
Using Qualitative Reasoning in Learning Strategy Games:
A Preliminary Report

Thomas R. Hinrichs, Nathan D. Nichols, and Kenneth D. Forbus

Qualitative Reasoning Group, Northwestern University
2133 Sheridan Road

Evanston, IL, 60208, USA
{t-hinrichs, n-nichols, forbus}@northwestern.edu

Abstract
This paper describes the use of qualitative models in
learning to plan and execute in a turn-based strategy game.
We are using a qualitative model primarily to regress from
dependent goal variables to independent variables in order
to propose possible actions and sub-goals. Unlike physical
systems, this is essentially an economic model of influences
between various types of production and consumption in
simulated cities in a turn-based strategy game. We describe
how we are using qualitative models to plan and learn in a
strategy game, and experiments in progress.

Introduction

While qualitative reasoning is most often used to simulate
physical systems, it has also been used effectively to
reason about economics (cf. Farley & Lin, 1990; Kamps &
Peli, 1995). Having an economic model can be an
important factor in successfully playing modern strategy
games, such as Civilization. We are exploring how such
a qualitative model can support planning and analogical
learning in turn-based strategy games. Games of this sort
have several interesting properties: 1) they involve
incomplete knowledge of the world, 2) they entail complex
interrelationships between entities and quantities, 3) goals
may be more like optimization problems than achievement
of states, and 4) planning and executing are tightly
interleaved. Qualitative representations can serve as a
partial domain theory to guide planning and learning at
different levels of expertise.

We are currently focusing on the subtask of managing
cities to optimize their use of resources, build
improvements, improve terrain, and research technologies.
In this paper, we will describe how a qualitative model of
city management can support planning and learning in the
game of Freeciv.

In the rest of this section, we outline the context of this
work, providing a brief synopsis of the strategy game we
are using, HTN planning, and analogical reasoning. Next
we describe how we are using a qualitative model of city
economics to enable a system to plan actions and learn
how to improve its performance in playing the game. An
experiment in progress is described, and we close by
discussing related work and future plans.

The Freeciv Domain
Freeciv is an open-source turn-based strategy game
modeled after Sid Meier's series of Civilization games
(Freeciv, 2006). The objective of the game is to start a
civilization from initial settlers in the Stone Age and
expand and develop it until you either conquer the world
or win the space race and escape to Alpha Centauri. In
either case, the game can be characterized as a race to
build your civilization and technological sophistication
faster than your opponents. Along the way, there are many
competing demands for limited resources, investment, and
development. For example, players must improve terrain
with irrigation and roads, while avoiding famine and
military defeat. Too much emphasis on military
preparedness, for example, can make citizens unhappy and
therefore less productive. Money must be allocated to
research into new technologies, such as iron-making and
democracy, which enable players to create new
improvements to cities, new types of units, and adopt new
types of governments, each with their own tradeoffs.

In our current set of experiments, we are focusing on
learning how to manage the growth of cities and maximize
productivity. While our planner can direct exploration,
city management tasks offer clearer evaluation metrics.
We also currently ignore military operations, focusing
instead on how to make a rich, productive civilization.

Figure 1 : Freeciv

HTN Planning
To support performing and learning in the strategy game,
we have implemented a Hierarchical Task Network (HTN)
planner using the SHOP algorithm (Nau et al., 1999). In
the HTN planner, complex tasks are decomposed into
primitive executable tasks. The primitives in FreeCiv
correspond to packets that are sent to the game server,
representing actions such as sending a unit to a particular
location or telling a city what to build. Complex tasks are
at the level of figuring out what a unit should do on a
particular turn, or deciding how to ameliorate a crisis in a
city (such as a famine or revolt.) The planner generates
plans for each unit and city at every turn and integrates
them in a combined planning/execution environment.
Planning is invoked partly in an event-driven manner, such
that reified events from the game trigger certain decisions.
For example, the planning agent does not re-compute its
global strategy on every turn, but checks to see if it has
acquired any new technologies in the last turn, and only
then does it re-evaluate its strategy.

A critical aspect of this game is that it requires planning
with incomplete and uncertain information. Terrain is not
known until it is explored. The outcomes of some actions
are stochastic, for example, village huts may contain
barbarians that will kill an explorer, or they may contain
gold or new technologies. There is also vastly more
information in the game than can be considered within a
planning state. Consequently, the planner cannot plan an
agent's actions starting with a complete initial state. It
must reify information on demand by querying the game
state. At the same time, the planner may project the effects
of actions such that the planned state deviates from the
game state. To reconcile these competing demands, we
maintain two contexts (cf., Lenat 1995): a game context
that always reflects the incomplete, but correct current
state of the game and a planning context in which states
are projected forward. Every query for information that
cannot be directly answered from the planned state
proceeds to query the game state. Before returning such
game-state information, it is checked for consistency
against the plan state, to ensure that, for example, a unit is
not believed to be in two places at the same time.

Analogical Learning
A high-level goal of this research is to demonstrate how
analogy and qualitative reasoning can support machine
learning across increasingly distant transfer precedents.
To do this, we are using the Structure Mapping Engine
(SME) (Falkenhainer et al., 1989), the MAC/FAC retrieval
mechanism (Gentner and Forbus, 1995), and the SEQL
generalization system (Kuehne et al., 2000) as core
components. These analogical mechanisms are
coordinated and invoked by the planner as it attempts to
construct plans and analyze the effects of actions.

In fact, learning is guided by explicit learning goals
(Ram and Leake, 1995) that are currently specified as part
of the problem scenario. A learning goal determines how a

decision task will be solved when there are insufficient
analogical precedents or canned plans. A typical strategy
is experimentation, in which the decision is made
randomly in order to generate the requisite variation and
provide cases that better cover the decision space. When
the goal is to learn the effect of an action, additional goals
are posted to control parameters (by suppressing decisions)
in order to try to learn one effect at a time.

Later, when the learning goals are satisfied, the game
performance goals dominate and decisions are made by
querying for remindings and mining the prior cases for
solutions that can be transferred.

Cases, in this approach, are not entire games (though
some lessons can certainly be gleaned from that
granularity), nor even entire cities. Instead, a case is an
individual decision in the context of a particular city at a
particular moment in time in a given game. For example,
cases can capture a decision about what improvements to
build, what tiles to work, and at the broader game level,
what technologies to research. For each type of decision,
there is a set of queries represented in the knowledge base
that are designated as possibly relevant to making the
decision. There is another set of queries that are relevant
to capturing and assessing the case solution. When the
decision is acted on in the game, a snapshot of the case is
constructed before and after execution and stored in the
game context. This case snapshot is used both for
analyzing the effects of actions and supporting later
analogical transfer.

Exploiting and learning a qualitative model

In addition to analogical learning, we believe that
qualitative reasoning will be a key factor in supporting
transfer learning. Qualitative representations can serve
multiple roles in planning, execution and learning. In this
section, we describe these roles and some of the issues we
face in implementing this integration, starting with the
most knowledge intensive and working towards learning
more of the domain through unsupervised experimentation.

Planning with a Qualitative Model
In order to know what actions are possible and desirable in
a strategy game, two extreme approaches are 1) to make
random decisions, and 2) to search through domain-
specific, knowledge-rich decompositions of plans. Using a
qualitative model of the domain provides a useful middle
ground that allows a problem solver to benefit from partial
knowledge. The qualitative model captures the sort of
knowledge that a novice human player would acquire by
reading the manual. Also, qualitative relations are
compatible with the sorts of optimization goals one
typically has in playing these games, as opposed to the
state-based goals found in classical planners. Finally, the
only way that an unsupervised learning system will acquire
high-level strategies is by synthesizing them. A qualitative
model can constrain this synthesis process.

In practice, combining a qualitative model with an HTN
planner raises some thorny issues. Whereas the HTN
planner searches for decompositions of high-level tasks, a
qualitative model allows the problem-solver to work
backwards from the top-level goal through qualitative
influences to sub-goals involving propositions to be
achieved or prevented. For example, as shown in
Figure 2, one way to increase a city’s food surplus is to
increase its food production. One way to increase food
production is by working tiles that have good food
resources on them, such as the wheat or fruit on the map in
Figure 1. Regressing back to these sub-goals is
straightforward. Operationalizing the goals takes some
additional effort.

The idea is to propose actions by comparing the sub-
goal propositions to the primitive task representations used
by the HTN planner. One issue here is that in an HTN
planner, all preconditions are treated as filter
preconditions; that is, they do not distinguish applicability
conditions from potential subgoals that could be achieved.
So the first step is infer which of the goal clauses are
achievable conditions and which are applicability filters.
We determine this by comparing the goal clauses against
the direct effects of each primitive task in the domain. For
example, (cityWorkingTileAt ?city ?location)
is achievable by the doConvertSpecialistToWorker
primitive, whereas there is no primitive that can achieve
cityIsCoastal for a landlocked city. Note that it is not
sufficient to look only at the predicates when determining
whether a clause is a filter or a sub-goal. For example,
(specialAt Irrigation ?loc) can be achieved by
assigning workers to improve the terrain, whereas
(specialAt Whale ?loc) is a feature of the
environment and not something that can be achieved.

The next step is to check the satisfaction of the sub-
goal’s filter preconditions to verify that the goal is
applicable at all. This will prevent landlocked cities from
trying to build harbors, but unfortunately won’t prevent a
city from creating pollution in order to clean it up. Such
pathological behaviors must be caught by monotonicity
constraints on sub-goaling. Verifying satisfaction of
individual clauses in isolation can also be problematic

because bindings may be under-specified. A clause like
(isa ?special GoodFoodSpecial) won’t filter any
goal by itself. The way out of this problem is to carefully
select predicates for the qualitative model that can be
evaluated independently. For example,
(cityWorkingGoodFoodSpecialAt ?city ?special
?location) embeds enough information that it can be
verified on its own.

The third step in proposing actions is to associate
actions with the remaining achievable goal clauses. A
difficulty in this step is that the goal states that influence
quantities may not directly match the effect states of
primitive actions. This primarily happens when the action
has a delayed effect. For example, a decision to build a
granary doesn’t immediately result in having a granary, but
rather in having an entry for a granary on the planned
production queue. It could be many turns later before a
granary starts affecting food reserves (if ever). To deal
with such delayed effects, we introduced an auxiliary
predicate, eventualEffectOfAction-Props. A typical
delayed effect looks like:

When we search for actions to achieve sub-goals, we
search both the immediate and eventual effects of actions.

In the fourth step, the set of actions for a possible sub-
goal must be sequenced and their arguments bound in a
rational way. This is not quite the same as achieving sub-
goal preconditions. For example, the goal may be to
achieve the situation in which the city is working a tile that
is irrigated. This could be achieved either by finding the
best tile to irrigate and then moving a worker to that tile, or
finding a tile being worked and irrigating that. Since there
are numerous preconditions on what can be irrigated and
virtually none on moving a worker, the former strategy is
to be preferred.

The above example raises another issue: if there already
is some irrigated tile being worked, a traditional planner
would simply decide that its goal had been achieved.
However, because our goal is to maximize food surplus,
we want to ensure that a new irrigated tile is created (or at
least that a worker is moved on to an irrigated tile from a
non-irrigated tile). So in this process, the null plan is
disallowed as a solution.

The last step in proposing actions from the qualitative
model involves sub-goaling on achievable preconditions of
primitive tasks. We can do this using the HTN planner
itself. This requires defining a generic complex task that
achieves a primitive task by extracting its achievable
preconditions, and expanding the task network in a left-
recursive fashion.

Learning with a Qualitative Model
Since the ultimate aim of this research is to extend the
range of learning, we intend to show that the plan synthesis
mechanism described above allows us to construct more
complicated plans, which can then be tested in the virtual

(eventualEffectOfAction-Props
 (doChangeProduction ?city ?obj)
 (cityHasProductionItem ?city ?obj))

Figure 2 : A portion of the city model

environment of the game. Analogical retrieval and transfer
allows successful plans to be reused. Beyond this, we
expect to use the qualitative city model to guide
experimentation and transfer. A qualitative model can
help an analogical learning system make better use of
precedent cases. SME provides candidate inferences,
which are projections from the base to the target of an
analogy. SME does not use a domain theory in mapping
or projection, but this can be applied post-facto as a reality
check and to determine whether to transfer solutions or
reasoning/goals.

The qualitative model can be used not only to synthesize
plans but also to improve plans. A plan from a precedent
case that achieved one goal may be adapted to serve
multiple goals by reasoning about the influence structure.
This will be especially important for learning in distant
transfer problems, such as solving for novel goals to
balance multiple quantities. Examples include how much
should one invest in improving existing cities versus
expanding the civilization by creating new cities, and
allocating effort for exploration (including new
technologies to improve ocean-going abilities and speed)
versus expanding the economy.

Learning Qualitative Influences
If qualitative models are important for problem solving and
learning, then it is only natural to wonder whether it is
possible to learn a qualitative model for a new domain. To
do this, we assume there is at least some information about
what quantities exist, and the direction of the relationship
between independent and dependent variables. Learning a
qualitative model would involve refining that knowledge
into more specific qualitative relations by examining the
magnitudes of quantitative changes over many samples.

Learning Action Effects
In order to provide the data for learning qualitative models,
it is necessary to capture and characterize the effects of
actions as they are executed in the game. This is also
essential for determining whether or not an action was
successful and whether it should subsequently be reused as
a precedent case in analogical transfer.

As mentioned previously, primitive actions correspond
roughly to the packets that are sent to the game server.
They are the primitive commands of the game and their
representation contains minimal filter preconditions and
effects. Their actual effects can be construed more broadly
as the quantitative changes that percolate through the
system and any indirect state changes that may occur
through this chain of influences. We bootstrap the
learning of these effects through experimentation strategies
in which decisions are made randomly. A temporal
snapshot of the case is recorded before taking the action
and stored in the KB. After taking the action, another
temporal snapshot case is constructed, and the “before”
and “after” cases are compared using SME. The planner
examines the correspondences between quantities, collects

those quantities whose values have changed and records
the direction of change in the case as increasing or
decreasing. This can be viewed as extracting qualitative
derivatives. From this information it determines whether
the overall goal was satisfied (i.e., improved) or not.

The next step in this process will be to compare the
qualitative derivatives over multiple cases in order to
extract the direction of influence – i.e., which independent
variables directly affect which dependent variables. The
chain of intermediate quantities is anchored at one end by
the (known) direct effects of the action taken, and at the
other end by the overall objective function, the top-level
performance goal. A simple version-space algorithm
should allow progressively refining an initial qualitative
model of the flow through quantities, assuming the
relationships are monotonic and have no loops.

Experiments

We are currently in the process of performing a number of
experiments to measure the performance of the learning
system. We describe an example here for concreteness.

Transfer Level 1: Parameterization
The idea is to compare learning performance on tasks with
and without prior training on similar scenarios. Here,
similar scenarios means having the same components and
configuration, but different quantitative values (i.e.,
"within band").
Experiment: Let the task objective be to maximize city
food production while holding the number of cities
constant. Train on the same map and set of cities, but with
different resources available in different abundances.
Initial Conditions: Start from a saved game with 10 cities,
modified by a scenario generator to randomly alter the set
of resources ("specials") in each city region.
Objective Function:
(achieve (maximize cityFoodProduction))
Termination Function:
(terminate (numTurns 50))
Game Score: The average value of cityFoodProduction
over all 10 cities at the end of 50 turns.
Evaluation Metric: Having learned on one set of saved
games, it should start out performing better given a new set
of saved games, compared to starting out initially with the
new set of saved games.

Current Status and Future Work

Our game-playing agent currently plans simple exploration
and city management tasks and dynamically builds case
libraries for a few types of decision tasks. Action effects
are extracted automatically and stored with the cases. We
are in the process of integrating qualitative reasoning into
the planner in order to begin synthesizing and learning
higher-level plans.

We have empirically established the feasibility of
analyzing the action models to distinguish filter

preconditions from sub-goal preconditions, but it is not yet
clear whether it will be practical to perform this analysis at
runtime or whether it would be more effective to analyze
the qualitative model during off-line learning and compile
out domain-specific task networks.

We are actively extending the learning capabilities of
our system to support more distant transfer. An important
near-term goal is to extract and reason about trends,
deadlines and inflection points in concise histories
(Williams, 1986). This is a critical requirement for
learning the early warning signs of impending problems
and learning how to compensate for them before they
become severe.

We also intend to explore advice-taking as a learning
mechanism. Using a qualitative model to help explain
advice from a human player should help with both the
credit assignment problem and generalizing the advice to
other situations.

An important open problem is to strategically reason
about and spawn new learning goals. The two
impediments here are: 1) providing sufficiently
sophisticated auto-epistemic strategies to determine where
the agent’s knowledge is deficient (beyond simple failure
to retrieve precedents), and 2) seamlessly supporting
learning strategies across games.

Ultimately, we expect the techniques developed from
this effort to be applicable to the reflective control of
agents in a Companion Cognitive System (Forbus and
Hinrichs, 2006). Strategizing and directing agents in a
game is in many ways similar to the problem of
coordinating computational resources, learning from
interacting with a human partner, and maintaining an
episodic memory of previous reasoning sessions.

Related Work

This work is part of a larger DARPA program on Transfer
Learning. Other groups are pursuing similar goals in
somewhat different ways. ICARUS (Langley et al., 2005)
and SOAR (Nason and Laird, 2005) have both been
applied to learning in real-time game environments, using
Markov Logic Networks and Bayesian techniques,
respectively.

A number of efforts have focused on learning qualitative
models, including Coghill et al.’s (2002) QOPH, a system
that combines Inductive Logic Programming with QSIM to
learn structural relations between variables. Where QOPH
searches through the space of QSIM models, we are
proposing to constrain the search by working forward from
actions to goals one step at a time. Our effort is perhaps
closest to Falkenhainer’s (1990) work on PHINEAS,
which used SME to construct qualitative domain theories
to explain novel observed behaviors. Our approach is
more data-driven than PHINEAS, which relied on a single
hand-generated abstract description of behavior.
PHINEAS also confirmed its theories via qualitative
simulation, whereas we are testing our theories via
measuring improvement in gameplay.

Other research in planning and executing includes
Drummond’s (1990) work in integrating planning and
control. That work extended the nature of goals that could
be addressed, though the TILEWORLD environment was
significantly less rich than Freeciv. Qualitative models
have been used in planning previously, notably Hogge’s
(1988) TPLAN, which compiled a qualitative domain
theory into planning operators, Forbus’ (1989) action-
augmented envisionments, which integrated STRIPS-style
actions into an envisioner, and Drabble’s (1993)
EXCALIBUR planning and execution system that used QP
theory with a hierarchical partial-order planner. The
strategy game domain is more complex than any of the
domains tackled in previous efforts. Our use of HTNs in
planning for strategy games is inspired by Muñoz-Avila &
Aha (2004), who used HTN planning with a real-time
strategy game.

Prodigy/Analogy tightly integrated analogy with
problem solving (Veloso, 1994). The core means-ends
analysis strategy is perhaps more amenable to inferential
tasks than the kinds of optimization goals we face. Peter
Stone’s (2000) layered learning of complex behaviors
might be applicable, though strategy games are less
reactive and distributed than team soccer playing.

Other researchers have also used FreeCiv as a learning
domain. Ashok Goel’s group at Georgia Tech has applied
model-based self-adaptation in conjunction with
reinforcement learning (Ulam et al., 2005). We believe
that analogy will better support distant transfer learning,
and that qualitative models will permit strategic reasoning
in ways that their TKML models will not.

Summary

This paper has been a progress report on our efforts
towards integrating qualitative reasoning into a system for
planning, executing, and learning in strategy games. We
suggested that qualitative models provide an intermediate
level of domain knowledge comparable to what a novice
human player might start with. Our initial intuition about
proposing actions by regressing through the qualitative
model has proven somewhat more difficult to implement
than anticipated, though clearly viable. We described the
use of analogy to compare before and after snapshots in
order to extract the effects of actions. Ultimately, the
value of using qualitative reasoning in learning strategy
games, we believe, is that it will provide a way for an
unsupervised learner to acquire higher-level strategies in a
wide variety of tasks that involve execution in a virtual or
real world.

Acknowledgements

This research was supported by DARPA under the
Transfer Learning program. We thank Phil Houk, Jon
Sorg, Jeff Usher, and Greg Dunham for their programming
contributions.

References
Coghill, G.M., Garrett, S.M., and King, R.D. 2002. Learning
Qualitative Models in the Presence of Noise. Proceedings of
QR2002.
Drabble, B. 1993. EXCALIBUR: A Program for Planning and
Reasoning with Processes. Artificial Intelligence 62(1) 1-40.
Drummond, M. and Bressina, J. 1990. Planning For control.
Intelligent Control 1990: Proceedings of the 5th IEEE
international symposium, vol 2. IEEE Computer Society Press,
Los Alamitos, CA. pp. 657-662.
Falkenhainer, B. 1990. A unified approach to explanation and
theory formation. In Shrager, J. and Langley, P. (Eds.),
Computational models of scientific discovery and theory
formation. San Mateo, CA: Morgan Kaufmann
Falkenhainer, B., Forbus, K., and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithm and Examples. Artificial
Intelligence 41(1): 1-63.
Farley, A. and Lin, K. 1990. Qualitative reasoning in economics.
Journal of Economic Dynamics and Control, 14(2) 465-490.
Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence 24, 85-168
Forbus, K. 1989. Introducing actions into qualitative simulation.
Proceedings of IJCAI89.
Forbus, K., and Hinrichs, T. 2006. Companion Cognitive
Systems: A step towards human-level AI. To appear., AI
Magazine, vol. 27 # 2
Freeciv, 2006. Freeciv official site. [http://www.Freeciv.org/]
Gentner, D., Structure-mapping: A theoretical framework for
analogy, Cognitive Science 7(2), 1983
Gentner, D., and Forbus, K. 1995. MAC/FAC: A model of
similarity-based retrieval. Cognitive Science 14, 144-206.
Hogge, J. 1988. Prevention techniques for a temporal planner.
Proceedings of AAAI88
Kamps, J. and Peli, G. 1995. Qualitative Reasoning beyond the
Physics Domain: The Density Dependence Theory of
Organizational Ecology. Proceedings of QR95
Kuehne, S., Forbus, K., Gentner, D. and Quinn, B. 2000. SEQL:
Category learning as progressive abstraction using structure
mapping. Proceedings of CogSci2000
Langley, P., Choi, D., and Rogers, S. 2005. Interleaving
Learning, Problem-Solving, and Execution in the ICARUS
Architecture. Technical Report, Computational Learning
Laboratory, CSLI, Stanford University, CA.
Lenat, D. B. 1995. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM 38, 33–38.
Muñoz-Avila, H. & Aha, D. (2004). On the Role of Explanation
for Hierarchical Case-Based Planning in Real-Time Strategy
Games. Proceedings of ECCBR-04 Workshop on Explanations
in CBR
Nason, S. and Laird, J.E. 2005. Soar-RL, integrating
Reinforcement Learning with Soar. Cognitive Systems Research,
6(1), pp.51-59.
Nau, D.S., Cao, Y., Lotem, A., and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence
(pp. 968-973).
Ram, A., and Leake, D., eds. 1995. Goal-Driven Learning, MIT
Press / Bradford Books, Cambridge MA.
Stone, Peter. 2000. Layered Learning in Multiagent Systems.
MIT Press, Cambridge, MA.

Ulam, P., Goel, A., Jones, J., and Murdoch, W. 2005. Using
Model-Based Reflection to Guide Reinforcement Learning.
IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games. Edinburgh.
Veloso, M. 1994. Planning and Learning by Analogical
Reasoning. Lecture Notes in Artificial Intelligence No. 886.
Springer-Verlag Berlin.
Williams, B. 1986. Doing time: Putting qualitative reasoning on
firmer ground. Proceedings of AAAI86.

	Using Qualitative Reasoning in Learning Strategy Games:
A Preliminary Report

