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Abstract 

Learning by reading requires integrating several strands of 
AI research.  We describe a prototype system, Learning 
Reader, which combines natural language processing, a 
large-scale knowledge base, and analogical processing to 
learn by reading simplified language texts.  We outline the 
architecture of Learning Reader and some of system-level 
results, then explain how these results arise from the 
components.  Specifically, we describe the design, 
implementation, and performance characteristics of a 
natural language understanding model (DMAP) that is 
tightly coupled to a knowledge base three orders of 
magnitude larger than previous attempts.  We show that 
knowing the kinds of questions being asked and what might 
be learned can help provide more relevant, efficient 
reasoning.  Finally, we show that analogical processing 
provides a means of generating useful new questions and 
conjectures when the system ruminates off-line about what 
it has read. 
 

Introduction 
Learning by reading requires the integration of multiple AI 
techniques.  Natural language processing must be used to 
transform the text into candidate internal representations.  
Knowledge representation and reasoning techniques must 
be used to test this new information, and determine how it 
is to be integrated into the system’s evolving models so 
that it can be used for effective problem solving.  While 
tremendous strides have been made in individual research 
areas, few efforts have attempted to integrate them to 
achieve learning by reading.  For example, many 
researchers are exploring how to mine facts matching 
particular patterns from the web (e.g., Etzioni et al 2005) 
or to answer specific queries (e.g., Matuszek et al 2005).   

Working with open texts is certainly an important 
challenge.  However, we are focusing on a different, but 
equally important, problem:  How to handle learning a 
wide range of conceptual knowledge via reading, including 
using that knowledge to update a large knowledge base in 
ways that support effective reasoning.  Consequently, we 
are less concerned with handling a wide variety of surface 

forms of text, exploiting instead simplified English.  This 
is based on the observation that, for centuries, human 
cultures have taught children using simplified language: 
Less complex grammatical constructions, shorter texts, 
more scaffolding as to what they are about.  We focus on 
attempting to learn as much as possible from each piece of 

text, while placing as few a priori limitations on the 
structure of what is to be learned as possible. 

We start by describing the architecture of Learning 
Reader, and some recent results obtained with the whole 
system.  Then we discuss the ways in which we integrated 
several AI techniques to achieve this performance.  We 
describe how the Direct Memory Access Parsing model 
(DMAP; Martin & Riesbeck, 1986) tightly integrates 
natural language processing with the KB and reasoning, 
unlike the usual pipeline model that splits them up.  We 
outline how knowledge about what is already known and 
what can be generated by the NL system guides the 
extraction of axioms for question-answering from the 
knowledge base.  We describe how analogical processing 
is used to construct generalizations, generate questions, 
and produce new conjectures during rumination.  Finally, 
we discuss related work and plans for future work. 

Learning Reader: The System 
Figure 1 shows the architecture of Learning Reader.  

The starting endowment of the knowledge base has been Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
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extracted from ResearchCyc1.  The Reader processes text, 
producing cases that are stored back into the knowledge 
base.  The Ruminator subsequently examines these cases, 
asking itself questions to improve its understanding of 
what it has read.  The Q/A system has a parameterized 
questions interface that enables trainers to quiz the system.  

To drive our effort, we have chosen an area which is 
extremely broad: world history.  Our corpus currently 
consists of 62 stories (956 sentences) about the Middle 
East, including its geography, history, and information 
about current events.  All the examples and experiments 
described in this paper are based on this corpus.  

Stories were simplified in a two step process.  First, 
complex sentences were rewritten, typically into multiple 
simpler sentences.  Second, the story contents were broken 
up into snippets, each with an identifiable topic category.  
Examples of topic categories include geography, history, 
person, organization, terrorist-attacks.  The manually 
identified topic is stored with the text snippet and is 
available during processing.  (Currently, the only 
component which uses this topic information is the 
Ruminator, during its search for retrievals and 
generalizations, as explained below.)    The corpus of 62 
stories used in all the experiments below, for instance, was 
translated into 186 text snippets via this process.   

 
Table 1 summarizes some system-level experiments.  The 
set of questions asked was generated by using the 
templates associated with the parameterized questions in 
the Q/A system and the knowledge base resulting from 
reading the entire corpus, to ensure that questions were 
asked about new entities appearing in the text.  These 
questions were asked before any processing was done (the 
“before reading” row), after the entire corpus had been 
processed by the Reader, but without any rumination (the 
“Reading only” row), and after rumination in two 
conditions, one where the Ruminator operated purely 
deductively, and the other where it was allowed to make 
conjectures (the PCA condition, described below).  The 
improvement from 10% without reading to 37% after 
reading demonstrates that the system did indeed learn by 
reading.  The further improvement to 50% after deductive 

                                                 
1 http://research.cyc.com/ 

rumination, and 60% after rumination with PCA, 
demonstrates that rumination does indeed help the system 
learn more from the texts that it has read.  However, it does 
come at some cost: Even deductive rumination introduces a 
few new errors, and of the 91 new questions that the 
system can answer after rumination with PCA, 47 of them 
are incorrect, meaning the new knowledge is leading to 
mistakes roughly half the time.   

Next we examine each of the components, showing how 
they integrate multiple AI techniques in order to achieve 
this performance. 

The Reader 
The primary goal of the Reader is to identify quickly and 
accurately what pre-existing knowledge an input text is 
referring to, creating new knowledge only when none can 
be found. For this reason, we use the Direct Memory 
Access Parsing (DMAP) model of natural language 
understanding (Martin and Riesbeck, 1986). DMAP treats 
understanding as a recognition process, rather than as a 
semantic composition process. A DMAP system sees an 
input as a stream of references to concepts. It incrementally 
matches those references against phrasal patterns.  When 
patterns are completely matched, they generate additional 
higher-order conceptual references.  

For example, the lexical items in “an attack occurred in 
Baghdad” initially generate references to the concepts for 
AttackOnObject and CityOfBaghdad, These concepts plus 
the original lexical items in turn match the phrasal pattern 
((isa ?event Event) Occur-TheWord In-TheWord  
(isa ?location  GeographicalRegion)), because 
AttackOnObject is a type of Event and CityOfBaghdad is a 
GeographicalRegion. Matching this phrasal pattern 
identifies a reference to the conceptual assertion 
(eventOccursAt ?event ?location), where ?event and 
?location are known to be the attack and Baghdad 
concepts already seen. The Reader then queries the KB for 
existing instances. Thus, in this example, the Reader will 
query memory for known instances of attacks that have 
occurred in Baghdad, to provide a specific value(s) for 
?event. If none are found, a Skolem constant will be 
generated. For example, given the text snippet:  

“An attack occurred in Al Anbar.  The bombing 
occurred on August 3, 2005.  The attack killed 14 
soldiers.” 

DMAP produces the following output: 
(isa Bombing-653 AttackOnTangible) 
(isa Bombing-653 Bombing) 
(eventOccursAt Bombing-653 AlAnbar-ProvinceIraq) 
(dateOfEvent Bombing-653 
    (DayFn 3 (MonthFn August (YearFn 2005)))) 
(deathToll Bombing-653 ArmyPersonnel 14) 
Since DMAP did not know of an attack that satisfied what 
it was reading, it created a new instance (Bombing-653), 
but it was careful to use entities that it already understood 
(e.g., AlAnbar-ProvinceIraq) rather than, for instance, 

Condition #Answers % # 
Wrong 

Accuracy 

Before 
Reading 

87 10% 0 100% 

Reading only 320 37% 1 99.7% 

Reading + 
Deductive 

Rumination 

434 50% 3 99.3% 

Reading + 
Deductive + PCA 

525 60% 48 90.8% 

Table 1: Summary of System-Level Experiments
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creating a new entity and being forced to resolve it later, as 
many NLU systems do. 

The research goal for the DMAP-based Reader is to 
develop scalable techniques for knowledge-rich lexically-
based language understanding in large realistically-sized 
knowledge bases. The challenges boil down to scale and 
variability. In terms of scale, the Reader has to manage 
over 30,000 phrasal patterns, and avoid queries like “an 
event in a location” that can retrieve thousands of 
instances. In terms of variability, the Reader has to deal 
with a KB that was developed by a number of knowledge 
engineers over time. This leads inevitably to variations in 
detail, e.g., some event descriptions omit critical 
information like specific time and place, specificity, e.g., 
an agentive assertion might use doneBy or perpetrator or 
some other related but not identical relationships, and 
representational choice, e.g., over time, increasing use has 
been made of structured non-atomic terms (NATs) rather 
than named entities. The Reader cannot simply ask for “all 
attacks in Baghdad.” It has to look for all events that are 
consistent with being an attack in Baghdad, without being 
overwhelmed with irrelevant results.  

To evaluate DMAP’s performance on the corpus, a 
preliminary answer key was created representing some of 
the primary assertions we expect from each story. 
Currently the Reader reproduces 87% of this key. 
However, this answer key does not represent all the 
assertions that should be produced, and coverage may 
decrease as the answer key is made more complete.  

DMAP currently uses over 30,000 phrasal patterns. A 
small subset (50) of these were hand-generated, the rest 
were automatically translated from linguistic knowledge in 
the ResearchCyc KB contents.  For DMAP, an important 
metric is how much of the KB is potentially accessible 
through its phrasal patterns. DMAP can find instances in 
memory for 99% (27453/27649) of the collections in the 
Cyc ontology. DMAP can produce assertions for new 
instances for 57% of the collections.  With respect to 
predicates in the Cyc ontology, DMAP has phrasal patterns 
that can produce and access 13% (1175/8892) of all 
possible predicates.   While 13% may seem small, this still 
enables it to access 43% of the 1.2 million assertions 
presently made in ResearchCyc, including isa expressions. 
If we only consider predicates other than isa, DMAP can 
access 24.8% of ResearchCyc. 

Unlike traditional syntactic parsers, DMAP is tightly 
integrated with the knowledge base.  Every component of 
DMAP interacts with the KB. Names are translated into 
existing instances using assertions in the Cyc KB. 
Similarly, text is translated into lexical concepts and then 
from lexical concepts into semantic concepts using other 
assertions in the KB. Pattern matching is done using 
patterns extracted from other linguistic knowledge in Cyc. 

Several processes in DMAP leverage the knowledge in 
the KB directly to provide cues and biases for building 
interpretations.  (See Livingston & Riesbeck (2007) for 
details.)  After patterns are matched, the KB is queried to 
identify potentially relevant instances. Interpretations that 

reference known instances are preferred. This produces a 
bias to understand things in terms of that which it already 
knows. 

Second, DMAP is also biased to interpretations that 
include predicates it has seen co-occur with predicates used 
in the interpretations of earlier sentences. By co-occur we 
mean the number of times statements using these 
predicates have shared an argument in the knowledge base. 

A third way DMAP leverages the underlying memory is 
to perform coreference resolution. DMAP will allow 
references from two different sentences (e.g. “terrorist 
attack” and “bombing”) to refer to the same entity if one is 
a generalization of the other.  If a generalization does not 
hold, then DMAP will use a case-based resolution strategy.  
DMAP will query the knowledge base to see if there exists 
a known instance that belongs to both classes. In this 
example, because the KB has examples of terrorist 
bombings, DMAP would allow the coreference.  

Since DMAP is intrinsically tied to its underlying 
knowledge base, in this case ResearchCyc (which is over 
three orders of magnitude larger than has been used with 
previous DMAP systems) problems of scale and managing 
ambiguity arise.  Our original implementation tracked 
understanding ambiguities as they arose at the word level.  
This approach could only read 35% of the sentences at a 
rate of one second or better, and did not scale, 
asymptotically approaching processing only 63% of the 
test corpus, even when given hours per sentence.  
Switching to a Reader that tracked ambiguity at the 
sentence level provided significant improvement, allowing 
63% of the corpus to be read at a rate of one second per 
sentence or better, and reaching 99% of the corpus when 
allowed to take as much as 8.7 minutes per sentence.  
Leveraging the heuristics mentioned above to prioritize a 
best-first search provided even better scaling, reaching 
78% of the corpus in under a second per sentence, and 99% 
when allowed to take 1.1 minutes. 

The Q/A System 
The purpose of the current Q/A system is to provide a 
means of examining what the system has learned.  We use 
a parameterized question template scheme (cf. Cohen et al, 
1998) to ask types of questions that are particularly 
appropriate for the domain we are dealing with.  The 
current templates are:  (1) Who is <Person>?, (2) Where 
did <Event> occur?, (3) Where might <Person> be?, (4) 
What are the goals of <Person>?, (5) What are the 
consequences of <Event>?, (6) When did <Event> occur?, 
(7) Who is involved in <Event>?, (8) Who is acquainted 
with (or knows) <IntelligentAgent>?,  (9) Why did 
<Event> occur?, and (10) Where is <SpatialThing>? 

In each template, the parameter (e.g., <Person>) 
indicates the kind of thing for which the question makes 
sense (specifically, a collection in the Cyc ontology).  Each 
template expands into a set of formal queries, all of which 
are attempted in order to answer the question.  The 
minimum number of formal queries per template is one, 
the maximum is 13 (location), with a mean of 5. For 
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example, question 3 uses queries involving hasBeenIn, 
citizens, and objectFoundInLocation. 

One problem with large knowledge bases is that, as they 
grow, the cost of inference can become astronomical, with 
failed queries taking hours or even days1.  Our solution to 
this problem is to restrict the set of axioms used for 
reasoning.  In the FIRE reasoning engine, backchaining is 
restricted to small sets of axioms called chainers.  A 
chainer is a single partition within the KB, used for 
reasoning, in the sense of Amir & McIlraith (2005).  While 
their algorithm for partitioning assumes a fixed KB, ours 
must deal with a KB that grows as the system reads.  We 
exploit two sources of knowledge in our extraction 
process.  The first is common, i.e., the kinds of predicates 
that will be used in queries.  The second is information 
about the kinds of statements that are already in the KB 
plus the kinds of statements that the natural language 
system is capable of generating.  That is, if the DMAP 
phrasal patterns are capable of inferring statements 
containing a predicate P, then we know that we could learn 
such statements via reading, and otherwise we cannot.   

Our axiom extraction algorithm creates a set of Horn 
clauses (for tractability).  The KB axioms are typically not 
Horn, so we translate them into clauses to extract a Horn 
clause subset (cf. Peterson et al 1998).  The antecedents of 
each Horn clause are examined to see if they are 
potentially available in the KB, or if they are obtainable by 
the Reader.  If they are, the Horn clause is added to the set 
of axioms for the chainer.  Otherwise, the failed 
antecedents are examined to see if there are Horn clauses 
that could prove them.  This process continues for a 
maximum depth (default = 3), filtering out any rules that 
have antecedents that will not be derivable within that 
boundary.  The details are described in Sharma & Forbus 
(in preparation); what is important here is that we are 
exploiting the structure of the natural language system to 
make deductive inference more efficient, another 
advantage of creating an integrated system. 

Two chainers are created by this process.  The chainer 
for Q/A must be efficient, because it is an interactive 
process.  Consequently, we limit it to creating Horn clauses 
from the specPred hierarchy in the Cyc ontology, but with 
unlimited depth.  For example, if the KB contained 

(genlPreds explosiveDeviceUsed deviceUsed)  
the following Horn clause would be added:  

(<== (deviceUsed ?x ?y)  
     (explosiveDeviceUsed ?x ?y)) 

The QA chainer contains 787 axioms.  The Ruminator 
chainer is more complex, containing 1,978 axioms, since it 
can operate off-line.  It includes rules that map from 
specPreds to the query predicates, up to a depth of 6, 
while other rules are limited to the default depth of 3.  
Other recursive clauses are eliminated to improve 
performance.  Further automatic static analysis is done to 
eliminate reasoning bottlenecks, which can speed inference 
by a factor of 129 on average, with a worst-case 

                                                 
1 cf. www.projecthalo.com/content/docs/ 

improvement of a factor of 4, with only an 8.5% loss of 
completeness.  

The Ruminator 
The Reader does focused forms of inference, to retrieve, 
filter, combine, and create descriptions of the text.  But this 
does not capture the human tendency to learn by later 
reflecting upon what they have read, connecting it more 
deeply to what they already know and pondering its 
implications.  The Ruminator models this kind of off-line 
learning.  The operation of the Ruminator can be divided 
into three phases: Elaboration, question generation, and 
question processing.  We discuss each in turn. 
Elaboration: The Reader’s output is a case, representing 
its understanding of a text snippet.  The first step is to 
enrich the case with information about the entities and 
events involved from the knowledge base.  We do this by 
using dynamic case construction techniques (Mostek et al 
2000) to extract KB facts that are directly linked to the 
entities and events of the story.  This elaboration serves 
two purposes.  First, it reduces the amount of work needed 
for subsequent inferences.  Second, it "primes the pump" 
for analogical processing in the next phase.  We call these 
descriptions conceptual models.  For example, in the 
snippet used earlier, this process adds facts indicating that 
Al Anbar is a province, in the country of Iraq. 
Question Generation: A key process in rumination is 
generating interesting questions to consider.  We use three 
strategies for generating questions.  The simplest uses a 
form of knowledge patterns (Clark et al 2000), canonical 
questions that one asks about a kind of entity.  Given our 
current focus on world history, we use formalized versions 
of the standard Journalist's Questions (who, what, when, 
where, why, how) as defined in the Q/A system.  In the Al 
Anbar example, for instance, one question the Ruminator 
generates in this way is, paraphrased, “Who is involved in 
the Al Anbar attack?” 

The second strategy, analogical retrieval, is based on the 
insight that if two things are similar in some ways, they 
might be similar in others.  We use the MAC/FAC model 
of similarity-based retrieval (Forbus et al 1994) to retrieve 
cases.  The retrieval probe is the conceptual model for the 
story.  The case library used for a story is based on the 
topic given for the text snippet.  It includes all instances of 
that concept from both the KB and the system's prior 
reading.  The second stage of MAC/FAC uses SME 
(Falkenhainer et al 1989; Forbus et al 1994), which models 
analogical matching, to construct candidate inferences 
about the probe using the retrieved case.  These candidate 
inferences serve as the basis for another set of questions.  
For example, based on an analogy with a terrorist attack in 
Farah, Afghanistan, one question the Ruminator generated 
about the Al Anbar example used above is, paraphrasing, 
“Was the device used in the Al Anbar attack something 
like a rocket?” 

The third strategy is to compare the new story with 
generalizations made about the topic.  The generalizations 
are automatically constructed via analogical processing, 
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using SEQL (Kuehne et al 2000) over all of the instances 
of that topic in the KB and the system's prior reading.  As a 
new case comes in, we use SME to compare it with every 
generalization, creating candidate inferences which are 
then used as new questions.  This gives us a source of 
questions that reflect the system's experience with that 
topic1.  We use an extension of SEQL due to Halstead & 
Forbus (2005) that provides probabilities for statements in 
generalizations.  This provides us with information that can 
be used for prioritizing questions: Candidate inferences 
generated from a more likely statement are more likely to 
be interesting, however they turn out.   

The strategies so far are entirely deductive: Even if a 
question was generated via analogy with a prior example 
or with a generalization, deductive reasoning with the 
Ruminator’s chainer generated a proof in terms of the facts 
in the case plus the KB contents.  The Promiscuous 
Conjecture Acceptance (PCA) strategy moves beyond 
deductive rumination.  Recall that candidate inferences 
represent what might hold in a new situation (the target), 
based on the way that it corresponds with some prior 
experience (the base).  Here the base is a prior case or a 
generalization, and the target is the newly read case.  Not 
all snippets provide exactly the same information, so 
candidate inferences provide a form of pattern completion.  
For example, one story might mention that an attack 
involving a Sunni insurgent group occurred in Iraq, 
whereas another might not.  When PCA is used, candidate 
inferences that pass certain tests are accepted as true in the 
case.  The tests are (1) the candidate inference cannot 
contain any analogy skolems.  An analogy skolem 
represents the projection into the target of an entity in the 
base which was not mapped to anything.  For example, the 
“something like a rocket” in the analogy question about the 
Al Anbar attack is the English rendition of an analogy 
skolem, which is used as a variable in the query.  Such 
unbound existentials are not very useful for subsequent 
reasoning, hence they are not introduced.  (2) The 
inference must not be obviously contradictory.  By this we 
mean that it must not violate disjointness constraints in the 
KB and simple spatial constraints (e.g., a conjectured 
location of an event must not be spatially disjoint with 
what is already known about where it occurred). 

In the experiment described above, 186 text snippets 
gave rise to 871 knowledge pattern questions and 1,238 
analogical questions, for a total of 2,109 questions.  The 
average number of questions/snippet is 11.3, 6.6 (58%) of 
which on average are from analogies. 

Question Processing:  Two of the three sources of 
questions we use are non-deductive, so it is possible to 
generate questions that simply don't make sense, given 
what the system already knows.  (e.g., “Is it true that the 
City of San Antonio’s spouse is Chile?”)  We use type 
inference with argument restrictions to eliminate questions 

                                                 
1 We speculate that such questions eventually become new knowledge 
patterns, but we have not experimented with this yet. 

that are clearly internally inconsistent2.  As with Q/A, we 
use restricted inference to attempt to answer the questions 
that seem to make sense.  The chainer used for rumination 
was described above.  Answers, when found, are stored in 
the conceptual model.  

  As the statistics above indicate, the Ruminator can 
generate a huge number of questions.  Those questions that 
it cannot answer are stored in the KB, as a queue of open 
questions for future consideration.  When a new story is 
read, it reconsiders these questions to see if the new 
knowledge enables it to now answer them.   

Noise: A system-level issue 
Our experiments to date suggest that the presence of noise 
in learned knowledge is one of the key issues in learning 
by reading.  For example, in one run we ended up with the 
Sudan being viewed as a military person, and the assertion 
that, up to 1920, Iraq was a definite NL attribute.  There 
are three sources of noise: Errors in the initial knowledge 
base, imperfect understanding in the Reader, and 
conjectures inappropriately accepted during rumination.  
When rumination is purely deductive, only the first two 
sources of noise are possible.  But, as the errors about the 
Sudan and Iraq illustrate, they do indeed occur.  We have 
recently modified the elaboration stage of Rumination to 
scrutinize incoming facts more cautiously, to seek out 
contradictions on its own.  The provenance of all 
information in a case is recorded, providing the potential to 
track down such misunderstandings and correct them. 

The problem of noise raises another fundamental issue 
for learning by reading systems: How does noise in the KB 
change as a function of learning by reading?  Under what 
conditions does the feedback loop provided by the 
read/ruminate cycle act to dampen noise in the KB over 
time, versus amplify it?  This will be investigated in future 
experiments, as outlined below. 

Related Work 
Most systems that learn by reading are aimed at extracting 
particular kinds of facts from the web.  For example, 
KnowItAll (Etzioni et al 2005) extracts named entities and 
OPINE (Popescu & Etzioni, 2005) extracts properties of 
products.  While impressive in the quantity of information 
they can acquire, they do not attempt to understand a story 
as a whole, nor do they attempt to integrate it into a large 
pre-existing knowledge base.  Closer to Learning Reader is 
Cycorp's "Factovore" (Matuszek et al 2005), which uses 
web searches to find candidate answers to queries 
generated by using a hand-generated set of templates.  
Their question generation process is similar to our use of 
knowledge patterns in the Ruminator, but they do not have 
the equivalent of our analogy-based question generation 

                                                 
2 Unfortunately this process is imperfect, because many argument 
restrictions in the KB are weak, e.g. SpatialThing or even Thing. 
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strategies.  For us, questions are generated based on what 
we have read, whereas for them information extraction is 
done in order to answer specific questions.  Cycorp also 
uses a human editorial staff to validate knowledge as part 
of their cycle.  Our goal is that trainers should never know 
the underlying representations that Learning Reader is 
creating.  We hope to enable people to extend it as long as 
they can use simplified English, without being AI experts. 

We know of no other system that integrates analogical 
processing into the understanding process.   

Discussion 
We have described Learning Reader, a prototype system 
that integrates natural language processing, deductive 
reasoning over large knowledge bases, and analogical 
processing in order to learn by reading simplified texts.  
While Learning Reader is in its early stages, we believe the 
results shown here indicate great promise.  We have shown 
that a system can “close the loop”, with natural language 
processing producing representations of text that can be 
assimilated into a large knowledge base, and used to 
answer questions and to improve subsequent understanding 
(via being retrieved through DMAP during reading and 
being retrieved via MAC/FAC during rumination).   

There are several directions we plan to pursue next.  
First, we plan to expand our corpus.  Our original corpus 
will be doubled in size to test breadth, and a further 
expansion will be done by systematically building up 
stories about a particular area, so that we can explore the 
impact of noise on learning from a large body of 
interrelated material.  Second, we intend to use DMAP for 
question-parsing instead of parameterized questions.  This 
will expand coverage and provide the basis for 
implementing an interactive dialogue system, to allow 
trainers to ask follow-up questions, and to allow the 
Ruminator to ask its trainers a limited number of questions, 
with answers being interpreted also via DMAP.  Third, the 
process we added to the Ruminator which scrutinizes 
newly learned knowledge for inconsistencies detects 
errors, but it does not yet propose or implement repairs to 
that knowledge.  We expect that techniques of model-
based diagnosis, applied to a model of the system’s own 
processing (cf. de Koning et al 2000) will be useful in this 
regard.  Finally, we plan to expand the role of evidential 
reasoning in the Ruminator, exploiting the probabilities 
generated via SEQL to help decide what action to take 
when a misunderstanding is diagnosed. 
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