the boundaries of entities in the sketch, which are required 
to perform spatial reasoning about the sketch map. 
nuSketch combines this information with knowledge from 
the KB about units and terrain to calculate Voronoi 
diagrams [3] and polygon operations used in determining a 
variety of spatial relationships, including visibility and fog 
of war. For example, visibility is 
computed by first deriving a set 
of obstacles based on the 
properties of the entities around 
a unit (looked up from the KB), 
then using line-of-sight 
computations with distance 
clipping to derive the region that 
a unit can see.  The union of 
these polygons for a side 
indicates what that side can see, 
and the complement is that 
which is obscured by the fog of 
war. Mobility rates are 
computed using terrain 
knowledge provided by the 
ontology, using coarse 
approximations derived from 
Army manuals and expert input.  

These spatial reasoning abilities provide new capabilities 
to bots: Both position-finding and path-finding [6] can take 
as argument constraints like “avoid being seen by the other 
side”, for instance.   
 Employing a structured ontology as the foundation of a 
game is not without cost. The developer must have access 
to a KB with an adequate number of facts relevant to the 
game’s domain. Tools may also be required to interface 
with the KB. nuWar was able to minimize these costs by 
making use of the well-established Cyc KB’s contents and 
a pre-existing reasoning engine, built into nSB, which can 
reason with that content. 
 nuWar’s use of formal knowledge representation is not 
limited to the underlying world model. The next section 
describes nuWar’s use of a task description language to 
guide the player’s subordinate commander bots in carrying 
out sketched tasks. 

Declarative guidance for bots 
Each military unit in a nuWar game has a bot acting as 
subordinate commander to carry out the player’s orders. 
There are 19 different types of tasks that a player might 
assign to a unit, and so the bots must be capable of 
performing 19 tasks of varying complexity. The low-level, 
in-game actions available to units in nuWar are generally 
very limited. A unit can remain in place, move to a 
location, follow a path, assume a different posture, attack 
another unit or tactical target, and a few others. The 
higher-level tasks available to nuWar players are generally 
more complex, but can all be composed using 
combinations of these simple actions. The behavior for the 
few primitive actions is hard-coded into the physics 
engine, meaning that any changes to the fundamental 
building blocks require fairly intensive code modifications. 
Since the higher-level tasks can all be specified using this 
small vocabulary, we were then able to quickly describe 
them using declarative task representations.  
 While supporting declarative task representations 



required additional specialized code early in the 
development cycle, doing so offered several advantages. 
New tasks could be introduced and incrementally refined 
without disturbing the code base. Task implementation 
became a formal representation challenge instead of a low-
level coding challenge, and was more accessible to domain 
experts who were not as well versed in the game engine’s 
internals. Additionally, the representational choice 
significantly lowers the barrier to future reasoning about 
learned strategies—structural comparisons of the task 
descriptions could lead to strategic experimentation with 
“similar” tasks. 

SADL 
The tasks available in nuWar are described using a slightly 
modified version of the SHAKEN Action Description 
Language (SADL) [1]. We chose SADL because of its 
relatively simple (yet still powerful) syntax, its clearly 
documented feature set, and its compatibility with software 
tools used in-house. A SADL process description consists 
of a set of sub-events that may optionally specify the next 
event to be executed. We extended the language to allow 
for conditional branching based on Lisp callouts to sensor 
data provided by the physics engine. The physics engine, 
in turn, draws on the KB to infer the result for the bot. 
Another deviation from the SADL specification is ordered 
execution of sub-events, which allows for simpler 
authoring of task descriptions. 
 Figure 6 is a portion of the SADL task description for 
the seize task. The main sub-events of the seize task seen 
in the diagram are the primitive actions represented by 
Assume-Offensive-Posture, Move-Along-Path, and 
Occupy-Region-Center.  After assuming an offensive 
posture, the bot will begin executing the move-along-
path sub-event. The bot will continue to follow the task’s 
specified path until the end is reached. Task execution will 
then shift to the occupy-position sub-event, which 
attempts to occupy the middle of the target region. If 
successful, the bot will remain in place and wait for new 
orders. 

Discussion & Future Work 
nuWar is currently in alpha test, mostly played by 
developers, other members of the research group, and a 
few select others.  The core functionality and interface are 
generally working, but the user experience has not yet 
been polished. Although additional refinement is needed 
before nuWar could be considered a final product, we 
believe it serves as proof-of-concept for a sketch-based 
strategy game built on top of a rich ontology.  
 As noted above, the purpose of nuWar development was 
to provide a game-based knowledge capture environment 
that would engage expert military officers. However, we 
believe that these ideas are applicable to a wide variety of 
strategy games. Sketching can help provide an engaging 
interface in strategy games due to the strong spatial 

components of the domain and the resulting player 
strategies. Building games within a knowledge-rich 
framework can simplify engine infrastructure and allow for 
greater flexibility during the game development cycle.  
 We believe that the nuWar architecture will be useful 
for experimenting with strategic knowledge capture to 
support the creation of more humanlike strategy AIs for 
games. If generalized strategic knowledge could be 
captured and applied to similar knowledge-rich domains, 
AI development time could be cut drastically for new 
games. 
 

Acknowledgements 
This research was supported by the DARPA Rapid 
Knowledge Formation (RKF) Program. 
 
We thank Tom Ouyang, Dan Schmidt, and Vern Chapman 
for invaluable programming and modeling assistance. 

References 
1. Blythe, J., SADL: Shaken Action Description Language, 

http://www.isi.edu/expect/rkf/sadl/ 
2. Cohen, P. Johnston, M., McGee, D., Oviatt, S., Pittman, J., 

Smith, I., Chen, L., and Clow, J. 1997.  QuickSet: 
Multimodal interaction for distributed applications.  
Proceedings of the Fifth Annual International Multimodal 
Conference.  Seattle, WA. 

3. Edwards, G. and Moulin, B. 1998. Toward the simulation of 
spatial mental images using the Voronoi model. In Oliver, P. 
and Gapp, K.P. (Eds) 1998. Representation and Processing 
of Spatial Expressions. LEA Press. 

4. Forbus, K.D., Mahoney, J.V., Dill, K. 2002. How 
Qualitative Spatial Reasoning Can Improve Strategy Game 
AIs. IEEE Intelligent Systems, Vol. 17, Issue 4, July-August 
2002, 25-30. 

5. Forbus, K., Usher, J., and Chapman, V. 2003. Sketching for 
Military Course of Action Diagrams. IUI’03, January 12-15, 
2003, Miami, Florida. 

6. Forbus, K., Usher, J., and Chapman, V. 2003. Qualitative 
Spatial Reasoning About Sketch Maps. Proceedings of the 
Fifteenth Annual Conference on Innovative Applications of 
Artificial Intelligence, Acapulco, Mexico. 

7. Lenat, D. B. (1995). CYC: A large-scale investment in 
knowledge infrastructure. Communications of the ACM 38, 
33–38. 

8. Rasch, R., Kott, Al, and Forbus, K. 2002.  AI on the 
Battlefield: An experimental exploration.  Proceedings of 
the 14th Innovative Applications of Artificial Intelligence 
Conference, July, Edmonton, Canada. 

9. Taylor, James G. 1983. Lanchester Models of Warfare, 
Ketron Inc., Arlington, VA  

10. Tozour, P. 2002. The Evolution of Game AI. AI Game 
Programming Wisdom, Charles River Media, 2002. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


