Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading

Kenneth D. Forbus, Christopher Riesbeck, Lawrence Birnbaum,
Kevin Livingston, Abhishek Sharma, Leo Ureel

EECS Department, Northwestern University
2133 Sheridan Road, Evanston, IL, 60208
forbus@northwestern.edu

Abstract

Learning by reading requires integrating several strands of
Al research. We describe a prototype system, Learning
Reader, which combines natural language processing, a
large-scale knowledge base, and analogical processing to
learn by reading simplified language texts. We outline the
architecture of Learning Reader and some of system-level
results, then explain how these results arise from the
components. Specifically, we describe the design,
implementation, and performance characteristics of a
natural language understanding model (DMAP) that is
tightly coupled to a knowledge base three orders of
magnitude larger than previous attempts. We show that
knowing the kinds of questions being asked and what might
be learned can help provide more relevant, efficient
reasoning. Finally, we show that analogical processing
provides a means of generating useful new questions and
conjectures when the system ruminates off-line about what
it has read.

Introduction

Learning by reading requires the integration of multiple Al
techniques. Natural language processing must be used to
transform the text into candidate internal representations.
Knowledge representation and reasoning techniques must
be used to test this new information, and determine how it
is to be integrated into the system’s evolving models so
that it can be used for effective problem solving. While
tremendous strides have been made in individual research
areas, few efforts have attempted to integrate them to
achieve learning by reading. For example, many
researchers are exploring how to mine facts matching
particular patterns from the web (e.g., Etzioni et al 2005)
or to answer specific queries (e.g., Matuszek et al 2005).
Working with open texts is certainly an important
challenge. However, we are focusing on a different, but
equally important, problem: How to handle learning a
wide range of conceptual knowledge via reading, including
using that knowledge to update a large knowledge base in
ways that support effective reasoning. Consequently, we
are less concerned with handling a wide variety of surface

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

forms of text, exploiting instead simplified English. This
is based on the observation that, for centuries, human
cultures have taught children using simplified language:
Less complex grammatical constructions, shorter texts,
more scaffolding as to what they are about. We focus on
attempting to learn as much as possible from each piece of

Stories Questions AnswersJ
Ruminator QA
Reader \

A

Knowledge Base

Figure 1: Learning Reader Architecture

text, while placing as few a priori limitations on the
structure of what is to be learned as possible.

We start by describing the architecture of Learning
Reader, and some recent results obtained with the whole
system. Then we discuss the ways in which we integrated
several Al techniques to achieve this performance. We
describe how the Direct Memory Access Parsing model
(DMAP; Martin & Riesbeck, 1986) tightly integrates
natural language processing with the KB and reasoning,
unlike the usual pipeline model that splits them up. We
outline how knowledge about what is already known and
what can be generated by the NL system guides the
extraction of axioms for question-answering from the
knowledge base. We describe how analogical processing
is used to construct generalizations, generate questions,
and produce new conjectures during rumination. Finally,
we discuss related work and plans for future work.

Learning Reader: The System

Figure 1 shows the architecture of Learning Reader.
The starting endowment of the knowledge base has been

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

extracted from ResearchCyc®. The Reader processes text,
producing cases that are stored back into the knowledge
base. The Ruminator subsequently examines these cases,
asking itself questions to improve its understanding of
what it has read. The Q/A system has a parameterized
questions interface that enables trainers to quiz the system.

To drive our effort, we have chosen an area which is
extremely broad: world history. Our corpus currently
consists of 62 stories (956 sentences) about the Middle
East, including its geography, history, and information
about current events. All the examples and experiments
described in this paper are based on this corpus.

Stories were simplified in a two step process. First,
complex sentences were rewritten, typically into multiple
simpler sentences. Second, the story contents were broken
up into snippets, each with an identifiable topic category.
Examples of topic categories include geography, history,
person, organization, terrorist-attacks. The manually
identified topic is stored with the text snippet and is
available during processing. (Currently, the only
component which uses this topic information is the
Ruminator, during its search for retrievals and
generalizations, as explained below.) The corpus of 62
stories used in all the experiments below, for instance, was
translated into 186 text snippets via this process.

Condition #Answers % # Accuracy
Wrong
Before 87 10% 0 100%
Reading
Reading only 320 37% 1 99.7%
Reading + 434 50% 3 99.3%
Deductive
Rumination
Reading + 525 60% 48 90.8%
Deductive + PCA
Table 1: Summary of System-Level Experiments

Table 1 summarizes some system-level experiments. The
set of questions asked was generated by using the
templates associated with the parameterized questions in
the Q/A system and the knowledge base resulting from
reading the entire corpus, to ensure that questions were
asked about new entities appearing in the text. These
questions were asked before any processing was done (the
“before reading” row), after the entire corpus had been
processed by the Reader, but without any rumination (the
“Reading only” row), and after rumination in two
conditions, one where the Ruminator operated purely
deductively, and the other where it was allowed to make
conjectures (the PCA condition, described below). The
improvement from 10% without reading to 37% after
reading demonstrates that the system did indeed learn by
reading. The further improvement to 50% after deductive

! http://research.cyc.com/

rumination, and 60% after rumination with PCA,
demonstrates that rumination does indeed help the system
learn more from the texts that it has read. However, it does
come at some cost: Even deductive rumination introduces a
few new errors, and of the 91 new questions that the
system can answer after rumination with PCA, 47 of them
are incorrect, meaning the new knowledge is leading to
mistakes roughly half the time.

Next we examine each of the components, showing how
they integrate multiple Al techniques in order to achieve
this performance.

The Reader

The primary goal of the Reader is to identify quickly and
accurately what pre-existing knowledge an input text is
referring to, creating new knowledge only when none can
be found. For this reason, we use the Direct Memory
Access Parsing (DMAP) model of natural language
understanding (Martin and Riesbeck, 1986). DMAP treats
understanding as a recognition process, rather than as a
semantic composition process. A DMAP system sees an
input as a stream of references to concepts. It incrementally
matches those references against phrasal patterns. When
patterns are completely matched, they generate additional
higher-order conceptual references.

For example, the lexical items in “an attack occurred in
Baghdad” initially generate references to the concepts for
Att ackOnObj ect and Gi t yOf Baghdad, These concepts plus
the original lexical items in turn match the phrasal pattern
((isa ?event Event) Cccur-TheWrd |n-TheWrd
(isa ?location Geogr aphi cal Regi on)), because
At t ackOnQbj ect is a type of Event and G t yOf Baghdad is a
Geogr aphi cal Regi on. Matching this phrasal pattern
identifies a reference to the conceptual assertion
(event CccursAt ?event 2l ocation), where ?event and
?l ocation are known to be the attack and Baghdad
concepts already seen. The Reader then queries the KB for
existing instances. Thus, in this example, the Reader will
query memory for known instances of attacks that have
occurred in Baghdad, to provide a specific value(s) for
2event. If none are found, a Skolem constant will be
generated. For example, given the text snippet:

“An attack occurred in Al Anbar. The bombing
occurred on August 3, 2005. The attack killed 14
soldiers.”
DMAP produces the following output:
(i sa Bonbi ng- 653 AttackOnTangi bl e)
(i sa Bonbi ng- 653 Bonbi ng)
(event Occur sAt Bonbi ng- 653 Al Anbar - Provi ncel raq)
(dat eOr Event Bonbi ng- 653
(DayFn 3 (MonthFn August (YearFn 2005))))
(deat hTol | Bonbi ng- 653 ArnyPersonnel 14)
Since DMAP did not know of an attack that satisfied what
it was reading, it created a new instance (Bonbi ng- 653),
but it was careful to use entities that it already understood
(e.g., Al Anbar - Provi ncel r aq) rather than, for instance,

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

creating a new entity and being forced to resolve it later, as
many NLU systems do.

The research goal for the DMAP-based Reader is to
develop scalable techniques for knowledge-rich lexically-
based language understanding in large realistically-sized
knowledge bases. The challenges boil down to scale and
variability. In terms of scale, the Reader has to manage
over 30,000 phrasal patterns, and avoid queries like “an
event in a location” that can retrieve thousands of
instances. In terms of variability, the Reader has to deal
with a KB that was developed by a number of knowledge
engineers over time. This leads inevitably to variations in
detail, e.g., some event descriptions omit critical
information like specific time and place, specificity, e.g.,
an agentive assertion might use doneBy Or per pet r at or Or
some other related but not identical relationships, and
representational choice, e.g., over time, increasing use has
been made of structured non-atomic terms (NATS) rather
than named entities. The Reader cannot simply ask for “all
attacks in Baghdad.” It has to look for all events that are
consistent with being an attack in Baghdad, without being
overwhelmed with irrelevant results.

To evaluate DMAP’s performance on the corpus, a
preliminary answer key was created representing some of
the primary assertions we expect from each story.
Currently the Reader reproduces 87% of this key.
However, this answer key does not represent all the
assertions that should be produced, and coverage may
decrease as the answer key is made more complete.

DMAP currently uses over 30,000 phrasal patterns. A
small subset (50) of these were hand-generated, the rest
were automatically translated from linguistic knowledge in
the ResearchCyc KB contents. For DMAP, an important
metric is how much of the KB is potentially accessible
through its phrasal patterns. DMAP can find instances in
memory for 99% (27453/27649) of the collections in the
Cyc ontology. DMAP can produce assertions for new
instances for 57% of the collections. With respect to
predicates in the Cyc ontology, DMAP has phrasal patterns
that can produce and access 13% (1175/8892) of all
possible predicates. While 13% may seem small, this still
enables it to access 43% of the 1.2 million assertions
presently made in ResearchCyc, including i sa expressions.
If we only consider predicates other than i sa, DMAP can
access 24.8% of ResearchCyc.

Unlike traditional syntactic parsers, DMAP is tightly
integrated with the knowledge base. Every component of
DMAP interacts with the KB. Names are translated into
existing instances using assertions in the Cyc KB.
Similarly, text is translated into lexical concepts and then
from lexical concepts into semantic concepts using other
assertions in the KB. Pattern matching is done using
patterns extracted from other linguistic knowledge in Cyc.

Several processes in DMAP leverage the knowledge in
the KB directly to provide cues and biases for building
interpretations. (See Livingston & Riesbeck (2007) for
details.) After patterns are matched, the KB is queried to
identify potentially relevant instances. Interpretations that

reference known instances are preferred. This produces a
bias to understand things in terms of that which it already
knows.

Second, DMAP is also biased to interpretations that
include predicates it has seen co-occur with predicates used
in the interpretations of earlier sentences. By co-occur we
mean the number of times statements using these
predicates have shared an argument in the knowledge base.

A third way DMAP leverages the underlying memory is
to perform coreference resolution. DMAP will allow
references from two different sentences (e.g. “terrorist
attack” and “bombing”) to refer to the same entity if one is
a generalization of the other. If a generalization does not
hold, then DMAP will use a case-based resolution strategy.
DMAP will query the knowledge base to see if there exists
a known instance that belongs to both classes. In this
example, because the KB has examples of terrorist
bombings, DMAP would allow the coreference.

Since DMAP is intrinsically tied to its underlying
knowledge base, in this case ResearchCyc (which is over
three orders of magnitude larger than has been used with
previous DMAP systems) problems of scale and managing
ambiguity arise. Our original implementation tracked
understanding ambiguities as they arose at the word level.
This approach could only read 35% of the sentences at a
rate of one second or better, and did not scale,
asymptotically approaching processing only 63% of the
test corpus, even when given hours per sentence.
Switching to a Reader that tracked ambiguity at the
sentence level provided significant improvement, allowing
63% of the corpus to be read at a rate of one second per
sentence or better, and reaching 99% of the corpus when
allowed to take as much as 8.7 minutes per sentence.
Leveraging the heuristics mentioned above to prioritize a
best-first search provided even better scaling, reaching
78% of the corpus in under a second per sentence, and 99%
when allowed to take 1.1 minutes.

The Q/A System

The purpose of the current Q/A system is to provide a
means of examining what the system has learned. We use
a parameterized question template scheme (cf. Cohen et al,
1998) to ask types of questions that are particularly
appropriate for the domain we are dealing with. The
current templates are: (1) Who is <Person>?, (2) Where
did <Event> occur?, (3) Where might <Person> be?, (4)
What are the goals of <Person>?, (5) What are the
consequences of <Event>?, (6) When did <Event> occur?,
(7) Who is involved in <Event>?, (8) Who is acquainted
with (or knows) <IntelligentAgent>?, (9) Why did
<Event> occur?, and (10) Where is <SpatialThing>?

In each template, the parameter (e.g., <Person>)
indicates the kind of thing for which the question makes
sense (specifically, a collection in the Cyc ontology). Each
template expands into a set of formal queries, all of which
are attempted in order to answer the question. The
minimum number of formal queries per template is one,
the maximum is 13 (location), with a mean of 5. For

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

example, question 3 uses queries involving hasBeenl n,
citizens, and obj ect Found! nLocat i on.

One problem with large knowledge bases is that, as they
grow, the cost of inference can become astronomical, with
failed queries taking hours or even days'. Our solution to
this problem is to restrict the set of axioms used for
reasoning. In the FIRE reasoning engine, backchaining is
restricted to small sets of axioms called chainers. A
chainer is a single partition within the KB, used for
reasoning, in the sense of Amir & Mcllraith (2005). While
their algorithm for partitioning assumes a fixed KB, ours
must deal with a KB that grows as the system reads. We
exploit two sources of knowledge in our extraction
process. The first is common, i.e., the kinds of predicates
that will be used in queries. The second is information
about the kinds of statements that are already in the KB
plus the kinds of statements that the natural language
system is capable of generating. That is, if the DMAP
phrasal patterns are capable of inferring statements
containing a predicate P, then we know that we could learn
such statements via reading, and otherwise we cannot.

Our axiom extraction algorithm creates a set of Horn
clauses (for tractability). The KB axioms are typically not
Horn, so we translate them into clauses to extract a Horn
clause subset (cf. Peterson et al 1998). The antecedents of
each Horn clause are examined to see if they are
potentially available in the KB, or if they are obtainable by
the Reader. If they are, the Horn clause is added to the set
of axioms for the chainer. Otherwise, the failed
antecedents are examined to see if there are Horn clauses
that could prove them. This process continues for a
maximum depth (default = 3), filtering out any rules that
have antecedents that will not be derivable within that
boundary. The details are described in Sharma & Forbus
(in preparation); what is important here is that we are
exploiting the structure of the natural language system to
make deductive inference more efficient, another
advantage of creating an integrated system.

Two chainers are created by this process. The chainer
for Q/A must be efficient, because it is an interactive
process. Consequently, we limit it to creating Horn clauses
from the specPr ed hierarchy in the Cyc ontology, but with
unlimited depth. For example, if the KB contained

(genl Preds expl osi veDevi ceUsed devi ceUsed)
the following Horn clause would be added:

(<== (deviceUsed ?x ?y)

(expl osi veDevi ceUsed ?x ?y))
The QA chainer contains 787 axioms. The Ruminator
chainer is more complex, containing 1,978 axioms, since it
can operate off-line. It includes rules that map from
specPreds to the query predicates, up to a depth of 6,
while other rules are limited to the default depth of 3.
Other recursive clauses are eliminated to improve
performance. Further automatic static analysis is done to
eliminate reasoning bottlenecks, which can speed inference
by a factor of 129 on average, with a worst-case

! ¢f. www.projecthalo.com/content/docs/

improvement of a factor of 4, with only an 8.5% loss of
completeness.

The Ruminator

The Reader does focused forms of inference, to retrieve,
filter, combine, and create descriptions of the text. But this
does not capture the human tendency to learn by later
reflecting upon what they have read, connecting it more
deeply to what they already know and pondering its
implications. The Ruminator models this kind of off-line
learning. The operation of the Ruminator can be divided
into three phases: Elaboration, question generation, and
question processing. We discuss each in turn.
Elaboration: The Reader’s output is a case, representing
its understanding of a text snippet. The first step is to
enrich the case with information about the entities and
events involved from the knowledge base. We do this by
using dynamic case construction techniques (Mostek et al
2000) to extract KB facts that are directly linked to the
entities and events of the story. This elaboration serves
two purposes. First, it reduces the amount of work needed
for subsequent inferences. Second, it "primes the pump"
for analogical processing in the next phase. We call these
descriptions conceptual models. For example, in the
snippet used earlier, this process adds facts indicating that
Al Anbar is a province, in the country of Iraq.

Question Generation: A key process in rumination is
generating interesting questions to consider. We use three
strategies for generating questions. The simplest uses a
form of knowledge patterns (Clark et al 2000), canonical
questions that one asks about a kind of entity. Given our
current focus on world history, we use formalized versions
of the standard Journalist's Questions (who, what, when,
where, why, how) as defined in the Q/A system. In the Al
Anbar example, for instance, one question the Ruminator
generates in this way is, paraphrased, “Who is involved in
the Al Anbar attack?”

The second strategy, analogical retrieval, is based on the
insight that if two things are similar in some ways, they
might be similar in others. We use the MAC/FAC model
of similarity-based retrieval (Forbus et al 1994) to retrieve
cases. The retrieval probe is the conceptual model for the
story. The case library used for a story is based on the
topic given for the text snippet. It includes all instances of
that concept from both the KB and the system's prior
reading. The second stage of MAC/FAC uses SME
(Falkenhainer et al 1989; Forbus et al 1994), which models
analogical matching, to construct candidate inferences
about the probe using the retrieved case. These candidate
inferences serve as the basis for another set of questions.
For example, based on an analogy with a terrorist attack in
Farah, Afghanistan, one question the Ruminator generated
about the Al Anbar example used above is, paraphrasing,
“Was the device used in the Al Anbar attack something
like a rocket?”

The third strategy is to compare the new story with
generalizations made about the topic. The generalizations
are automatically constructed via analogical processing,

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

using SEQL (Kuehne et al 2000) over all of the instances
of that topic in the KB and the system's prior reading. As a
new case comes in, we use SME to compare it with every
generalization, creating candidate inferences which are
then used as new questions. This gives us a source of
questions that reflect the system's experience with that
topic'. We use an extension of SEQL due to Halstead &
Forbus (2005) that provides probabilities for statements in
generalizations. This provides us with information that can
be used for prioritizing questions: Candidate inferences
generated from a more likely statement are more likely to
be interesting, however they turn out.

The strategies so far are entirely deductive: Even if a
question was generated via analogy with a prior example
or with a generalization, deductive reasoning with the
Ruminator’s chainer generated a proof in terms of the facts
in the case plus the KB contents. The Promiscuous
Conjecture Acceptance (PCA) strategy moves beyond
deductive rumination. Recall that candidate inferences
represent what might hold in a new situation (the target),
based on the way that it corresponds with some prior
experience (the base). Here the base is a prior case or a
generalization, and the target is the newly read case. Not
all snippets provide exactly the same information, so
candidate inferences provide a form of pattern completion.
For example, one story might mention that an attack
involving a Sunni insurgent group occurred in Iraq,
whereas another might not. When PCA is used, candidate
inferences that pass certain tests are accepted as true in the
case. The tests are (1) the candidate inference cannot
contain any analogy skolems. An analogy skolem
represents the projection into the target of an entity in the
base which was not mapped to anything. For example, the
“something like a rocket” in the analogy question about the
Al Anbar attack is the English rendition of an analogy
skolem, which is used as a variable in the query. Such
unbound existentials are not very useful for subsequent
reasoning, hence they are not introduced. (2) The
inference must not be obviously contradictory. By this we
mean that it must not violate disjointness constraints in the
KB and simple spatial constraints (e.g., a conjectured
location of an event must not be spatially disjoint with
what is already known about where it occurred).

In the experiment described above, 186 text shippets
gave rise to 871 knowledge pattern questions and 1,238
analogical questions, for a total of 2,109 questions. The
average number of questions/snippet is 11.3, 6.6 (58%) of
which on average are from analogies.

Question Processing: Two of the three sources of
questions we use are non-deductive, so it is possible to
generate questions that simply don't make sense, given
what the system already knows. (e.g., “Is it true that the
City of San Antonio’s spouse is Chile?”) We use type
inference with argument restrictions to eliminate questions

! we speculate that such questions eventually become new knowledge
patterns, but we have not experimented with this yet.

that are clearly internally inconsistent’. As with Q/A, we
use restricted inference to attempt to answer the questions
that seem to make sense. The chainer used for rumination
was described above. Answers, when found, are stored in
the conceptual model.

As the statistics above indicate, the Ruminator can
generate a huge number of questions. Those questions that
it cannot answer are stored in the KB, as a queue of open
questions for future consideration. When a new story is
read, it reconsiders these questions to see if the new
knowledge enables it to now answer them.

Noise: A system-level issue

Our experiments to date suggest that the presence of noise
in learned knowledge is one of the key issues in learning
by reading. For example, in one run we ended up with the
Sudan being viewed as a military person, and the assertion
that, up to 1920, Iraq was a definite NL attribute. There
are three sources of noise: Errors in the initial knowledge
base, imperfect understanding in the Reader, and
conjectures inappropriately accepted during rumination.
When rumination is purely deductive, only the first two
sources of noise are possible. But, as the errors about the
Sudan and Iraq illustrate, they do indeed occur. We have
recently modified the elaboration stage of Rumination to
scrutinize incoming facts more cautiously, to seek out
contradictions on its own. The provenance of all
information in a case is recorded, providing the potential to
track down such misunderstandings and correct them.

The problem of noise raises another fundamental issue
for learning by reading systems: How does noise in the KB
change as a function of learning by reading? Under what
conditions does the feedback loop provided by the
read/ruminate cycle act to dampen noise in the KB over
time, versus amplify it? This will be investigated in future
experiments, as outlined below.

Related Work

Most systems that learn by reading are aimed at extracting
particular kinds of facts from the web. For example,
KnowltAll (Etzioni et al 2005) extracts named entities and
OPINE (Popescu & Etzioni, 2005) extracts properties of
products. While impressive in the quantity of information
they can acquire, they do not attempt to understand a story
as a whole, nor do they attempt to integrate it into a large
pre-existing knowledge base. Closer to Learning Reader is
Cycorp's "Factovore" (Matuszek et al 2005), which uses
web searches to find candidate answers to queries
generated by using a hand-generated set of templates.
Their question generation process is similar to our use of
knowledge patterns in the Ruminator, but they do not have
the equivalent of our analogy-based question generation

2 . L
Unfortunately this process is imperfect, because many argument
restrictions in the KB are weak, e.g. Spat i al Thi ng or even Thi ng.

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

strategies. For us, questions are generated based on what
we have read, whereas for them information extraction is
done in order to answer specific questions. Cycorp also
uses a human editorial staff to validate knowledge as part
of their cycle. Our goal is that trainers should never know
the underlying representations that Learning Reader is
creating. We hope to enable people to extend it as long as
they can use simplified English, without being Al experts.

We know of no other system that integrates analogical
processing into the understanding process.

Discussion

We have described Learning Reader, a prototype system
that integrates natural language processing, deductive
reasoning over large knowledge bases, and analogical
processing in order to learn by reading simplified texts.
While Learning Reader is in its early stages, we believe the
results shown here indicate great promise. We have shown
that a system can “close the loop”, with natural language
processing producing representations of text that can be
assimilated into a large knowledge base, and used to
answer questions and to improve subsequent understanding
(via being retrieved through DMAP during reading and
being retrieved via MAC/FAC during rumination).

There are several directions we plan to pursue next.
First, we plan to expand our corpus. Our original corpus
will be doubled in size to test breadth, and a further
expansion will be done by systematically building up
stories about a particular area, so that we can explore the
impact of noise on learning from a large body of
interrelated material. Second, we intend to use DMAP for
question-parsing instead of parameterized questions. This
will expand coverage and provide the basis for
implementing an interactive dialogue system, to allow
trainers to ask follow-up questions, and to allow the
Ruminator to ask its trainers a limited number of questions,
with answers being interpreted also via DMAP. Third, the
process we added to the Ruminator which scrutinizes
newly learned knowledge for inconsistencies detects
errors, but it does not yet propose or implement repairs to
that knowledge. We expect that techniques of model-
based diagnosis, applied to a model of the system’s own
processing (cf. de Koning et al 2000) will be useful in this
regard. Finally, we plan to expand the role of evidential
reasoning in the Ruminator, exploiting the probabilities
generated via SEQL to help decide what action to take
when a misunderstanding is diagnosed.

Acknowledgements

This research was conducted as part of the Learning by
Reading Project, supported by DARPA IPTO.

References

Amir, E. and Mcllraith, S. 2005 Partition-Based Logical
Reasoning for First-Order and Propositional Theories,
Artificial Intelligence 162 (1-2), pp. 49-88

Clark, P., Thompson, J. and Porter, B. 2000.
Knowledge Patterns. Proceedings of KR2000.

Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A,
Starr, B., Gunning, D., and Burke, M. 1998. The DARPA
High-Performance Knowledge Bases Project. Al
Magazine, 19(4), Winter, 1998, 25-49

de Koning, K., Bredeweg, B., Breuker, J., and Wielinga,
B. 2000. Model-based reasoning about learner behaviour.
Artificial Intelligence 117, 173-229.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.,
Shaked, T., Soderland, S., Weld, D., and Yates, A.
Unsupervised Named-Entity Extraction from the Web: An
Experimental Study. Artificial Intelligence.

Falkenhainer, B., Forbus, K. and Gentner, D. 1989. The
Structure-Mapping Engine: Algorithms and Examples.
Artificial Intelligence.

Forbus, K., Ferguson, R., and Gentner, D. 1994.
Incremental structure-mapping. Proceedings of CogSci94.

Forbus, K., Gentner, D. and Law, K. 1994. MAC/FAC:
A model of similarity-based retrieval. Cognitive Science

Halstead, D. and Forbus, K. 2005. Transforming
between Propositions and Features: Bridging the Gap.
Proceedings of AAAIOS.

Kuehne, S., Forbus, K., Gentner, D. and Quinn, B. 2000.
SEQL.: Category learning as progressive abstraction using
structure mapping. Proceedings of CogSci2000

Livingston, K., and Riesbeck, C.K. 2007. Using
Episodic Memory in a Memory Based Parser to Assist
Machine Reading, Working notes, AAAI Spring Symposium
on Machine Reading, AAAI Press.

Martin, C.E. and Riesbeck, C.K. Uniform Parsing and
Inferencing for Learning. Proceedings of the Fifth National
Conference on Artificial Intelligence, Philadelphia, PA,
August 11 - 15, 1986, pp 257-261.

Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J.,
Schneider, D., Shah, P., and Lenat, D. 2005. Searching for
Common Sense: Populating Cyc from the Web.
Proceedings of AAAIOS

Mostek, T., Forbus, K. and Meverden, C. 2000.
Dynamic case creation and expansion for analogical
reasoning. Proceedings of AAAI-2000.

Peterson, B., Andersen, W., and Engel, J. 1998.
Knowledge Bus: Generating Application-focused
Databases from Large Ontologies. Proceedings of the 5"
KRDB Workshop, Seattle, WA.

Popescu, A., and Etzioni, O. 2005. Extracting Product
Features and Opinions from Reviews. Proceedings of
HLT-EMNLP 2005

Sharma, A. and Forbus, K. (in preparation) Automatic
Extraction of Efficient Axiom Sets from Large Knowledge
Bases.

Forbus, K., Riesheck, C., Birnbaum, L., Livingston, K., Sharma, A., and Ureel, L. (2007). Integrating Natural Language, Knowledge Representation and
Reasoning, and Analogical Processing to Learn by Reading. Proceedings of AAAI-07: Twenty-Second Conference on Artificial Intelligence, Vancouver, BC.

