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Abstract
This  paper  describes  the  use  of  qualitative  models  in 
learning to plan and execute in a turn-based strategy game. 
We are using a qualitative model primarily to regress from 
dependent goal variables to independent variables in order 
to propose possible actions and sub-goals.  Unlike physical 
systems, this is essentially an economic model of influences 
between  various  types  of  production  and consumption  in 
simulated cities in a turn-based strategy game.  We describe 
how we are using qualitative models to plan and learn in a 
strategy game, and experiments in progress.

Introduction

While qualitative reasoning is most often used to simulate 
physical  systems,  it  has  also  been  used  effectively  to 
reason about economics (cf. Farley & Lin, 1990; Kamps & 
Peli,  1995).   Having  an  economic  model  can  be  an 
important  factor  in  successfully  playing  modern  strategy 
games, such as Civilization.  We are exploring how such 
a  qualitative  model  can  support  planning  and  analogical 
learning in turn-based strategy games.  Games of this sort 
have  several  interesting  properties:   1)  they  involve 
incomplete knowledge of the world, 2) they entail complex 
interrelationships between entities and quantities, 3) goals 
may be more like optimization problems than achievement 
of  states,  and  4)  planning  and  executing  are  tightly 
interleaved.   Qualitative  representations  can  serve  as  a 
partial  domain  theory  to  guide  planning  and  learning  at 
different levels of expertise.

We are currently focusing on the subtask of managing 
cities  to  optimize  their  use  of  resources,  build 
improvements, improve terrain, and research technologies. 
In this paper, we will describe how a qualitative model of 
city management can support planning and learning in the 
game of Freeciv.

In the rest of this section, we outline the context of this 
work, providing a brief synopsis of the strategy game we 
are using, HTN planning, and analogical reasoning.  Next 
we describe how we are using a qualitative model of city 
economics  to  enable  a  system to plan  actions  and  learn 
how to improve its performance in playing the game.  An 
experiment  in  progress  is  described,  and  we  close  by 
discussing related work and future plans.

The Freeciv Domain
Freeciv  is  an  open-source  turn-based  strategy  game 
modeled after Sid Meier's  series of Civilization games 
(Freeciv,  2006).   The objective of the game is to start a 
civilization  from  initial  settlers  in  the  Stone  Age  and 
expand and develop it until you either conquer the world 
or win the space race and escape to Alpha Centauri.  In 
either  case,  the  game can  be  characterized  as  a  race  to 
build  your  civilization  and  technological  sophistication 
faster than your opponents.  Along the way, there are many 
competing demands for limited resources, investment, and 
development.  For  example,  players  must improve terrain 
with  irrigation  and  roads,  while  avoiding  famine  and 
military  defeat.  Too  much  emphasis  on  military 
preparedness, for example, can make citizens unhappy and 
therefore  less  productive.   Money  must  be  allocated  to 
research into new technologies,  such as iron-making and 
democracy,  which  enable  players  to  create  new 
improvements to cities, new types of units, and adopt new 
types of governments, each with their own tradeoffs.  

In  our  current set of experiments, we are focusing on 
learning how to manage the growth of cities and maximize 
productivity.   While  our  planner  can  direct  exploration, 
city  management  tasks  offer  clearer  evaluation  metrics. 
We  also  currently  ignore  military  operations,  focusing 
instead on how to make a rich, productive civilization.

Figure  1 : Freeciv



HTN Planning
To support performing and learning in the strategy game, 
we have implemented a Hierarchical Task Network (HTN) 
planner using the SHOP algorithm (Nau et al., 1999).  In 
the  HTN  planner,  complex  tasks  are  decomposed  into 
primitive  executable  tasks.   The  primitives  in  FreeCiv 
correspond  to  packets  that  are  sent  to  the  game server, 
representing actions such as sending a unit to a particular 
location or telling a city what to build.  Complex tasks are 
at  the level  of  figuring  out  what  a  unit  should  do  on a 
particular turn, or deciding how to ameliorate a crisis in a 
city (such as a famine or revolt.)  The planner generates 
plans  for  each unit  and city at  every turn and integrates 
them  in  a  combined  planning/execution  environment. 
Planning is invoked partly in an event-driven manner, such 
that reified events from the game trigger certain decisions. 
For example, the planning agent does not re-compute its 
global strategy on every turn,  but checks to see if it has 
acquired any new technologies in the last turn,  and only 
then does it re-evaluate its strategy. 

A critical aspect of this game is that it requires planning 
with incomplete and uncertain information.  Terrain is not 
known until it is explored.  The outcomes of some actions 
are  stochastic,  for  example,  village  huts  may  contain 
barbarians that will kill an explorer, or they may contain 
gold  or  new  technologies.   There  is  also  vastly  more 
information in the game than can be considered within a 
planning state.  Consequently, the planner cannot plan an 
agent's  actions  starting  with  a  complete  initial  state.   It 
must reify information on demand by querying the game 
state.  At the same time, the planner may project the effects 
of  actions  such  that  the planned  state  deviates  from the 
game state.   To reconcile  these  competing demands,  we 
maintain two  contexts (cf.,  Lenat  1995):  a  game context 
that  always  reflects  the  incomplete,  but  correct  current 
state of the game and a  planning context in which states 
are projected forward.   Every query for information that 
cannot  be  directly  answered  from  the  planned  state 
proceeds to query the game state.  Before returning such 
game-state  information,  it  is  checked  for  consistency 
against the plan state, to ensure that, for example, a unit is 
not believed to be in two places at the same time.

Analogical Learning
A high-level goal of this research is to demonstrate how 
analogy  and  qualitative  reasoning  can  support  machine 
learning  across  increasingly  distant  transfer  precedents. 
To  do  this,  we are  using  the  Structure  Mapping  Engine 
(SME) (Falkenhainer et al., 1989), the MAC/FAC retrieval 
mechanism (Gentner  and  Forbus,  1995),  and  the  SEQL 
generalization  system  (Kuehne  et  al., 2000)  as  core 
components.   These  analogical  mechanisms  are 
coordinated and invoked by the planner as it  attempts to 
construct plans and analyze the effects of actions.

In  fact,  learning  is  guided  by  explicit  learning  goals 
(Ram and Leake, 1995) that are currently specified as part 
of the problem scenario.  A learning goal determines how a 

decision  task  will  be  solved  when  there  are  insufficient 
analogical precedents or canned plans.  A typical strategy 
is  experimentation,  in  which  the  decision  is  made 
randomly in order to generate the requisite variation and 
provide cases that better cover the decision space.  When 
the goal is to learn the effect of an action, additional goals 
are posted to control parameters (by suppressing decisions) 
in order to try to learn one effect at a time. 

Later,  when the learning goals  are satisfied,  the game 
performance  goals  dominate  and  decisions  are  made  by 
querying  for  remindings  and  mining  the  prior  cases  for 
solutions that can be transferred.

Cases,  in  this  approach,  are  not  entire  games (though 
some  lessons  can  certainly  be  gleaned  from  that 
granularity), nor even entire cities.  Instead, a case is an 
individual decision in the context of a particular city at a 
particular moment in time in a given game.   For example, 
cases can capture a decision about what improvements to 
build, what tiles to work, and at the broader game level, 
what technologies to research.   For each type of decision, 
there is a set of queries represented in the knowledge base 
that  are  designated  as  possibly  relevant  to  making  the 
decision.  There is another set of queries that are relevant 
to  capturing  and  assessing the  case solution.   When the 
decision is acted on in the game, a snapshot of the case is 
constructed before  and after  execution  and stored  in  the 
game  context.   This  case  snapshot  is  used  both  for 
analyzing  the  effects  of  actions  and  supporting  later 
analogical transfer.

Exploiting and learning a qualitative model

In  addition  to  analogical  learning,  we  believe  that 
qualitative  reasoning  will  be  a  key  factor  in  supporting 
transfer  learning.   Qualitative  representations  can  serve 
multiple roles in planning, execution and learning.  In this 
section, we describe these roles and some of the issues we 
face  in  implementing  this  integration,  starting  with  the 
most knowledge intensive and working towards learning 
more of the domain through unsupervised experimentation.

Planning with a Qualitative Model
In order to know what actions are possible and desirable in 
a strategy game, two extreme approaches are 1) to make 
random  decisions,  and  2)  to  search  through  domain-
specific, knowledge-rich decompositions of plans.  Using a 
qualitative model of the domain provides a useful middle 
ground that allows a problem solver to benefit from partial 
knowledge.   The  qualitative  model  captures  the  sort  of 
knowledge that a novice human player would acquire by 
reading  the  manual.   Also,  qualitative  relations  are 
compatible  with  the  sorts  of  optimization  goals  one 
typically  has  in  playing  these  games,  as  opposed  to  the 
state-based goals found in classical planners.  Finally, the 
only way that an unsupervised learning system will acquire 
high-level strategies is by synthesizing them.  A qualitative 
model can constrain this synthesis process.



In practice, combining a qualitative model with an HTN 
planner  raises  some  thorny  issues.   Whereas  the  HTN 
planner searches for decompositions of high-level tasks, a 
qualitative  model  allows  the  problem-solver  to  work 
backwards  from  the  top-level  goal  through  qualitative 
influences  to  sub-goals  involving  propositions  to  be 
achieved  or  prevented.    For  example,  as  shown  in 
Figure 2,  one way to increase a city’s food surplus is to 
increase its  food  production.   One way to increase food 
production  is  by  working  tiles  that  have  good  food 
resources on them, such as the wheat or fruit on the map in 
Figure  1.   Regressing  back  to  these  sub-goals  is 
straightforward.   Operationalizing  the  goals  takes  some 
additional effort.

The idea is  to propose  actions  by comparing the sub-
goal propositions to the primitive task representations used 
by the HTN planner.   One issue here is that in an HTN 
planner,  all  preconditions  are  treated  as   filter 
preconditions; that is, they do not distinguish  applicability 
conditions from potential subgoals that could be achieved. 
So  the  first  step  is  infer  which  of  the  goal  clauses  are 
achievable  conditions  and which  are applicability filters. 
We determine this by comparing the goal clauses against 
the direct effects of each primitive task in the domain.  For 
example,  (cityWorkingTileAt  ?city  ?location) 
is  achievable by the  doConvertSpecialistToWorker 
primitive, whereas there is no primitive that can achieve 
cityIsCoastal for a landlocked city.  Note that it is not 
sufficient to look only at the predicates when determining 
whether  a clause is a filter or a sub-goal.   For example, 
(specialAt Irrigation ?loc) can  be  achieved  by 
assigning  workers  to  improve  the  terrain,  whereas 
(specialAt  Whale  ?loc)  is  a  feature  of  the 
environment and not something that can be achieved.  

The next  step  is  to  check  the  satisfaction  of  the  sub-
goal’s  filter  preconditions  to  verify  that  the  goal  is 
applicable at all.  This will prevent landlocked cities from 
trying to build harbors, but unfortunately won’t prevent a 
city from creating pollution in order to clean it up.  Such 
pathological  behaviors  must  be  caught  by  monotonicity 
constraints  on    sub-goaling.   Verifying  satisfaction  of 
individual  clauses  in  isolation  can  also  be  problematic 

because bindings may be under-specified.   A clause like 
(isa ?special GoodFoodSpecial)  won’t  filter  any 
goal by itself.  The way out of this problem is to carefully 
select  predicates  for  the  qualitative  model  that  can  be 
evaluated  independently.   For  example, 
(cityWorkingGoodFoodSpecialAt ?city ?special 
?location) embeds  enough  information  that  it  can  be 
verified on its own.

The  third  step  in  proposing  actions  is  to  associate 
actions  with  the  remaining  achievable  goal  clauses.   A 
difficulty in this step is that the goal states that influence 
quantities  may  not  directly  match  the  effect  states  of 
primitive actions.  This primarily happens when the action 
has a  delayed effect.  For example, a decision to build a 
granary doesn’t immediately result in having a granary, but 
rather  in  having  an  entry  for  a  granary  on  the  planned 
production queue.  It could be many turns later before a 
granary starts  affecting  food reserves  (if  ever).   To deal 
with  such  delayed  effects,  we  introduced  an  auxiliary 
predicate, eventualEffectOfAction-Props.  A typical 
delayed effect looks like:

When  we  search  for  actions  to  achieve  sub-goals,  we 
search both the immediate and eventual effects of actions.

In the fourth step, the set of actions for a possible sub-
goal  must be sequenced and their arguments bound in a 
rational way.  This is not quite the same as achieving sub-
goal  preconditions.   For  example,  the  goal  may  be  to 
achieve the situation in which the city is working a tile that 
is irrigated.  This could be achieved either by finding the 
best tile to irrigate and then moving a worker to that tile, or 
finding a tile being worked and irrigating that.   Since there 
are numerous preconditions on what can be irrigated and 
virtually none on moving a worker, the former strategy is 
to be preferred.

The above example raises another issue: if there already 
is some irrigated tile being worked,  a traditional planner 
would  simply  decide  that  its  goal  had  been  achieved. 
However,  because our goal is to  maximize food surplus, 
we want to ensure that a new irrigated tile is created (or at 
least that a worker is moved on to an irrigated tile from a 
non-irrigated  tile).   So  in  this  process,  the  null  plan  is 
disallowed as a solution.

The last step in proposing actions from the qualitative 
model involves sub-goaling on achievable preconditions of 
primitive tasks.   We can do this using the HTN planner 
itself. This requires defining a generic complex task that 
achieves  a  primitive  task  by  extracting  its  achievable 
preconditions,  and expanding the task network in a left-
recursive fashion.

Learning with a Qualitative Model
Since  the ultimate  aim of  this  research  is  to  extend  the 
range of learning, we intend to show that the plan synthesis 
mechanism described above allows us  to construct  more 
complicated plans, which can then be tested in the virtual 

(eventualEffectOfAction-Props
   (doChangeProduction ?city ?obj)
   (cityHasProductionItem ?city ?obj))

Figure  2 : A portion  of  the  city  model



environment of the game.  Analogical retrieval and transfer 
allows  successful  plans  to  be  reused.  Beyond  this,  we 
expect  to  use  the  qualitative  city  model  to  guide 
experimentation  and  transfer.   A  qualitative  model  can 
help  an  analogical  learning  system  make  better  use  of 
precedent  cases.   SME  provides  candidate  inferences, 
which  are  projections  from the  base  to  the  target  of  an 
analogy.  SME does not use a domain theory in mapping 
or projection, but this can be applied post-facto as a reality 
check  and  to  determine  whether  to  transfer  solutions  or 
reasoning/goals.

The qualitative model can be used not only to synthesize 
plans but also to improve plans.  A plan from a precedent 
case  that  achieved  one  goal  may  be  adapted  to  serve 
multiple goals by reasoning about the influence structure. 
This  will  be  especially  important  for  learning  in  distant 
transfer  problems,  such  as  solving  for  novel  goals  to 
balance multiple quantities.  Examples include how much 
should  one  invest  in  improving  existing  cities  versus 
expanding  the  civilization  by  creating  new  cities,  and 
allocating  effort  for  exploration  (including  new 
technologies to improve ocean-going abilities and speed) 
versus expanding the economy.

Learning Qualitative Influences
If qualitative models are important for problem solving and 
learning,  then  it  is  only natural  to  wonder  whether  it  is 
possible to learn a qualitative model for a new domain.  To 
do this, we assume there is at least some information about 
what quantities exist, and the direction of the relationship 
between independent and dependent variables.  Learning a 
qualitative model would involve refining that knowledge 
into more specific  qualitative relations  by examining the 
magnitudes of quantitative changes over many samples.

Learning Action Effects
In order to provide the data for learning qualitative models, 
it  is  necessary to  capture  and characterize the  effects  of 
actions  as  they  are  executed  in  the  game.   This  is  also 
essential  for  determining  whether  or  not  an  action  was 
successful and whether it should subsequently be reused as 
a precedent case in analogical transfer.  

As mentioned previously,  primitive actions correspond 
roughly to  the packets  that  are sent  to the game server. 
They are the primitive commands of the game and their 
representation  contains  minimal  filter  preconditions  and 
effects.  Their actual effects can be construed more broadly 
as  the  quantitative  changes  that  percolate  through  the 
system  and  any  indirect  state  changes  that  may  occur 
through  this  chain  of  influences.   We  bootstrap  the 
learning of these effects through experimentation strategies 
in  which  decisions  are  made  randomly.  A  temporal 
snapshot of the case is recorded before taking the action 
and  stored  in  the  KB.   After  taking  the  action,  another 
temporal  snapshot  case  is  constructed,  and  the  “before” 
and “after” cases are compared using SME.  The planner 
examines the correspondences between quantities, collects 

those quantities whose  values  have  changed and records 
the  direction  of  change  in  the  case  as  increasing  or 
decreasing.  This can be viewed as extracting qualitative 
derivatives.  From this information it determines whether 
the overall goal was satisfied (i.e., improved) or not.

The  next  step  in  this  process  will  be  to  compare  the 
qualitative  derivatives  over  multiple  cases  in  order  to 
extract the direction of influence – i.e., which independent 
variables directly affect  which dependent variables.   The 
chain of intermediate quantities is anchored at one end by 
the (known) direct effects of the action taken, and at the 
other end by the overall objective function, the top-level 
performance  goal.   A  simple  version-space  algorithm 
should  allow progressively  refining  an  initial  qualitative 
model  of  the  flow  through  quantities,  assuming  the 
relationships are monotonic and have no loops.

Experiments

We are currently in the process of performing a number of 
experiments  to  measure  the  performance  of  the  learning 
system.   We describe an example here for concreteness.

Transfer Level 1: Parameterization
The idea is to compare learning performance on tasks with 
and  without  prior  training  on  similar  scenarios.    Here, 
similar scenarios means having the same components and 
configuration,  but  different  quantitative  values  (i.e., 
"within band").
Experiment: Let  the  task  objective  be  to  maximize  city 
food  production  while  holding  the  number  of  cities 
constant.  Train on the same map and set of cities, but with 
different resources available in different abundances.
Initial Conditions: Start from a saved game with 10 cities, 
modified by a scenario generator to randomly alter the set 
of resources ("specials") in each city region.
Objective Function: 
(achieve (maximize cityFoodProduction))
Termination Function: 
(terminate (numTurns 50))
Game  Score: The  average  value  of  cityFoodProduction 
over all 10 cities at the end of 50 turns.
Evaluation  Metric: Having  learned  on  one  set  of  saved 
games, it should start out performing better given a new set 
of saved games, compared to starting out initially with the 
new set of saved games.  

Current Status and Future Work

Our game-playing agent currently plans simple exploration 
and  city  management  tasks  and  dynamically  builds  case 
libraries for a few types of decision tasks.  Action effects 
are extracted automatically and stored with the cases.  We 
are in the process of integrating qualitative reasoning into 
the  planner  in  order  to  begin  synthesizing  and  learning 
higher-level plans.

We  have  empirically  established  the  feasibility  of 
analyzing  the  action  models  to  distinguish  filter 



preconditions from sub-goal preconditions, but it is not yet 
clear whether it will be practical to perform this analysis at 
runtime or whether it would be more effective to analyze 
the qualitative model during off-line learning and compile 
out domain-specific task networks.

We are actively extending  the  learning  capabilities  of 
our system to support more distant transfer.   An important 
near-term  goal  is  to  extract  and  reason  about  trends, 
deadlines  and  inflection  points  in  concise  histories 
(Williams,  1986).   This  is  a  critical  requirement  for 
learning  the early warning  signs  of  impending  problems 
and  learning  how  to  compensate  for  them  before  they 
become severe.

We also intend  to explore advice-taking as a learning 
mechanism.   Using  a  qualitative  model  to  help  explain 
advice  from a  human  player  should  help  with  both  the 
credit assignment problem and generalizing the advice to 
other situations.

An  important  open  problem is  to  strategically  reason 
about  and  spawn  new  learning  goals.   The  two 
impediments  here  are:  1)  providing  sufficiently 
sophisticated auto-epistemic strategies to determine where 
the agent’s knowledge is deficient (beyond simple failure 
to  retrieve  precedents),  and  2)  seamlessly  supporting 
learning strategies across games.  

Ultimately,  we  expect  the  techniques  developed  from 
this  effort  to  be  applicable  to  the  reflective  control  of 
agents  in  a  Companion  Cognitive  System  (Forbus  and 
Hinrichs,  2006).   Strategizing  and  directing  agents  in  a 
game  is  in  many  ways  similar  to  the  problem  of 
coordinating  computational  resources,  learning  from 
interacting  with  a  human  partner,  and  maintaining  an 
episodic memory of previous reasoning sessions.

Related Work

This work is part of a larger DARPA program on Transfer 
Learning.   Other  groups  are  pursuing  similar  goals  in 
somewhat different ways.  ICARUS (Langley et al., 2005) 
and  SOAR  (Nason  and  Laird,  2005)  have  both  been 
applied to learning in real-time game environments, using 
Markov  Logic  Networks  and  Bayesian  techniques, 
respectively.

A number of efforts have focused on learning qualitative 
models, including Coghill et al.’s (2002) QOPH, a system 
that combines Inductive Logic Programming with QSIM to 
learn structural relations between variables.   Where QOPH 
searches  through  the  space  of  QSIM  models,  we  are 
proposing to constrain the search by working forward from 
actions to goals one step at a time.  Our effort is perhaps 
closest  to  Falkenhainer’s  (1990)  work  on  PHINEAS, 
which used SME to construct qualitative domain theories 
to  explain  novel  observed  behaviors.   Our  approach  is 
more data-driven than PHINEAS, which relied on a single 
hand-generated  abstract  description  of  behavior. 
PHINEAS  also  confirmed  its  theories  via  qualitative 
simulation,  whereas  we  are  testing  our  theories  via 
measuring improvement in gameplay.

Other  research  in  planning  and  executing  includes 
Drummond’s  (1990)  work  in  integrating  planning  and 
control.  That work extended the nature of goals that could 
be  addressed,  though  the TILEWORLD environment  was 
significantly  less  rich  than  Freeciv.   Qualitative  models 
have  been used in planning previously,  notably Hogge’s 
(1988)  TPLAN,  which  compiled  a  qualitative  domain 
theory  into  planning  operators,  Forbus’  (1989)  action-
augmented envisionments, which integrated STRIPS-style 
actions  into  an  envisioner,  and  Drabble’s  (1993) 
EXCALIBUR planning and execution system that used QP 
theory  with  a  hierarchical  partial-order  planner.    The 
strategy game domain is  more  complex  than any  of  the 
domains tackled in previous efforts.  Our use of HTNs in 
planning for strategy games is inspired by Muñoz-Avila & 
Aha  (2004),  who  used  HTN  planning  with  a  real-time 
strategy game.  

Prodigy/Analogy  tightly  integrated  analogy  with 
problem solving  (Veloso,  1994).   The  core  means-ends 
analysis strategy is perhaps more amenable to inferential 
tasks than the kinds of  optimization goals we face.  Peter 
Stone’s  (2000)  layered  learning  of  complex  behaviors 
might  be  applicable,  though  strategy  games  are  less 
reactive and distributed than team soccer playing.

Other researchers have also used FreeCiv as a learning 
domain.  Ashok Goel’s group at Georgia Tech has applied 
model-based  self-adaptation  in  conjunction  with 
reinforcement learning  (Ulam et  al.,  2005).   We believe 
that  analogy will  better  support  distant  transfer  learning, 
and that qualitative models will permit strategic reasoning 
in ways that their TKML models will not.

Summary

This  paper  has  been  a  progress  report  on  our  efforts 
towards integrating qualitative reasoning into a system for 
planning, executing, and learning in strategy games.   We 
suggested that qualitative models provide an intermediate 
level of domain knowledge comparable to what a novice 
human player might start with.  Our initial intuition about 
proposing  actions  by  regressing  through  the  qualitative 
model has proven somewhat more difficult to implement 
than anticipated, though clearly viable.  We described the 
use of analogy to compare before and after snapshots  in 
order  to  extract  the  effects  of  actions.   Ultimately,  the 
value  of  using  qualitative  reasoning  in  learning  strategy 
games,  we  believe,  is  that  it  will  provide  a  way for  an 
unsupervised learner to acquire higher-level strategies in a 
wide variety of tasks that involve execution in a virtual or 
real world.
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