
Using Explicit Semantic Models to Track Situations
across News Articles

Earl Wagner, Jiahui Liu, Larry Birnbaum, Kenneth D. Forbus, and James Baker

Northwestern University
Intelligent Information Laboratory & Qualitative Reasoning Group

2133 Sheridan Road
Evanston, Illinois 60208 USA

{ewagner, j-liu, birnbaum, forbus, baker}@cs.northwestern.edu

Abstract
Online news is a rich information resource for learning
about new, ongoing, and past events. Intelligence analysts,
news junkies, and ordinary people all track developments in
ongoing situations as they unfold over time and initiate
queries to learn more about the past context of the events of
interest to them. Brussell/STT (Situation Tracking Testbed)
is an intelligent information system aimed at supporting this
activity. Brussell employs a combination of explicit
semantic models, information retrieval (IR), and
information extraction (IE) in order to track a situation. It
finds relevant news stories, organizes those stories around
the aspects of the situation to which they pertain, and
extracts certain basic facts about the situation for explicit
representation. Brussell uses scripts as situation models for
the episodes it tracks. Script instances are represented in
CycL and stored in the Cyc knowledge-base. Models of
ongoing situations can be reloaded and updated with new
information as desired.

Introduction
 News analysts must sift through massive amounts of
data, using perspective gained from history and experience
to pull together from disparate sources the best coherent
picture of what is happening [Patterson, 1999]. Beyond
the levels of simply recognizing entities and the relations
holding among them, analysts must make also predictions
about situations in the news [Endsley 2001]. Current
technology provides some support for these tasks, but in a
limited and piecemeal manner.
 Our project is aimed at integrating semantic models,
information retrieval (IR), and information extraction (IE)
technologies to create systems capable of tracking
temporally extended situations, aggregating information
covering different periods of time and from multiple
sources. Our goal is to discover interesting and powerful
functional integrations that permit these technologies to
exploit each others strengths in order to mitigate their

 Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

weaknesses. From the perspective of knowledge-based AI
technology, the goal of the project is to extend the reach of
such systems into the world of unstructured data and text.
Of particular interest is the ability of a knowledge-based
system to scale as the size of its input grows. From the
perspective of IR and IE, the goal is to leverage the
application of inferential techniques in order to achieve
significant new functionality. Our goal is not to advance
the state of the art in information extraction for individual
stories per se, but rather to use these techniques in a novel
context.
 This paper begins by describing the functionality and
architecture of Brussell/STT. Brussell uses semantic
models both to drive retrieval and extraction, and also to
organize information about the situation for the analyst.
Brussell's performance on a test set of kidnappings as the
number of input articles grows is discussed and a more
sophisticated syntactic analysis to improve its precision is
presented and evaluated. Finally, we describe briefly our
proposed design for the next version of the system.

Brussell Functionality: An Example
 An example will help illustrate Brussell’s functionality.
Consider the case of an analyst tasked with identifying
factors that predict whether a kidnap victim will escape
from his kidnappers. Suppose he recalls reading about the
kidnapping of Thomas Hamill. We will see how Brussell
simplifies the task of retrieving and organizing the
information about this situation.

Entering a Query
 The analyst begins in the top-left frame of the Brussell
display window by selecting a type of situation to track,
and entering identifying information, the script indicator,
in this case the name of the kidnap victim.
 Brussell retrieves a pool of articles from its database,
analyzes each to fill out a new script instance and finally
updates the display with the instantiated script [Figure 1].

Summary of the Situation
 The first important result for the analyst is the high-level
summary of the situation. Did he remember the person’s
name correctly? Did the person in fact escape? How did it
happen and what other events preceded it?
 In the top-middle frame Brussell shows that it found a
kidnapping of the person who did escape. Here, it displays
the role names and, more importantly, the specific scenes it
found. Each role and scene appears as a button that the
analyst can click to inspect. The label of scene buttons
displays the scene name, followed by an “x” (times sign)
and the number of article references to this scene.

Inspecting Scenes
 At this point the analyst wants to go to the beginning of
the situation and read about it as it transpired. He begins
with the initial abduction event by clicking on first scene
button. The date and location of the abduction appear in
the top-right frame. In the middle frame are the articles that
reference the scene, sorted with the most-recent first.
Clicking on one of these articles loads the article with the
line or lines that reference the selected scene.

Inspecting Attributes of Scenes and Roles
 To be sure he has the date and location the analyst refers
to the top-right frame. Here Brussell shows the scene’s
slot values ranked by frequency. The date “04/09/2004” is
the most frequent with 6 votes (indicated by the date
followed by “x” then the number of votes). The most

frequently mentioned city location is “Baghdad”.
 If multiple values, such as those for the date of the scene,
receive many votes, the analyst may inspect the analyzed
sentences manually. Clicking a value loads the middle
frame with articles that mention that value, highlighting
relevant.
 The analyst can also learn more about the kidnap victim
himself. Clicking on the “kidnap-victim” role button in the
summary loads the top-right frame with ranked values for
biographical information about the victim.
 In sum, articles are categorized by the scenes they refer
to, and by the scene and role data they provide, thus
presenting the analyst with an organized means to learn
about the situation.

Tracking Situations over Time
 Suppose the analyst has read articles and gathered
information about one kidnapping and is ready to move on
to the next. He can save the current situation to the
knowledge base, allowing him to refer back to it later.
Saving also enables reasoning systems outside of Brussell
to make use of the situation model it has constructed.
Clicking a button in the top-left frame saves the script to
the Cyc knowledge base.
 Brussell supports tracking ongoing situations in addition
to situations that have concluded, as we saw here. Instead
of creating a new script instance, the analyst can load an
existing situation and update it with the stories that have
been published since it was last investigated.

Background and Related Work

Recognizing Scripts
 Scripts formalize common sense
knowledge of ongoing sequences of
causally related events, such as going to a
restaurant. The events are called scenes,
and the participants in the events are
represented by actors that fill role slots in
the script [Schank 1977]. Scripts were
among the earliest high-level
representational structures devised for
natural language processing. The systems
SAM and FRUMP were developed in the
1970s to utilize scripts for understanding.
SAM parsed news stories using the
conceptual dependency formalism, using
scripts to connect the events explicitly
described in the story and infer implicit
content [Cullingford, 1981]. FRUMP
analyzed sentences to fill in shallow
"sketchy scripts", situations consisting of
causally related events [DeJong, 1982].
 Brussell utilizes scripts as situation
models to recognize coherence, connect
situation descriptions, and perform Figure 1. Brussell Display

inference in the spirit of these systems, but is implemented
on an entirely different technical substrate utilizing modern
IR and IE techniques. Brussell is thus significantly more
robust than these early systems, and is able to aggregate
information about a script instance from multiple articles.

Recognizing Entities and Events in Text
 Later work in NLP continued to focus on selecting and
filling in event and entity frames. The Message-
Understanding Conferences (MUC) from 1987 to 1998
compared a variety of systems aimed at named-entity
recognition and event and entity template filling, among
other tasks. Like Fastus, SRI's, entrant in MUC, Brussell
uses a finite-state-based approach for matching patterns
[Hobbs, 1997].
 The Automatic Content Extraction (ACE) competitions
continued after MUC in testing the detection of references
to entities with texts, and extracting events involving
entities and the relations holding among them. However,
neither MUC nor ACE tested the recognition of situations
spanning multiple events, and the extraction of information
from such situations.
 More recently, the Proteus system recognizes
hierarchically structured event descriptions such as an
overall death toll at the beginning of an article followed by
descriptions of separate incidents [Huttunen, 2002].

Topic-Detection and Tracking (TDT)
 Beginning in 1996, the TDT competitions tested systems
in several areas related to organizing news stories about
topics triggered by seminal events [Allan, 2002]. They
posed problems including first-story detection, recognizing
a new topic in a stream of stories, cluster detection, sorting
incoming news stories by topic and topic tracking, in
which a system is given some stories about a topic and
must determine whether incoming stories are also about the
topic.
 Systems in the TDT competitions used machine learning
techniques to characterize topics and assign stories based
on keywords and named entities. This content-independent
approach to organizing news articles enabled the creation
of robust systems, but suffers from an important limitation.
Without an explicit model of the situation, they do not
represent the causal relationships holding among individual
events and are thus unable to project forward from past
events. The closest work to approach this is that of event-
threading in which sub-topics and their temporal ordering
are identified [Nallapati 2004].

Interfaces for Tracking Events
 KEDS, and its successor TABARI, code international
relations events by recognizing known actors and events
using simple syntactic patterns [Gerner, 1996]. KEDS
includes a GUI for viewing and editing events extracted
from text, but does not organize events by scripts as
Brussell does.

Architecture

Scripts for Structure and Semantic Constraints
 In addition to organizing information for the user, scripts
impose important constraints on whether extracted text is
added to the situation representation. First, the identity of
the kidnap victim and kidnapper is held to be constant
through the course of the script. Thus, biographical
information about the victim appearing in any scene that
involves him is added to the representation. Second, the
script constrains what events the system should attempt to
detect, e.g., how the situation ends – with the release,
escape or death of the kidnap victim. Voting at the scene
level determines the most frequently referenced outcome.

Retrieving and Storing Articles
 The system retrieves news articles via RSS feeds from
major news sites including BBC News, New York Times,
Washington Post, Yahoo! News (which publishes from
wire services including Associated Press and Reuters).
The content from these articles is extracted and stored in a
text indexed MySQL database, providing Brussell with
access to new articles daily. Using a database to store
articles rather than searching for and retrieving articles
with every script query improves speed but also ensures
reproducibility of results. Many news sites remove old
articles or make them available by subscription only.

Script-Based Query
 The user initiates a query by providing a script type and
an identifying name, either the kidnap victim name or the
city under siege. Upon receiving the script type and name,
Brussell retrieves a pool of articles by searching for a set of
keywords consisting of the last name and script-specific
wildcard terms such as "kidnap* or abduct*".

Analyzing Sentences in Articles
 Brussell analyzes articles one sentence at a time. If a
sentence has been seen before, as is the case when reading
a duplicate article, it is skipped. A sentence is analyzed
only if it contains the user supplied script indicator and
scene keywords, typically verbs indicating the occurrence
of a scene. If the system finds both, it runs a simple finite-
state pattern recognizer to extract both scene and role
information. Patterns are expressed in the form:

kidnap-abduct -> kidnapper “kidnapped” kidnap-victim
kidnap-victim -> person
person -> first-name last-name OR occupation

 At each level, the concrete keywords bound the textual
region passed to the next level below. The person
recognizer looks for slot values within the kidnap-victim
range, which is bounded by the “kidnapped” keyword.
Some slots including a scene’s date and location
information may appear anywhere in the sentence. Once a
value is found it is added to the appropriate scene or role.

 Brussell does not currently employ any methods for
resolving anaphoric references. Such methods would
clearly improve performance but our focus so far has been
aimed more at understanding how to use relatively simple
mechanisms within this framework.

Voting
 Aggressively merging scene and role references
generates spurious data. Brussell was designed to scale
well and perform better as it receives more data. To
accomplish this, it uses voting to resolve ambiguity and
reduce comparative noise. As references to scenes, scene
slots, and role-filler slots are found, they are added to the
script structure with a reference to the article and line in
which they appear. These references are also treated as
votes. The system ranks values it extracts for slots in the
obvious way, i.e., largest number of votes first, then
decreasing. The number of votes of the top value relative
to the rest is a rough indicator of the system’s certainty.

Saving Script Instances to Cyc
 Each script instance is stored within a separate Cyc
microtheory, the standard technique for representing
contexts for reasoning. Slots values are converted to
assertions, while votes and sources are saved as comments.

System Evaluation
 In order to better understand the strengths and
weaknesses of our approach, and particularly the utility of
voting, we evaluated the system’s performance in
analyzing script instances by comparing its scene and role
information with hand-coded test cases for a list of
kidnappings and in a number of different configurations.
Performance was measured using precision and recall for
each script according to the following formulae:

Testing Methodology
 In October 2004, the Associated Press published the
names of 36 foreigners who had been kidnapped in Iraq.
With this list, we created test cases for 34 named
individuals. Each test case included whether each scene
occurred and values for scenes and role slots appearing
anywhere in any article about the kidnapping. Testing
used approximately 250,000 articles retrieved from April
2004 to February 2006.
 The system instantiated kidnapping scripts with roles of
the kidnap victim and kidnapper. It found scenes for the

initial abduction, threat announcement, (video-tape)
appearances, escape, release, kill and/or discovery of the
victim’s body. The attributes describing the kidnap victim
consisted of: first and last name, gender, age, nationality,
home town, occupation, and employer. Only the name slot
value of the kidnapper organization was extracted.
 The system was run with each kidnap victim's name in
turn. In comparing the system’s output with the test case,
we accepted as correct any slot in which it produced the
correct result either as its top voted value, or one of its top
values if there were multiple equally-highly voted values.
 To determine how well the system scales, we also tested
its performance on randomly selected subsets of the article
sentences in 10% increments.

Evaluation Results
 The mean precision for Brussell in these tests was 73%
with recall of 59%. The mean F-Measure for Brussell was
66%. For reference, though the tasks are not exactly
comparable, the best-performing MUC-7 system achieved
51% F-Measure in event extraction. This comparison is
given, and should be taken, with a large grain of salt since
the MUC systems were much larger and broader in scope.
But they do indicate that Brussell’s performance, even with
relatively simple mechanisms, was reasonable overall.
And they further suggest that the combination of larger
models and more semantic constraint, coupled with
aggregation of information over multiple articles, e.g., via
voting, does provide performance comparable to more
sophisticated techniques used without this contextual
support. Of all of the slots accepted as correct, Brussell
found a single correct value for 83% while the votes for the
top value were tied for the remaining 17%.
 The following table shows Brussell’s performance,
broken down into categories for scene selection, scene
slots and role slots all of which, for the rest of this
discussion we will refer to simply as slots.

Type Precision Recall
Scene Recognition 81% 82%

Scene Date 76% 60%
Scene Location 57% 61%

Kidnap Victim Slots 81% 68%
Kidnapper Name 21% 19%

Table 1. Performance on slots values and scene selection

 Brussell performed well in recognizing which scenes
occurred and extracting scene dates and locations and
information about the kidnap-victim. The low recall for
kidnapper names may be because the system looks only in
sentences that also mention the victim’s name, the script
indicator. Further, organization names consist of proper
nouns, general vocabulary, or a mixture of the two, a
traditional difficulty for simple regular expressions. It is
expected that even simple anaphora resolution methods
will increase recall and more sophisticated named-entity
recognition will increase precision.

correctly filled slots correctly recognized scene

slots of test case scene of test case

N N
recall

N N

+
=

+

correctly filled slots correctly recognized scene

filled slots recognized scene

N N
precision

N N

+
=

+

 Figure 2 summarizes the system’s performance on
increasingly large subsets of the original corpus averaged
over four runs (Y-Error bars denote standard error). As
expected, recall increases significantly. Surprisingly, since
we expected voting to improve results on this measure with
more input, there is no significantly increasing trend for
precision. We speculated that measuring precision for all
roles is too coarse-grained. As the system analyzes more
articles, it both adds values and votes to “existing,” already
filled, slots, and finds values for “new,” previously unfilled
slots – slots which were harder to accurately fill, or for
which there simply wasn’t enough data yet. In other words,
our notion was that the slots that are filled later tended to
be harder to fill correctly, or showed up sufficiently
infrequently that voting didn’t help in a corpus of this size.
As a result, “existing” slots may be becoming increasingly
correct but be offset by “newly-filled” slots with incorrect
values.
 To test whether slot correctness did increase with more
articles when balanced for this problem, we again divided
the pool of articles for each kidnapping into subsets of one
sixteenth, one eighth, one quarter, one half and all of the
articles, with each larger subset including all of the articles
of the smaller subsets. When analyzing a subset, multiple
values for precision were calculated: one for all of its slot
values, and one for its values for slots that first appeared in
each previous subset. Thus after analyzing one quarter of
the articles, precision was measured for all slots filled, as
well as slots first filled when analyzing one sixteenth of the
articles, and those first filled when analyzing one eighth of
the articles.
 The results for a single run can be seen in Figure 3.
Precision for slots under this model trends upward with
more articles. The lesson is in retrospect obvious: Voting
decreases random error, but not systematic error, and only
works if there are enough mentions of a slot value.

Syntactic Preprocessing to Improve Precision
 Many of the false positives in Brusssell’s text extraction
are due to grammatical structures too complex for the
pattern matcher, which assumes simple sentences. Real
sentences often contain subordinate clauses, participles,
conjunctions, etc. For example, the sentence “A South
Korean hostage threatened with execution in Iraq has been
killed, officials in Seoul have confirmed,” will be matched
by the pattern <kidnapper “threatened” kidnap-victim>,
and “South Korean hostage” will be (incorrectly) extracted
as the kidnapper.
 In order to improve precision, we extended Brussell’s
simple pattern matcher with a preprocessing module for
analyzing and simplifying the sentence syntactically. Prior
to applying the pattern matcher, the sentence is parsed
using the CMU Link Parser [Sleator, 1991] and simplified
according to several heuristics. The preprocessor extracts
all syntactic elements relevant to the scene, namely the
subject, object, prepositional phrases pertaining to the verb
scene keyword. These elements are then restructured to
form a simplified version of the original sentence
specifically for the scene. For the sentence given above,
the link parser generates the following parse tree:

(S (S (NP (NP A South Korean hostage)
 (VP threatened
 (PP with (NP execution))
 (PP in (NP Iraq))))
 (VP has VP been (VP killed)))) ,
 (NP (NP officials) (PP in (NP Seoul)))
 (VP have (VP confirmed .)))

 The scene keywords in this sentence are “threatened” for
the threat scene and “killed” for the kill scene. Within the
parse tree, “threatened” is a reduced relative clause, so no
simplified sentence is generated for this keyword. On the
other hand, for the keyword “killed”, the simplified
sentence is “A South Korean hostage has been killed”. It
should be noted that the preprocessor also removes
“officials in Seoul have confirmed”, because the text does

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 10 20 30 40 50 60 70 80 90 100
Corpus Size as Percentage of Original Corpus

Precision
Recall

Figure 2. Recall directly related to corpus size

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

1/16 1/8 1/4 1/2 1
Proportion

P
r
e
c
i
s
i
o
n

1/16 corpus

1/8 corpus

1/4 corpus

Figure 3. Precision directly related to slot filled time

not belong to the minimal S structure of the kill scene. The
sentence can now be correctly analyzed and appropriate
information extracted, by the pattern matcher.
 Through this sort of preprocessing, however, some
important information is lost. For example, relative clauses
supply information about the referent. To reduce
information lost introduced by the preprocessor, we
supplement the generic preprocessing mechanism with
some heuristics.
 One heuristic is to retain relative clauses if they contain
certain participles in the simplified sentence. If the
participle modifies the subject or the object of the
identified scene, and it will not be confused with pattern
keywords, the participle will not be eliminated. An
example can be found in the sentence “The kidnappers,
calling themselves the Martyrs Brigade, abducted Micah
Garen.” The key phrase “calling themselves” precedes an
organization’s name. Thus the participle will be included
in the simplified sentence. In this way the name “Martyrs
Brigade” can be discovered and extracted.
 Repeating the first test shows syntactic preprocessing
increases precision of extraction, while decreasing recall,
as we expected [Table 2].

Version Precision Recall
Without Preprocessor 72% 59%

With Preprocessor 81% 44%
Table 2. Performance with and without preprocessor

Future Work
 Brussell currently searches for script instances only
when prompted by the user. The next version will analyze
news stories as they are published, adding to existing script
instances and creating new scripts.
 A weakness of the current version of Brussell is its
inability to generate groups of representations in place of
individuals. This appears at multiple levels. Kidnappings
involving a group of people produced noisier data because
biographical information was conflated. Some kidnappings
involved repeated scenes, such as multiple video-tape
appearances with the result that date information was
conflated. Finally, an important new feature of the next
version of the system will be to support querying by
information other than the kidnap victim’s name. For
instance, querying by the victim’s nationality or the
kidnapper’s name should be permitted. This is currently
unsupported because it requires dynamically generating
new script instances in order to handle the fact that these
queries will generally match more than one instance.
 Other design goals for the next version of Brussell
include recognizing patterns in unrecognized text to pass
on to the analyst. In some kidnappings, for example, a third
party spoke out on behalf of the kidnap victim. These non-
scene references to the kidnapping should be provided to
the analyst, with the possible result that these events be
added as scene types to the script type.

Acknowledgments: This research was supported in
part by the National Science Foundation under grant no.
IIS-0325315/004. We thank our colleagues at Cycorp,
especially Michael Witbrock, Robert Kahlert, Kathy
Panton, and Keith Goolsbey, and our InfoLab and QRG
colleagues at Northwestern, especially Sara Owsley,
Sanjay Sood, Andy Crossen, and Dan Halstead.

References
 Baeza-Yates, R. and Ribeiro-Neto, B. eds. 1999.
Modern Information Retrieval. Addison Wesley.
 Cullingford, R. 1981 “SAM.” In Inside Computer
Understanding: Five Programs Plus Miniatures, Schank,
R. and Riesbeck, C. eds. Hillsdale, NJ.: Lawrence Erlbaum.
 DeJong, G. 1982. “An Overview of the FRUMP
System.” In Strategies for Natural Language Processing,
Lehnert, W. and Ringle, M. eds. Hillsdale, NJ.: Lawrence
Erlbaum.
 Endsley, M. R. 2001. “Designing for situation awareness
in complex systems.” In Proceedings of the Second
Intenational Workshop on Symbiosis of Humans, Artifacts
and Environment, Kyoto, Japan.
 Gerner, D. and Schrodt, P. 1996. "The Kansas Event
Data System: A Beginner's Guide with an Application to
the Study of Media Fatigue in the Palestinian Intifada.”
American Political Science Association, San Francisco.
 Grinberg, D., Lafferty, J. and Sleator, D. 1995. “A
robust parsing algorithm for link grammars.” In
Proceedings of the Fourth International Workshop on
Parsing Technologies, Prague.
 Hobbs, J., Appelt, D., Bear, J., Israel, D., Kameyama,
M., Stickel, M. and Tyson, M., 1997. “FASTUS: A
Cascaded Finite-State Transducer for Extracting
Information from Natural-Language Text'”, in E. Roche
and Y. Schabes, eds., Finite State Devices for Natural
Language Processing, MIT Press, Cambridge, MA.
 Huttunen, S., Yangarber, R., and Grishman, R., 2002.
“Diversity of Scenarios in Information Extraction.” In
Proceedings of the Third International Conference On
Language Resources And Evaluation, Las Palmas.
 Nallapati, R., Feng, A., Peng, F., and Allan, J. 2004.
“Event threading within news topics.” In Proceedings of
the Thirteenth ACM international Conference on
information and Knowledge Managemen. Washington,
D.C., USA
 Patterson, E., Roth, E., Woods, D. 1999 Aiding the
Intelligence Analyst in Situations of Data Overload: A
Simulation Study of Computer-Supported Inferential
Analysis Under Data Overload. Tech Report ERGO-
CSEL-99-02, Ohio State University
 Schank, R. and Abelson, R., 1977. Scripts, Plans, Goals,
and Understanding: An Inquiry into Human Knowledge
Structures. Hillsdale, NJ: Lawrence Erlbaum
 Sleator, D and Temperley, D. 1991. Parsing English
with a Link Grammar. Technical Report CMU-CS-91-196,
Carnegie Mellon University.

